
Lightweight Peer-to-Peer Secure Multi-Party VoIP Protocol
JOSÉ-VICENTE AGUIRRE1, RAFAEL ÁLVAREZ2, LEANDRO TORTOSA3

and ANTONIO ZAMORA4

Departamento de Ciencia de la Computación e Inteligencia Artificial
Universidad de Alicante

Campus de Sant Vicent del Raspeig, Ap. Correos 99, E-03080, Alicante
SPAIN

jaguirre@dccia.ua.es1 ralvarez@dccia.ua.es2 tortosa@dccia.ua.es3 zamora@dccia.ua.es4

This work was partially supported by the Spanish grants GV06/018 and MTM2005-05759

Abstract: - Multi-party voice-over-IP (MVoIP) services provide economical and convenient group
communication mechanisms for many emerging applications such as distance collaboration systems, on-line
meetings and Internet gaming. In this paper, we present a light peer-to-peer (P2P) protocol to provide MVoIP
services on small platforms like mobile phones and PDAs. Unlike other proposals, our solution is fully
distributed and self-organizing without requiring specialized servers or IP multicast support.

Key-Words: - Multiparty VoIP, MVoIP, VoIP, P2P, Security, Pocket PC, Smart Phone.

1 Introduction
Voice over Internet Protocol [1] (also called VoIP, IP
Telephony, Internet telephony, and Digital Phone) is
the routing of voice conversations over the Internet or
any other IP-based network.

Secure VoIP includes a Session Initiation Protocol
[6] with session key transport and providers like
Skype [7] have already been around for a little while
and are growing steadily.

Multi-party voice-over-IP (MVoIP) are VoIP
services that can include three or more participants.
Traditional conferencing systems often employ IP
multi-cast (e.g., [3]) or overlay multicast ([2], [4]).

Although the multicast approach is well suited for
broadcast applications that usually involve one active
speaker, it becomes inefficient for interactive and
spontaneous applications (e.g., distance collaboration
systems, on-line meetings and Internet gaming) that
often include many simultaneous speakers.

In this paper, we propose a new P2P audio stream
processing system to balance computational and
network resources load around all machines involved
in MVoIP communication.

Compared to the current state of the art [5], this
approach provides three novelties:
− First, the protocol performs a fair load

distribution of the data mixing and transmission
operations.

− Second, the protocol is fully distributed and self-
organizing.

− Finally, the protocol guarantees that the audio
mixing phase produces the audio distribution
implicitly.

2 Notation
We use the following notation in this paper:
− N is the total number of machines.
− n is the current machine.
− I is the total number of iterations of the

algorithm.
− i is the current iteration of the algorithm.
− Vn is the current voice packet of node n.
− Va is the fully mixed voice packet ready for

playback.

− ()
0

y

x

y
VMix

=
is a packet mixing function that mixes

from y=0 to x.
− Parallel {{Job1} {Job2}} denotes that jobs 1 and

2 are carried out in parallel.

Unless otherwise specified, all variables are non
negative integer numbers and operations like
logarithms provide float results.

3 Protocol specification
In the following, we describe the protocol
specification and requirements.

3.1 Requirements
The protocol aims to be a valid proposal for
environments in which there are N machines that
want to establish a common audio channel, so that
any machine can listen to what the others are saying
at any moment, even if all of them were to
communicate simultaneously.

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 7

This hypothesis is done considering the most
restrictive conditions possible regarding the machines
and the transmission channel, which are: first, that all
machines have limited computational resources, so
that they are not capable of being the central server or
super-node; and second, that the transmission channel
can only support one simultaneous transmission and
reception. These restrictions are easily found in the
case of communicating multiple mobile phones or
PDAs.

The study of the impact that relaxing some of
these restrictions would have on the protocol design
is out of the scope of this paper.

3.2 Definition
The protocol is defined as a packet mixing and
distribution algorithm in a network of N machines.

The general algorithm shows adequate packet
distribution behaviour in the case that N = 2I, but a
more detailed study is necessary when this is not true.

There is a subset of these cases for which the
algorithm can be adapted without any performance
impact; for the rest of these cases that do impact
performance, we present several possible alternatives
giving as a result an adapted version of the algorithm.

3.2.1 General algorithm
In the case of having N machines connected in a
virtual ring, with sequential numbering, so that each
machine has a fixed number from 0 to N-1, we can
establish the emitting and receiving nodes with

 NninN i

e mod2),(1−+= (1)
and
 1(,) 2 mod ,i

rN n i n N−= − (2)

being Ne (n, i) (see (1)) the node to which n must
send Pe (see (9)) during iteration i; and Nr(n, i) (see
(2)) the node from which n must receive Pr (see
(8)) during iteration i.

With the previous specifications, we can define an
algorithm (see Fig. 1) whose mixing and distribution
characteristics are defined in equations (3) to (7).

