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Abstract: -Mobile robots have been traditionally designed with wheels and few have explored designed with 
spherical exo-skeletons. This paper described a prototype and analytical study of a spherical mobile robot 
which is driven by two internally mounted motors. These motors which are located on the 2-DOF robot joints, 
induce the ball to move to arbitrary positions. Internal motors will move the mass point of the inner mechanism, 
thereby moving the robot. The kinematic model of spherical mobile robot will be derived in the quasi-static 
mode while the dynamic model is developed by Kane’s method. Finally a PI and fuzzy controller are proposed 
separately and their deal with this problem is compared. The effectiveness of the proposed method is shown via 
simulation. 
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1 Introduction 
 The study of Spherical Mobile Robots has its 
foundation in the belief that there are certain 
applications where the rolling ability of the robot is 
advantageous compared to traditional, car-like 
mobile robots. The advantages are that they are 
more versatile; less exposed to physical conditions 
and has a higher resistance towards object 
collisions. Spherical mobile robots are a special 
case of what is known as exoskeleton robots, which 
are robots with an external skeleton. The external 
skeleton provides efficient cover for driving 
mechanisms and sensory equipment. Several of the 
designs have already been tested by different 
researchers worldwide. Some of the designs have 
proved inadequate or unsuitable for different 
reasons, giving some indications as to what are the 
important physical characteristics for different 
purposes. In general, most of these efforts have 
focused on motion planning and control. 
Bicchi decided for a design using a two wheeled 
car that rests on the sphere shell only by its own 
weight [1]. This rendered the robot rather sensitive 
to external perturbations such as dents in the floor 
or obstacles. Halme used a similar car-like structure 
inside the sphere, but also incorporating a 
horizontal beam connected to a free-rolling balance                                
wheel in the roof [2]. Bhattacharya experimented  

with a symmetrical robot using two identical half-
spheres  being  driven  by  conservation  of  angular                  
Momentum [3]. By using two identical rotors for 
propulsion and one rotor for turning the robot 
manages is quite maneuverable. Mukherjee has 
patented a system where there are no wheels used 
for propulsion [4,5]. A system of pancake-motors is 
mounted to non-symmetrical orthogonal axes, and 
moves along their respective axes and thereby 
move the mass centre. Heggelund built a prototype 
based on the gimbals principle which was the basis 
for this project. Due to mechanical difficulties, the 
inner drive unit was implemented with only a half 
circle inner gimbals ring [6]. This meant the robot 
was subjected to nonholonomic constraints, and 
therefore had similar moving pattern as traditional 
mobile robots. This was therefore considered 
uninteresting for further treatment. 
 Unfortunately none of the projects have published 
enough experimental data or analytic results to 
make any design comparisons rewarding. As a 
matter of fact, only one of the papers actually 
includes experimental results, while the others 
theorize and simulate their concepts. 
 This paper presents a different mobile robot class 
that can achieve many kinds of unique motion, such 
as all direction driving and motion on rough 
ground, without great loss of stability. The structure 
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adopted for the robot presented in this paper is one 
of a spherical mobile robot, which can be seen in 
Fig. 1. 
 To make the ball move, a mobile mass is placed 
within the cavity of the ball. To implement motion, 
we built a mechanism with an inner mass moving 
by means of two links. This links rotate by two 
mutually perpendicular rotors attached to them. 
This mechanism enables the robot to use the effect 
of the gravity and the principle of angular 
momentum conservation however the principle of 
angular momentum conservation is not well suited 
for irregular terrain, where unexpected external 
momentums can appear but in some situation it can 
cause high acceleration and be useful. 

 
 
 

2 Kinematic model 
 The configuration of a sphere rolling on a flat 
surface can be described by the two Cartesian 
coordinates of the center of the sphere, and three 
coordinates describing the sphere orientation. In 
Fig.1a the center of the sphere is defined by point 
Q; the orientation is described by points P and R, 
where P is an arbitrary point on the surface of the 
sphere, and R is an arbitrary point on the equatorial 
circle, defined relative to P. 
To obtain a kinematic model of the sphere, we 
denote Cartesian coordinates of the sphere center 
by ( , )Q x y≡ . We adopt the z y z− − Euler angle 
sequence ( , , )α θ φ to represent the orientation of the 
sphere. We first translate the xyz  frame to the 
center of the sphere and rotate it about the positive 
z  axis by angleα , π α π− ≤ ≤ , to obtain frame 

