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Abstract: - To acquire detection performance required for an operational system in the detection for satellite image for 
environmental changes, it is necessary to use multiple images over years to know the environmental changes over years. 
This paper describes a method for decision-level fusion technique where the fusion can compensate for correlation among 
images. The fusion is done using possibilistic combiners based on T-norms families that better represent the correlation of 
images. This technique was applied to satellite images for free vegetation of Africa (1998 April 01, 1998 September 01). 
The performance of this technique, compared to the other techniques such as naïve Bayes, Dempster-Shafer, voting, rule-
based and linear discriminant, is evaluated by simple theoretical models. 
 
Key-Words: - Decision Fusion, Correlation, naive Bayes, Dempster-Shafer, voting, linear discriminant, T-Norm, Satellite 
Imagery for environmental change. 

 
1 Introduction 
Multi image fusion has become an active field of research 
as more and more applications such as medical imaging, 
security, avionics, surveillance and night vision utilize 
multi sensor imaging arrays. Such arrays provide a wider 
spectral coverage and reliable information even in adverse 
environmental conditions at a price of a considerable 
increase in the amount of data. Image fusion deals with the 
data overload by combining visual information from 
multiple image signals into a single fused image with the 
direct aim of preserving the full content value of the multi 
sensor information. 
The production of land cover / land use maps is a common 
application of multi spectral satellite images. There are 
numerous examples of land cover maps derived from 
multi spectral satellite imagery at global, regional and 
local level. The most widely used approach is to classify 
each image pixel as an independent observation, 
regardless of its spatial context. Recently, at local level, a 
number of data sources have been used to derive land 
cover products, including Land sat TM data for high 
resolution studies.  
These studies have been carried out for a number of 
different applications, including estimation of biomass and 
vegetation mapping. It was evaluated the potential of 
ASTER VNIR (Visible and Near Infrared) and SWIR 
(Short Wave Infrared) sensors for land cover mapping. 
Information in the VNIR image contributed to the 

enhancement of vegetation and water classes. Rock and 
soil units were enhanced due to the contribution by the 
information in the SWIR images. 
One of the main problems when generating land cover 
maps from digital images is the confusion of spectral 
responses from different features. Sometimes two or more 
different features with similar spectral behavior are 
grouped into the same class, which leads to errors in the 
final map. The accuracy of the map depends on the spatial 
and spectral resolution and the seasonal variability in 
vegetation cover types and soil moisture conditions. 
Attempts have been made to improve the accuracy of 
image classification. 
Our aim in this paper is to develop a new approach for 
multi spectral image fusion or satellite imagery for 
environmental change based on possibility theory. This 
approach is expected to handle the problem of correlation 
which degrades the performance fusion. 
This approach will then be used to satellite images for free 
vegetation of Africa (1998 April 01, 1998 September 01).  
 
 
2 Fusion Techniques  
Fusion techniques [3, 4, 5] can be seen as a discriminant 
function, )(cF r

in satellite image confidence space defined 
in such a way that: 

→≥ cassigntcF rr)( Object of Interest 
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→< cassigntcF rr)( Background 

where ],1[]1,0[),,...,,( 21 Riccccc iR ∈∀∈=
r

is an 
image output (confidence) vector with R the number of 
images and t the threshold. Image output vectors are 
defined only at locations where the images from co-
registration and where image data is present.  
The general layout of the image-fusion methods is shown 
in Figure 1. The input of each image-fusion method is a 
confidence level per grid cell.  

 
Figure 1. The generic decision-level image-fusion layout. 
The output of the fusion process is one for detection and 
zero for no detection per grid cell. Each of the methods 
scales the influence of each of the images in a different 
way.  
This mapping may remove the differences in definitions of 
the confidence levels. The mapped inputs are combined in 
a fusion function to acquire a single value per grid cell. 
The mapping functions and the fusion function are given 
in Table 1. 
Method Mapping 

Function 
Fusion Function 

Naive Bayes linear scaling 
around 0.5 

product 
 

Linear 
discriminant 

linear scaling 
 

summation 
 

Dempster-
Shafer 

uncertainty 
level 
 

Dempster’s rule of 
combination 

Voting threshold Summation 
Rule-Based linear scaling Disjunction of 

conjunction clauses 
Table 1. The different functions for scaling the input and 
combining these into a single (fused) 
 