 ()Nyn
y

e VinP Mix
i

mod)(

12

0

1

),(−

−

=

−

= (3)

 ()()
Nyn

y
r i

i

VinP Mix mod)2(

12

0
1

1

),(
−−

−

=
−

−

= (4)

 ()()Nyn
y

VinP Mix
i

mod

12

0
),(−

−

=

= (5)

 ()()Nyn
y

a VinV Mix
i

mod

12

1
),(−

−

=

= (6)

 ()()Nyn

N

y
a VnDV Mix mod

1

1
)(−

−

=

= (7)

In this way, we can define the following:
− Pe(n,i) (see (3)) corresponds to the composition

of the packet that node n will have to send
during iteration i.

− Pr(n,i) (see (4)) corresponds to the composition
of the packet that node n will have to receive
during iteration i.

− P(n,i) (see (5)) is the final packet that node n
will have composed after the reception of the
last packet during iteration i.

− Va(n,i) (see (6)) is the accumulated
composition of the voice packet for playback at
node n during iteration i. Va differentiates from
P in that it does not include Vn.

− DVa(n) (see (7)) is the desired accumulated
voice packet composition for playback at node n
during iteration i.

Fig. 1 General algorithm

In a recursive way, closer to the real behaviour of the
algorithm, the previous functions can be defined as
shown in equations (8) to (11).

)),,((),(iinNPinP rer = (8)

)1,(),(−= inPinPe (9)

Function TransmitVoice (VoicePacket myVoice, int
numNodes, int myPosition)
{
 N= numNodes;
 n= myPosition;
 AllPacketReceived.add (myVoice);
 For (i=1; i <= log2(N); i++) {
 NodeDestination = n + 2i-1;
 NodeOrigin = n - 2i-1;

 Parallel {{ PacketReceive = receive (NodeOrigin);
 AllPacketReceived.add (Mix (PacketReceive,
AllPacketReceived [i-1])); }
 { PacketSend = AllPacketReceived [i-1];
 Send(NodeDestination, PacketSend); } }
 }
}

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 8

 ()(, 1), (,) 0
(,)

0
r

n

Mix P n i P n i if i
P n i

V if i
⎧ − >

= ⎨
=⎩

 (10)

 ()(, 1), (,) 0
(,)

{} 0
a r

a

Mix V n i P n i if i
V n i

if i
⎧ − >

= ⎨
=⎩

 (11)

Employing equation (6) we can obtain the table
shown in Fig. 3 that represents the audio packets
mixed for playback at machine n with a total of N
machines.

This table represents the values of Va(n,i) for node
n = N-1 because it is the most clear case, having Vk
values decreasing from k = N-2 to k = 0.

Observing this table (see Fig. 3), we can extract
three different cases as a function of the
correspondence of the generated Va with the DVa
(desired Va see equation (7)).

The first case is when N = 2I .
The second case is when N < > 2I and N = 2I-1 +

2x , where x < I.
The third case is when N < > 2I and N < > 2I-1 +

2x where x< I. In the following, we provide a detailed
study of each one of these cases.

3.2.2 Case N = 2I
These are the base cases of the algorithm and do not
require any modification to the general algorithm to
be treated.

3.2.3 Case N < > 2I and N = 2I-1 + 2x where x < I
In this case, with a slight modification of the general
algorithm we can achieve the same performance than
in the base case. To do so, it is necessary to modify
Pe (equation (13))
 ()1

2 2log −−= INx (12)

 (, 1)
(,)

(,)e

P n i if i I
P n i

P n x if i I
− <>⎧

= ⎨ =⎩
 (13)

3.2.4 Case N < > 2I and N < > 2I-1 + 2x where x < I
In this case, we cannot achieve the same performance

as in the base case. A possible approach would be to
add iterations to transmit the required packet sizes so
that the Va generated would be the same as the DVa.

In the worst cases the number of iterations would
be ⎡ ⎤() 1 1-(k)log2 − .

In the rest of the cases, the necessary additional
iterations are within 1 and ⎡ ⎤() 2 1-(k)log 2 − .

3.2.5 Final Algorithm
Adding the necessary changes required for all three
cases, the final algorithm is as shown in Fig. 2.

Fig. 2 Final Algorithm

3.3 Results
Observing the table of Fig. 4, we can determine the
maximum number of machines that the protocol
would allow using the different algorithms described
and for several transmission speeds.

In this table we suppose that each machine has the
capability of transmitting in full-duplex and
symmetrically. In the case of an asymmetric speed
transmission channel, we have to choose the lowest
speed.

The best case is the maximum number of possible
machines if only cases 1 and 2 are allowed; and the
worst case is the maximum number of possible

Function TransmitVoice (VoicePacket myVoice, int numNodes,
int myPosition)
{
 N= numNodes;
 n= myPosition;
 AllPacketReceived.add (myVoice);

 For (i=1; i < log2(N); i++) {
 NodeDestination = n + 2i-1;
 NodeOrigin = n - 2i-1;

 Parallel { {
 PacketReceive = receive(NodeOrigin);
 AllPacketReceived.add (Mix (PacketReceive,
AllPacketReceived [i-1])); }
 { PacketSend = AllPacketReceived [i-1];
 Send(NodeDestination, PacketSend);}}
 }
 Float X= ()1

