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Abstract: - Reliability is one of the major concerns in the design of embedded systems. Formal verification by 
model checking is of a great advantage in verifying the correctness of computer system, whether they are 
hardware, software or a combination. The paper reports the design and development of an intelligent telephone 
alarm that is a single-chip computer system, and the formal verification of communication protocol is described 
based on the model checker NuSMV. 
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1   Introduction 
Reliability plays an important role in the design of 
embedded systems or other electronic systems, 
especially for the safety-critical or mission-critical 
systems. Formal verification is one of the methods 
that can help the designer to test the properties of the 
system and debug the errors during the course of 
system development, so that the correctness of the 
design can be guaranteed.  
     As for formal verification techniques, Michael 
Huth[1], from logics’ application point of view, has 
classified the approaches into proof-based and 
model-based, and pointed that model checking is an 
model-based property-verification approach and is 
used mainly for concurrent and reactive systems. W. 
Marrero and J. Wen [2,5] applied model checking to 
the analysis of security protocols that consist of a 
sequence of messages with encrypted parts. After 
analysis some applications of formal verification to 
functional requirements (specifications) of circuits, I. 
Pill etc. in [6] noted that the crucial activity of 
producing an implementation satisfying given 
properties is the quality enhancement of the 
specifications before the design phase, and presented 
techniques and guidelines to explore and assure the 
quality of a formal specification. 
     This paper reports the design and development of 
an intelligent telephone alarm that is based on the 
single-chip computer system, and the emphasis is 
placed on the formal analysis and verification of the 
communication protocol by using the model checker 
NuSMV. 
 
 
2   Design Requirements of the Alarm 

For most office or home used alarms, such as the 
smoke detector & alarm device, a common 
characteristic is that it can work quite well on the spot 
if something happens (such as the fire). But the 
situation occurred might not be handled immediately 
and properly if nobody is in, especially in the 
evenings. The reason is that such kind of alarms 
cannot give an alarm remotely. Based on the demand 
of the market, a new type of intelligent alarm and 
control system has been designed that functions as 
follows:  
♦ It can sample the information from the different 

alarm sources, decision its actions and, if 
necessary, give the alarm signal on the spot and 
to the remote agent via the public telephone line. 

♦ The alarm message delivered can be audio or 
digital signals depending on the user’s choice. 
The four pre-set telephone numbers are calling 
one by one until one of them give the answer. 

♦ User can remotely reset and set the calling 
numbers and safety password using his telephone 
if the telephone number has changed. User can 
also control the state of the alarm to open or close 
using his telephone. 

     The system consists mainly of the sensor signal 
process circuit, dual tone multi-frequency (DTMF) 
send/receive circuit, audio control & record/play 
circuit etc. Since most of functions for the 
communication and control are carried out by the 
DTMF send and receive circuit, we will focus on this 
part. On the top of the Fig.1 is the single-chip 
processor 89C51 that is the center of control and 
information process. The 5087 is a DTMF chip and 
play the sender’ role, i.e., it receives the 89C51’s 
8-bit output signals (corresponding to one dial 
keypad number), transforms the dial number into the 
DTMF signals and transmits the signals to remote 
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telephones. The chip 8870, in the bottom left-hand 
corner of the Fig1, is the DTMF receiver, i.e., it 
receives the audio signals from remote telephones 
and decodes them into four bits for reading by 89C51. 
Note that the eight output ports of 74LS374 are 
connected into the input C1-C4 and R1-R4 of 5087 
chip, which play the keypad’s role of a telephone, and 
89C51’s 8-bits output is connected to the input ports 
of 74LS373, so that the CPU can drives the chip 5087 
sending the audio signals to remote telephone. So, the 
sending path of the message is formed from 89C51, 
74LS373, and 5987 to telephone via PSTN. Similarly 
the receiving path of message can be formed.  

     Due to the reliable requirements of the message 
delivery, a communication protocol is designed and 
its correctness needs to be verified by using some 
formal tool, such as NuSMV. In the following section, 
we will focus on the analysis and verification of the 
protocol. 
 
 
3   Verification and Analysis of the 
Communication Protocol Model 
 
 
3.1 Model checker NuSMV 

Model checking is an automatic, model-based, 
property-verification approach for formal 
verification. In model checking, the models M are 
transition systems and the propertiesφ are formulas 
in temporal logic. To verify that a system satisfies a 
property, we must do three things: the first is to 
model the system using the description language of a 
model checker, arriving at a model M; then to code 
the property using the specification language of the 
model checker, resulting in a temporal logic formula 
φ; and the third is to run the model checker with 
inputs M  andφ. The model checker can output the 
answer ‘yes’ if M |=φ and ‘no’ otherwise; In the 
latter case, most model checkers also produce a trace 
of system behavior that causes this failure. This 
automatic generation of such ‘counter traces’ is an 
important tool in the design and debugging of 
systems. 
     NuSMV stands for ‘New Symbolic Model 
Verifier.’ [3,4] It is a software tool for the formal 
verification and allows checking finite state systems 
against specifications in the temporal logic, including 
linear-time temporal logic (LTL) and computational 
tree logic (CTL). The input language of NuSMV is 
designed to allow the description of finite state 
systems that range from completely synchronous to 
completely asynchronous. The NuSMV language 
provides for modular hierarchical descriptions and 
for the definition of reusable components. The basic 
purpose of the NuSMV language is to describe (using 
expressions in propositional calculus) the transition 
relation of a finite Kripke structure. Following are the 
formal definitions about the syntax and semantics of 
one of temporal logic CTL, i.e., Computation Tree 
Logic. 
Definition 3.1 The syntax of CTL formulas can be 
given in Backus Naur form as follow: 