 
2.1 Naive Bayes 
The naive Bayes assumes that the confidence levels scale 
with the likelihood ratio per image. The likelihood ratio is 
the quotient of the conditional probability densities for 

both classes (mines and background). Based on this 
likelihood ratio the optimal Bayes decision can be made. 
If these conditional probabilities are image independent, 
then the joint likelihood ratio is the product of these 
individual likelihood ratios. Since the confidence levels 
most likely do not linear scale with the likelihood ratios, a 
mapping factor is included for each image. 
The naive Bayes fusion function )(cF r

and the mapping 
are given by: 

∏
=

+−=
R

i
iii ucucF

1
2
1 ))1(()(r (1) 

with the confidence levels and  the mapping 
parameters. 

ic iu

 
 
2.2 Linear Discriminant 
The linear discriminant is another (naive) implementation 
of the Bayesian optimal decision. If confidence levels are 
interpreted as the logarithm of the likelihood ratio per 
sensor and these likelihood ratios are independent, then the 
summation gives the optimal decision boundary. Since the 
confidence levels are most likely not proportional to the 
likelihood ratio, a scaling factor is used. A linear classifier 
is also optimal when the images values have equal normal 
distributions.  
The linear discriminant fusion function and the mapping 
are given by: 

i

R

i
icucF ∑

=

=
1

)(r  (2) 

with the confidence levels and the mapping 
parameters. 

ic iu

 
 
2.3 Dempster-Shafer 
For application of the Dempster-Shafer theory to image 
fusion, three inputs per image are needed: the probability 
mass assigned to an object of interest , the 
probability mass assigned to background

)(Mm
)(Mm , and the 

unassigned probability mass )( MMm ∪  . The sum of 
these masses always equals one, so there are only two 
independent masses ( and)(Mm )(Mm ). The mass 

represents a belief in an object of interest, the mass )(Mm
)(Mm  represents the belief in background, and the mass 

)( MMm ∪ reflects the uncertainty of the image. Each 
image produces one confidence level at each sample 

1u  

Fusion 
Function 

2u  

Ru  

threshold 

1 object of interest

0 background

Confidence 
level 1 

Confidence 
level 2 

Confidence 
level R 
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location, which must be mapped onto the three required 
probability masses. This is done by using the uncertainty 
as an optimization parameter. 
The confidence levels for image  are mapped onto 
probability masses, using: 

i

iii cuMm )1()( −= (3) 

ii uMMm =∪ )(  (4) 

with  the mapping parameter and  the confidence 
level for image i  . The probability masses for image 1, 
2,..,R  are combined using Dempster’s rule of 
combination:  

iu ic

)(*)()(*

))()(()(

1,...,2,1

1,...,2,11,...,2,1,...,2,1

MmMMmMm

MMmMmMm

RRR

RRR

−

−−

∪+

∪+=
 (5) 

)()(
1

,..,2,1 MMmMMm i

R

i
R ∪=∪ ∏

=

 (6) 

with the combined probability mass assigned 

to object of interest, and 

)(,...,2,1 Mm R

)(,...,2,1 MMm R ∪    the 
combined uncertainty mass. The output of the Dempster-
Shafer fusion function is given by the three combined 
probability mass assigned to an object of interest plus half 
the uncertainty: 

)()()( ,...,2,12
1

,...,2,1 MMmMmcF RR ∪+=
r

 (7) 

with the confidence levels and  the mapping 
parameters. 

ic iu

 
 
2.4. Voting 
Voting fusion is another decision-level fusion method. Our 
voting fusion is described by (R+1) thresholds: one for 
each image and one for the required number of votes. A 
vote is given by a satellite image if the confidence level of 
this image is larger than the threshold. The votes are 
summed and the final threshold select between one out of 
R (“or” voting), or R out of R (“and” voting) votes.  
The voting fusion function and the mapping are given by: 

)),,(()( 1
1

+
=
∑= Rii

R

i

uucTTcF r
(8) 

with the confidence levels and the mapping 
parameters.  

ic iu

The threshold function is defined as: 

⎩
⎨
⎧ ≥

=
otherwise

ucif
ucT

,0
,1

),(  (9) 