1 1 1x y z .we rotate frame 1 1 1x y z about the 1y axis by 
angle θ , π θ π− ≤ ≤ , to obtain frame 2 2 2x y z . The 
point P is located at the intersection point of the 

2z axis with the sphere surface. The 2 2 2x y z frame is 

rotated about the 2z axis by angle φ  to obtain 
frame 3 3 3x y z . The point R is located at the 
intersection point of the 2x axis and the sphere 
surface. Then we rotate the 3 3 3x y z  about the 3z by 
angle 1γ to obtain frame 4 4 4x y z  and finally rotate 
the 4 4 4x y z  about the 4y by angle 2γ to obtain 
frame 5 5 5x y z . All frames are shown in Fig. 2. 
 The kinematic model of the Sphere will be derived 
in the assumption that the sphere rolls without 
slipping on the floor. To obtain it ignore the inner 
mechanism and only consider the driving mass if 
the mass rotates about imaginary horizontal axis by 
angle β , it causes the sphere rotates β in enough 
time too. So if the mass velocity be mV  then the 

sphere velocity is ( ) m
R Vd . Where R is sphere radius 

and d is the distance of driving mass to center of 
sphere. 
 So we freeze the sphere and calculate the velocity 
of the driving mass by moving the inner 
mechanism: 
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To obtain ,α θ and φ we have: 
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By solving eq.(4) for ,α θ andφ yields: 
 

cos( )cos( ) cos( )sin( ) sin( )
sin( )

x y zθ α ω θ α ω θ ω
α

θ
+ −

=−      (5) 

Rotor 1 

Rotor 2 

Fig.1 Prototype of the spherical robot. 

(3)
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cos( ) sin( )
sin( )

x yα ω α ω
θ

θ
+

=     (6) 

sin( ) cos( )x yφ α ω α ω= − +    (7) 
Where: 

,s sx y : Sphere velocity in x and y direction 
respectively. 

ξω : Angular velocity about ξ  axis. 

mm : driving mass.  
zzI  : Sphere and mechanism moment of inertia about 

vertical axis passing through sphere center. 
Rβ
ξ : Rotation matrix about ξ  axis by angle β .  

 By substituting eqs.(1)-(3) in eqs.(5)-(7) lead to the 
kinematic model of the spherical mobile robot. 
 
 
3 Dynamic model 
 In this section the dynamic equations for the 
Spherical robot are derived via applying the kane 
approach in quasi coordinates. The dynamic model 
is necessary for modeling the robots behavior and 
having a good knowledge of its motion properties. 
Since the robot has its own inertia, it will not 
respond instantly to velocity commands. 
 We define generalized speed and coordinate as: 
 

1
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3

14
25

, , 1...5i i

q
q
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q
q
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θ
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   
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Kane's dynamic equations can be represented as: 
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 Where rF  is generalized active/external force *

rF  is 
generalized inertia force. Also, iR  and jM are active 
force and active torque while iR and iM  are inertial 
force and inertial torque; note that kp is the thk  
particle of system, ip

rV and ip
rω are partial linear 

velocity and partial angular velocity of particle ip ; 
i

rV and i
rω are partial linear velocity and partial 

angular velocity of active force and torque contact 
points; N is the number of particles and λ and γ are 
the number of active force and active torque 
respectively.  
 The linear velocity, linear acceleration, angular 
velocity and angular acceleration of sphere and 
driving mass can be expressed as: 
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 Where ( , , )n n ni j k denote the unit vectors of n n nx y z  
coordinate which are described in the previous 
section. Note that the only active forces are the inner 
mass gravitational force and the rotor torques. Using 
the partial velocities, the generalized active forces 
for the five generalized speeds can be expressed as: 
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Y1, Y2 

X3 

Y3 

q1  

q2 

q3 

Z3, Z4 

Y3 

X3 

X4 

Y4, Y5 

X5 

Z5 

q4 

q5 

Fig.2  Configuration of sphere and inner mechanism. 

Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22, 2006      93



1

2 5 2 5 3 4 3 42

2 5 3 4 4 33

12 5 3 4 4 34

22 5 2 5 3 4 3 45

0 0
s c c s (c c s s ) 0

( ) 0
( )

( s )

m

F
q q q q q q q qF

sq sq cq sq cq sqF m gd
sq sq cq sq cq sqF

cq sq sq cq cq cq q sqF
τ
τ

     
     + −
     − +=− +     

− +     
     + −    

        (14) 

 
 To determine the generalized inertial forces 
corresponding to the generalized speeds, the inertial 
force, iR , and the inertia torque, iM  are first derived 
in terms of the mass, M, the central inertial dyadic, 
I , the linear and angular accelerations, a  and α , 
and the angular velocity, ω , of the centre of mass. 
 