[ ] [ ]φφφφφφ
φφφφφφ

φφφφφφ

UE|UA|EG|AG
|EF|AF|EX|AX|)(

|)(|)(|)(||T|::
→

∨∧¬∨= p

Where p ranges over a set of atomic formulas. 
     Notice that each of the CTL temporal connectives 
is a pair of symbols. The first of the pair is one of A 
and E. A means ‘along All paths’ (inevitably) and E 
means ‘along at least (there Exists) one path’ 
(possibly). The second one of the pair is X, F, G, or U, 
meaning ‘neXt state,’ ‘some Future state,’ ‘all future 
states (Globally)’ and ‘Until’, respectively. Notice 
that AU and EU are binary. The symbols X, F, G and 
U cannot occur without being proceeded by an A or 
an E; every A or E must have one of X, F, G, and U to 
accompany it. 
Definition 3.2 A transition system M =(S, →，L) is 
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a set of states S endowed with a transition relation → 
(a binary relation on S), such that every s∈S has 
some s’∈S with s→s’, and a labelling function L:S
→P(Atoms). 
     Transition systems are also simply called models. 
So a model has a collection of states S, a relation →, 
saying how the system can move form state to state, 
and, associated with each state s, one has the set of 
atomic propositions L(s) which are true at that 
particular state. Here P(Atoms) stands for the power 
set of Atoms, a collection of atomic descriptions. 
     CTL formulas are interpreted over transition 
systems. Let M=(S, →，L) be such a model, s∈S 
and φ a CTL formula. The definition of whether M, 
s|=φ  holds can be given formally as following 
definition. 
Definition 3.3  Let M =(S, →，L) be a model for 
CTL, s in S, φ a CTL formula. The relation M, s|=φ 
is defined by structural induction onφ:  

(1) M, s|=T and M, s|≠^  
(2) M, s|=p  iff  p∈L（s） 
(3) M, s|= Øφ iff M, s|≠φ 
(4) M, s|=φ1∧φ2  iff M, s|=φ1 and M, s|=φ2 
(5) M, s|=φ1∨φ2  iff M, s|=φ1 or M, s|=φ2 
(6) M, s|=φ1→φ2  iff M, s|≠φ1 or M, s|=φ2  
(7) M, s|=AXφ iff for all s1 such that s→s1 we 

have M, s1|=φ. Thus, AX says: ‘in every next 
state.’ 

(8) M, s|=EXφ iff for some s1 such that s→s1 we 
have M, s1|=φ. Thus, EX says: ’in some next 
state.’ E is dual to A --- in exactly the same 
way that $  is dual to "  in predicate logic. 

(9) M, s|=AGφ holds iff for all path s1→s2→s3
→…, where s1 equals s, and all si along the 
path, we have M, si|=φ. That is, for ALL 
computation paths beginning in s the property
φ holds Globally, and ‘along the path’ include 
the path’s initial states s. 

(10) M, s|=EGφ holds iff there is a path s1→s2
→s3→…, where s1 equals s, and all si along 
the path, we have M, si|=φ, i.e., there Exists a 
paths beginning in s such thatφ holds 
Globally along the path. 

(11) M, s|=AFφ holds iff for all path s1→s2→s3
→…, where s1 equals s, there is some si such 
that  M, si|=φ. That is, for ALL computation 
paths beginning in s there will be some Future 
state whereφ holds. 

(12) M, s|=EFφ holds iff there is a path s1→s2→
s3→…, where s1 equals s, and for some si 

along the path, we have  M, si|=φ, i.e., there 
Exists a computation path beginning in s such 
that φ holds in some Future state; 

(13) M, s|=A[φ1Uφ2] holds iff for all paths s1
→s2→s3→…, where s1 equals s, that path 
satisfiesφ1Uφ2, i.e., there is some si along 
the path, such that   M, si|=φ2, and for each 
j<I, we have M, sj|=φ1. 

(14) M, s|=A[φ1Uφ2] holds iff there is a path s1
→s2→s3→…, where s1 equals s, and that path 
satisfiesφ1Uφ2, as specified in (13).That 
means there Exists a computation path 
beginning in s such thatφ1 Untilφ2  holds on 
it. 