 

 
2.5. Rule-based fusion 
Decision rules form an intuitive and flexible approach to 
satellite image fusion as it is very easy to incorporate any 
available a priori knowledge into the system.  
The general form of a rule is the following: 

→>∧∧> ii ucuc ...11  Object of Interest (10) 
which consists of a conjunction (‘and function’) of clauses 

. Each clause states that an image confidence level 
is higher than a certain threshold. Each clause states that a 
satellite image confidence level is higher than a certain 
threshold. A clause may be omitted by setting its threshold 
value to zero. Disjunction (‘or function’) of clauses is 
achieved by combining rules: 

ii uc >

→>∧∧>∨>∧∧> )...()...( 2,2,111,1,11 iiii ucucucuc  Object of 
Interest (11) 

in which are thresholds. A rule set is derived by selecting a 
minimal (in the sense of number of rules) rule set for a 
training set which covers each sample in the training set. 
Each object is covered by at least one rule. This rule set 
can be simplified by removing rules already covered by 
the rest of the rules in the set. 
Only the maximum number of rules and the quantization 
of the thresholds constrain the resolution of the 
discriminant and as such the approximations of the other 
discriminant functions. As such, the discriminant function 
of the rule-based system is the superset of all the 
discriminant functions of the other image-fusion methods. 
 
 
3 T-Norm Fusion 
We propose a general method for the fusion process, 
which can be used with satellite image outputs that may 
exhibit any kind of (positive, neutral, or negative) 
correlation with each other. Our method is based on the 
concept of Triangular Norms, a multi-valued logic 
generalization of the Boolean intersection operator. With 
the intersections of multiple decisions one needs to 
account for possible correlation among the sources, to 
avoid under- or over-estimates. Here we explicitly account 
for this by the proper selection of a T-norm operator. We 
combine the outputs of the images by the generalized 
intersection operator (T-norm) that better represents the 
possible correlation between the images. 
 
 
3.1 The Triangular-Norm 
A triangular norm (briefly t-norm) is a binary operation T 
on the unit interval [0, 1] as follows 
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),min()1,0max(,]1,0[),(: 2 yxxyyxyxT ≤≤−+∈∀ The 
T-norm operation is commutative, associative, monotone 
and has 1 as neutral element, i.e., it is a function 

such that for all : ]1,0[]1,0[: 2 →T ]1,0[,, ∈zyx
(T1)  ),,(),( xyTyxT =
(T2)   ),),,(()),(,( zyxTTzyTxT =
(T3)  whenever  ),,(),( zxTyxT ≤ ,zy ≤
(T4)  ,)1,( xxT =

In I. Bloch [10], T-norms were considered as fuzzy CICB 
operators which satisfy the requirements of the 
conjunction operators. There exist a lot of parameterized 
T-norm families of operators which range continuously 
from one operator to another depending on the value of the 
parameter.  This parameter can be used to express 
correlation as explained in later sections. 
 
 
3.2 Correlation of Image-Decision Fusion 
Since correlation affects the performance analysis. The 
larger the correlation index, the larger the redundancy. In 
particular, the correlation index goes to zero if the 
individual incorrect answers are disjoint for all answers. In 
other words there is always at least one correct answer for 
any class. The ρ correlation coefficient [8] gets larger as 
the number of wrong answers is the same for many 
answers. Let be the number of experiments where all 
tools had a wrong answer, be the number of 
experiments with combinations of correct and incorrect 
answers; c is the combination of correct and incorrect 
answers; n is the number of tools. The correlation 
coefficient is then 

fN
c
iN

f

i

c
i

f

nNN

nN
n

+
=

∑
−

=

22

1

ρ (12) 

 
 

3.3 The T-Norm fusion technique for correlated 
images 
In our work, we suggest a new decision-level fusion 
method based on possibilistic fusion for a better 
representation of the correlation among images. 
From the associativity of the T-norms, we can derive the 
associativity of the fusion by: 

)),(,((
)),,(()(

321

321

ccTNormcTNorm
cccTNormTNormcF ==

r

(13) 

with the confidence levels for three images and 
this equation (13) can be computed recursively for R 
images.  