( )

i i
i

i i i i i i

R m a

M I Iα ω ω
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= − + ×
              (15) 

 
The nonholonomic constraints for the system are:  
 

( )
( )

1 2 1 2 3
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cos( ) sin( )sin( )

sin( ) cos( )sin( )
sx
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V q u q q u R

V q u q q u R
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             (16) 

 
 By substituting eq.(14) and eq.(15) in eqs.(9)-(11) 
the dynamic model of the spherical mobile robot 
will be derived. Although the dynamic model can be 
derived via the Lagrange method simply, it will 
make the equations of motion too complicated. So, 
the Kane’s method is used in this paper. 
 
 
4 Control 
4.1 PI Controller 
 The problem with the control the proposed robot is 
that it is impossible to control the proposed robot in 
high acceleration or dynamic mode. Regarding the 
fact that a sphere has 3 degrees of freedom based on 
its velocity, if we define the degrees of freedom as 
the rotation about the fixed coordinates axes, xyz, it 
will be sufficient to control the rotation about x and 
y axes to track the desired path. In this way, the 
rotation about the z axis will not play any role in 
displacement of the sphere and will cause the sphere 
to rotate around itself. However, this rotation will 
also be made by the inner mechanism motion. It 
must be noted that if the desired path had been 
designed in a way that causes the sphere turns 
around itself for a long time with an increasing or 
decreasing acceleration, the angular velocity of the 
sphere will be increased abnormally and the system 
turns into instability.  
 In order to solve the proposed problem, the sphere 
must be controlled by using the relations derived in 
the section 2 in the quasi-static mode. 

 In order to control the sphere, two separate 
controllers are needed: kinematic controller and 
dynamic controller. The kinematic controller will 
provide the desired inputs, 1γ and 2γ , for the 
dynamic controller, while the dynamic controller 
generates the required torques for the dynamic 
model Fig. 3. 
 In order to calculate 1γ and 2γ , by regards of dx and 

dy , the eq.(1) can be used. However, the 
1 2 1 2( ) ( )& ( ) ( )d x d x d d y d y dx k x x k x x y k y y k y y+ − + − + − + −

 terms will be used instead of the desired values of 
velocity. 
 

 
 
 

 The added terms will correct the sphere position 
and velocity, especially after singular points. Hence: 
 

1
1 21 11 12

1 22 21 22

( ) ( )
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d x d x d

d y d y d

x k x x k x xd a a
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 So, the important point is to specify the singular 
points or the points in which 11 22 12 21a a a a− will 
vanish. In order to specify these points we have: 
 

2
11 22 12 21

2 1

sin( ) 00 tan( ) tan( ) cos( ) 1a a a a γ
θ γ φ γ

=− = →  + = −
  (18) 

 
 Hence, the singular points of the robot include two 
sets; the first set contains the points in which two 
arms of the robot aligned in the same direction and 
the inner mechanism can be moved in just one 
direction while in the second set the second arm will 
be parallel to the horizontal plane. In this situation, 
although the mechanism can be moved in two 
directions, these movements have just one 
projection in a horizontal plane. 
 It is possible for the robot to experience the 
singularity of the first set in its regular motion. The 
only solution for this problem is to provide an upper 
limit for the torques generated by the rotors. 
 Regarding the fact when using low acceleration the 
second link of the robot will never be parallel to the 
horizontal plane and will always deviate a little from 
the vertical situation, the singular points will not be 
experienced during these accelerations. The result of 
simulation is shown in Fig.4. 