 
 
3.2 NuSMV description of the Protocol 
The protocol transmits the alarm messages along the 
sending path to the remote telephones. Since the four 
remote telephones may have no person near by to 
answer and result in the loss of messages, the 
message will be send again and again until one of 
telephone gives a answer. This means that the 
protocol guarantees the communication between the 
sender and the receiver being successful. 
     The protocol works as follows. There are four 
entities, or agents: the sender, the receiver, the 
message path and the acknowledgement path. The 
sender transmits the first part of the message together 
with the ‘control’ code *. If, and when, the receiver 
receives the message, it sends code * along the 
acknowledgement path. When the sender receives 
this acknowledgement, it sends the next packet with 
the control bit #. If and when the receiver receives 
this, it acknowledges by sending a code # on the 
acknowledgement path. By alternating the control code, 
both receiver and sender can guard against duplicating 
messages and losing messages (i.e., they ignore messages 
that have the unexpected control code). 
     If the sender doesn’t get the expected 
acknowledgement, it continually resends the message, 
until the acknowledgement arrives. If the receiver 
doesn’t get the message with the expected control 
code, it continually resends the previous 
acknowledgement. 
     Fairness is also important for the protocol. It 
comes in because, although we want to model the fact 
that the path can lose messages, we want to assume 
that, if we send a message often enough, eventually it 
will arrive. In other words, the channel cannot lose an 
infinite sequence of messages. If we did not make this 
assumption, then the channel could lose all messages 
and, in that case, the protocol would not work. 
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     For our case of the communication protocol, we 
assume that the text to be sent consists of a telephone 
number with the alarm message, which are sent 
sequentially. The variable message1 is the current 
number of the message being sent, whereas message2 
is the control signal. The definition of the module 
Sender is given In Fig. 2. 
MODULE sender(ack) 
VAR  
   St       :{sending, sent}; 
   Message1 :boolean; 
   Message1 :boolean; 
ASSIGN 
   Init(st)  := sending; 
   Next(st) :=  

case 
          Ack = message2 & !(st=sent) :sent; 

1                      :sending; 
esac 

   next(message1) :=  
case 

          st = sent :{0,1}; 
1     :message1; 

esac 
   next(message2) :=  

case 
          st = sent : !message2; 

1       :message2; 
esac 

FAIRNESS running 
SPEC AG ! (sender.st = sent → EF receiver.st=received) 
 
         Fig.2  the sender in NuSMV 

     This module spends most of its time in st=sending, 
going only briefly to st=sent when it receives an 
acknowledgement corresponding to the control code 
of the message it has been sending. The variables 
message1 and message2 represent the actual data 
being sent and the control code, respectively. On 
successful transmission, the module obtains a new 
message to send and returns to st=sending. The new 
message1 is obtained non-deterministically (i.e., 
from the sensors); message2 alternates in value. We 
impose FAIRNESS running, i.e., the sender must be 
selected to run infinitely often. The SPEC tests that 
we can always succeed in sending the current 
message.  
     The module receiver is programmed in a similar 
way. Another two modular is about the two paths. 
The acknowledgement path is an instance of the 
chan1. Its lossy character is specified by the 
assignment to forget. The value of input should be 
transmitted to output, unless forget is true. The 
sending channel chan2, used to send messages, is 
similar. Again, the non-deterministic variable forget 
determines whether the current code is lost or not. 
Either both parts of the message get through, or 

neither of them does (the channel is assumed not to 
corrupt messages). 

Finally, we tie the four modular together with the 
modular main whose role is to connect together the 
components of the system, and giving them initial 
value of their parameters, see Fig. 3. 
MODULE main
VAR  
   s: process sender(ack-chan.output); 
   r: process receiver(msg-chan.output1, msg-chan.output2);
   msg-chan :process chan2(s.message1, s.message2); 
   ack-chan :process chan1(r.ack); 
ASSIGN 
   init(s.message2)  := 0; 
   init(r.expected )  := 0; 
   Init(r.ack)       := 1; 
   Init(msg-chan.output2)  := 1; 
   Init(ack-chan.output)   := 1; 
 
SPEC AG ! (sender.st = sent → EF receiver.st=received) 
 
         Fig.3  The main in NuSMV 
     The paths have fairness constraints that are 
intended to model the fact that, although paths can 
lose message, we assume that they infinitely often 
transmit the message correctly. 
     After programmed all the source code of the 
protocol’s model and its key properties into the file 
dtmf.smv, we can run NuSMV and debug the 
protocol. At last the protocol satisfies with the 
specifications what we expected, although several 
failures occurred during the beginning of the 
verification. 
 
 
4   Conclusion 
As a model-based formal verification tool, NuSMV 
is quite powerful and useful in the verification of the 
systems’ design deficiency. The paper reports the 
design and development of an intelligent telephone 
alarm that is a single-chip computer system, and the 
formal verification of communication protocol is 
described based on the model checker NuSMV. Our 
experience showed that modeling system properly 
and specifying the properties to be verified precisely 
are key steps for designers, and the results 
demonstrated that the design of our communication 
protocol is proper and the system functions correctly. 
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