321 ,, ccc

For instance the operator ),,( αyxh  is CIVB (Context 
Independent Variable Behavior) whose behavior depends 
on the value of α [10]. According to [11], Dempster-
Shafer is a special case of possibilistic fusion where 
correlation = 0 and the function is equal to the product xy . 
From this, we can choose a suitable α  to have a fusion 
technique sensitive to correlation. 

• Schweizer-Sklar:      
),,max(

),(
αyx

xyyxTNorm = , 

which ranges from product  xy  for 1=α  to 
for),min( yx 0=α (this family is decreasing w.r.t. 

the parameterα ) 
- We choose α  such that )/(1 ∞−= ρα  

• Generalized:      
, which 

ranges from for

ααα /1)]1(,0max[),( −+= yxyxTNorm
)1,0max( −+ yx 1=α to the product 

0=α  (this family is increasing w.r.t. the 
parameterα ) 
- We choose α  such that ρα =  

• Family of Hamacher 

))(1(
),(

xyyx
xyyxTNorm

−+−+
=

αα
 , which 

ranges from  for )1,0max( −+ yx +∞=α  to the 
product 1=α  (this family increasing w.r.t. the 
parameterα  ) 
- We choose α  such that )1/(1 ρα −=  

• Family of Frank:  

]1[log),(
1

)1)(1(

−

−−
+=

α

αα
α

yx

yxTNorm  

,which is equal to the “min” for 0=α , to the product 
for 1=α and to for)1,0max( −+ yx +∞=α  (this 
family is decreasing family w.r.t the parameterα  ) 
- We choose α  such that )1/(1 ρα −=  
 
 

4 Performance Evaluations 
In the performance evaluation table, the accuracy is 
compared to the correlation between different images 
taken by satellite NDVI images each 50 days. The images 
are acquired from http://free.vgt.vito.be/result.php/ for free 
vegetation products of Africa. The accuracy here is 
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defined by comparing the best image – the image which 
had the minimum error when applying the clustering 
techniques- with the fused image. 
In order to create this comparison it is of extreme 
importance to have adequate simultaneous information on 
the detection rate over the entire diagram for the 
algorithm. Image 1 is Africa 1998 April 01 and the 2nd 
image is as in the following table 
 
Image 2 Duration 

(days) 
Correlation

Africa 98 May 21 50 0.9768 
Africa 98 July 11 100 0.9641 
Africa 98 September 01 150 0.9389 

Table 2. The correlation between 1st and 2nd image 
 
The table comparing accuracies is as follows: 
 
Technique 
/Accuracy 

Image 
A980521 

Image 
A980711 

Image 
A980901 

Naïve Bayes 0.96081 0.93803 0.91357 
Linear-
Discriminant 

0.9952 0.99546 0.99515 

Dempster-
Shafer 

0.97138 0.95275 0.93418 

Or Voting 0.79922 0.9718 0.97241 
And Voting 0.96045 0.96001 0.9491 
Rule-Based 0.9806 0.97193 0.9731 
T-Norm(S-S) 0.97551 0.96284 0.94443 
T-Norm(G) 0.78622 0.77815 0.75909 
T-Norm(H) 0.97551 0.96284 0.94443 
T-Norm(F) 0.78622 0.77815 0.75909 

Table3. The performance fusion gain of different 
techniques 

 
 

5 Conclusions and Future Work 
We have proposed an approach based on possibility theory 
in this paper. The approach is based on calculating the 
correlation among different images taken at different times 
to study the change of the environment and use it as a 
parameter in four CIVB T-Norm techniques to handle the 
problem of high correlation. This approach performs better 
for correlated satellite images for environmental changes 
than the previous techniques. As shown in table 3, all the 
previous techniques are affected by the use of the mapping 
function which causes different output gains- and 
sometimes causes an output very similar to the best image. 
In this case, the performance gained by the fusion has no 
use. In T-norm techniques, the fusion plays its role in 

acquiring useful information given by more than one 
image.  
For future work, we can use this idea in the landmine 
detection in the Alamen minefield, Egypt. Knowing the 
original map of the landmine field where mines were 
buried from years and calculating the correlation between 
satellite images of the area in this time considering the 
environmental change till now, we can deduce the recent 
map of the buried mines in the Alamen minefield. 
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