 

Kinematic
controller 

Dynamic 
controller 

Plant
,d dx y 1 2,d dγ γ 1 2,τ τ 

1 2,γ γ , ,iq x y

Fig.3 Controllers arrangement. 
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4.2 Fuzzy Controller 
 In this section, a fuzzy controller is used whose 
laws are determined via look up table method. The 
main object of the fuzzy controller is to identify the 
robot geometry and behavior in a better way. Hence, 
the problem kinematic will be rederived. It is known 
that if the rotor torques are vanished, the second 
linkage of the robot with inner mass will be aligned 
in the vertical direction. In this way, its direction 
will be passed through the point of contact between 
the sphere and the surface.  
 If inner mass position regarding to the fixed 
coordinate is expressed as: 
 
[ ] [ ]1 2

1 2 3 4
0 0T T

m m m z y z z yx y z R R R R R dγ γα θ φ= −         (19) 
 
And the second linkage is aligned vertically, the 
below relations are valid between rotation matrices; 
 

2 1

1 4 2 3

1 1( ) , ( )y y z zR R R Rγ γθ φ− −= =               (20) 
 
In other words, we have: 
 

2 1, ,θ γ φ γ= − = −               (21) 
 
So, the inner mechanism will only rotate around 
vertical axis.  
 
[ ] [ ]0 0T T

m m m zx y z R dα= −                            (22) 
 
Now, by substituting eq.(21) in kinematic relations 
expressed in section 2, we have; 
 

2 1 2

2 1 2

(sin( )sin( ) cos( ) )
(cos( )sin( ) sin( ) )

s

s

x R
y R

α γ γ α γ
α γ γ α γ

= −
= − +

             (23) 
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And Substituting 2 0γ =  in eq.(23) and integrating,  
we have: 
 

2 2 2 22
2

2

cos( ) tan( ) tan ( )sin( ) tan( )
s

s s
s

x R x y Ry R
α γ γα γ

= − ⇒ + = = −
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 In this situation, the sphere has a circular motion 
path. In must be noted that by substituting 1 0γ =  in  
eq.(23)  and integrating, we have( cteα = ): 
 

2

2

cos( )
sin( )

s
s s

s

x R y kxy R
α γ
α γ

= − ⇒ = = −
                                (26) 

 
 That is a linear motion path and it is normal to 
initial circular path. Using these two mutually 
vertical motions, the sphere is able to approach any 
desired position. The sphere motion regarding to the 
variant values of α is illustrated in Fig. 5. Regarding 
the Fig. 5, the positive torque of the rotors will 
cause the robot to move in –x and +y directions. 
Hence, it is possible to approach the sphere to the 
specified direction by the value and sign of the 
torques.  
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Fig.4 PI controller simulation result. 

Fig.5 motion of sphere under 
α variation ( 1 2,τ τ and θ are positive). 
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 In order to design the control law, two separate 
parallel controllers are proposed which tunes the 
motion in x and y direction, respectively. Each of 
these controllers has 3 3 5× ×  rules whose 
membership functions are shown in Fig.6. ie is error 
in i  direction. 
 

 

 
 

 
 

2 250 , 30 , 1 , .8 , 25 , 10 ,ii ii
s s mm kg m kg R m d m I kgm I kgm= = = = = =

 
 
As an example, consider the case that alfa is 
vanished. So, the membership function for x 
direction can be expressed as; 
 
If ( xe is p and xe is p and α is z) then ( 1τ is z and 2τ is bp) 
If ( xe is p and xe is z and α is z) then ( 1τ is z and 2τ is p) 
If ( xe is p and xe is n and α is z) then ( 1τ is z and 2τ is z) 
If ( xe is z and xe is p and α is z) then ( 1τ is z and 2τ is p) 
If ( xe is z and xe is z and α is z) then ( 1τ is z and 2τ is z) 
If ( xe is z and xe is n and α is z) then ( 1τ is z and 2τ is n) 
If ( xe is n and xe is p and α is z) then ( 1τ is z and 2τ is z) 
If ( xe is n and xe is z and α is z) then ( 1τ is z and 2τ is n) 
If ( xe is n and xe is n and α is z) then ( 1τ is z and 2τ is bn) 
 

 It must be noted that since the effect of  θ  will be 
neutralized by the 2γ ,θ will affect the rotor aligning  
and so the sphere motion. 
 In order to simply the rules, this effect is limited to 
the sign ofθ . In other words, whenever θ  has a 
negative value, the first rotor desired torque will be 
changed sign. 
 The result of simulation is shown in Fig.7. 

 
 
5 Conclusion  
 This paper presents a different mobile robot class 
that can achieve many kinds of unique motion, such 
as all direction driving and motion on rough ground. 
The motion properties of spherical mobile robot 
were analysed and the kinematic and dynamic 
model of robot derived. Finally a PI and fuzzy 
controller are proposed separately and their deal 
with this problem is compared. The effectiveness of 
the proposed method is shown via simulation. 
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