2 2log −− iN

 If (1x x÷ ==⎡ ⎤⎢ ⎥) {
 NodeDestination = n + 2i-1;
 NodeOrigin = n - 2i-1;

 Parallel { {
 PacketReceive = receive(NodeOrigin);
 AllPacketReceived.add(Mix(PacketReceive,
AllPacketReceived[i-1])); }
 { PacketSend = AllPacketReceived [()1

2 2log −− iN];
 Send(NodeDestination, PacketSend); }}
 }
Else
 TransmitVoiceLastPackets (VoicePacket myVoice,
int numNodes, int myPosition);
}

I N n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 1 0
2 3 2 1 0 2
2 4 3 2 1 0
3 5 4 3 2 1 0 4 3 2
3 6 5 4 3 2 1 0 5 4
3 7 6 5 4 3 2 1 0 6
3 8 7 6 5 4 3 2 1 0
4 9 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2
4 10 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4
4 11 10 9 8 7 6 5 4 3 2 1 0 10 9 8 7 6
4 12 11 10 9 8 7 6 5 4 3 2 1 0 11 10 9 8
4 13 12 11 10 9 8 7 6 5 4 3 2 1 0 12 11 10
4 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 13 12
4 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 14
4 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig. 3 Table of Va for diferent N

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 9

machines allowing all three cases. The server value is
the maximum number of machines if a machine
capable of that speed was promoted as a centralized
server for the rest of nodes.

These values are determined using equations
(16), which represents the best case scenario, (17),
which represents the worst case scenario, and (14),
that represents the server case.

In all cases the aim is that the required time to
transmit the data is less than the sampling time. These
values are considering only the transmission time.

 () ()

BpsSamp
kAddCifTam

BpsTrans
Tamn −

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅−
⋅

12 (14)

 ()

BpsSamp
kAddCifTam

BpsTrans
Tamk −

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

 (15)

 k
bn 2= (16)

⎥⎦
⎥

⎢⎣
⎢ +

= 2
2

2
k

wn (17)

In equations (14) to (17) we consider the
following:
− n is the maximum number of machines.
− k is the maximum number of iterations.
− Tam is the size of the packet to be sent in bytes.
− kAddCif is the number of control bytes added by

the cipher.
− BpsTrans is the transmission speed in bytes per

second.
− BpsSamp is the sampling rate in bytes per

second.

In our implementation, kAddCif is fixed to 48 bytes,
BpsM is 11025 bytes per second and Tam is 600
bytes.

Observing the results shown in the table of Fig. 4
we can conclude that with a 1,5 Mbps transmission
speed we can obtain adequate results for most cases
and that with 256 Kbps or less, we can begin to have
a multiconference.

4 Conclusion
In this paper we propose a new original scheme to
perform multiconference for a wide range of
applications including secure communication.

This scheme is P2P based so it limits the damage
caused by a single node failure and is more resistant
to denial of service attacks. It is lightweight and
scalable and can be implemented on limited resources
machines like mobile phones or PDAs.

The proposed algorithm presents excellent
multiconferencing features for all possible
applications (e. g. distance collaboration systems,
on-line meetings or internet gaming).

As future lines of research we plan to introduce
dynamic audio quality techniques; and to adapt the
protocol to incorporate different audio processing
techniques relevant for several future applications.

References:
 [1] ITU, H.323v5, ITU, 2003
 [2] M. Castro, P. Druschel, A.-M. Kermarrec, and A.

Rowstron, SCRIBE: A large-scale and
decentralized application-level multicast
infrastructure, IEEE JSAC, 2002.

[3] S. Deering, Multicast routing in internetworks
and extended lans, Proc. of ACM SIGCOMM,
1988.

[4] Y. h. Chu, S. G. Rao, S. Seshan, and H. Zhang.,
Enabling Conferencing Applications on the
Internet using an Overlay Multicast
Architecture., Proc. of ACM SIGCOMM, 2001.

[5] Xiaohui Gu, Zhen Wen, Philip S. Yu, ZonYin
Shae, Supporting MultiParty VoiceOverIP
Services with PeertoPeer Stream Processing,
Proceedings of the 13th annual ACM
international conference on Multimedia, 2005,
pp. 303 - 306.

[6] M. Handley, H. Schulzrinne, E. Schooler, J
Rosenberg, Session Initiation Protocol (SIP),The
Internet Society 1999

[7] Salman A., Baset and Henning Schulzrinne, An
Analysis of the Skype Peer-to-Peer Internet
Telephony Protocol. Technical Report CUCS-
039-04, Columbia University, 2004

Speed Best Case Worst Case Server
28,8 Kbps 1 1 1
33,6 Kbps 1 1 1

56 Kbps 1 1 1
64 Kbps 1 1 1

88,2 Kbps 1 1 1
128 Kbps 2 2 1

176,4 Kbps 2 2 1
256 Kbps 4 4 2
384 Kbps 16 8 3
768 Kbps 256 32 5
1,5 Mbps 32768 256 8

2 Mbps 1048576 2048 11
4 Mbps 2,199E+12 2097152 21
6 Mbps 4,6117E+18 4294967296 32

Fig. 4 Table of N for different transmission speeds

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 10

