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Abstract: - Multi-party voice-over-IP (MVoIP) services provide economical and convenient group 
communication mechanisms for many emerging applications such as distance collaboration systems, on-line 
meetings and Internet gaming. In this paper, we present a light peer-to-peer (P2P) protocol to provide MVoIP 
services on small platforms like mobile phones and PDAs. Unlike other proposals, our solution is fully 
distributed and self-organizing without requiring specialized servers or IP multicast support. 
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1   Introduction 
Voice over Internet Protocol [1] (also called VoIP, IP 
Telephony, Internet telephony, and Digital Phone) is 
the routing of voice conversations over the Internet or 
any other IP-based network.  

Secure VoIP includes a Session Initiation Protocol 
[6] with session key transport and providers like 
Skype [7] have already been around for a little while 
and are growing steadily.  

Multi-party voice-over-IP (MVoIP) are VoIP 
services that can include three or more participants. 
Traditional conferencing systems often employ IP 
multi-cast (e.g., [3]) or overlay multicast ( [2], [4] ). 

Although the multicast approach is well suited for 
broadcast applications that usually involve one active 
speaker, it becomes inefficient for interactive and 
spontaneous applications (e.g., distance collaboration 
systems, on-line meetings and Internet gaming) that 
often include many simultaneous speakers.  

In this paper, we propose a new P2P audio stream 
processing system to balance computational and 
network resources load around all machines involved 
in MVoIP communication.  

Compared to the current state of the art [5], this 
approach provides three novelties:  
− First, the protocol performs a fair load 

distribution of the data mixing and transmission 
operations.  

− Second, the protocol is fully distributed and self-
organizing.  

− Finally, the protocol guarantees that the audio 
mixing phase produces the audio distribution 
implicitly. 

2   Notation 
We use the following notation in this paper: 
− N is the total number of machines. 
− n is the current machine. 
− I is the total number of iterations of the 

algorithm. 
− i is the current iteration of the algorithm. 
− Vn is the current voice packet of node n. 
− Va is the fully mixed voice packet ready for 

playback. 

− ( )
0

y

x

y
VMix

=  
is a packet mixing function that mixes 

from y=0 to x.  
− Parallel {{Job1} {Job2}} denotes that jobs 1 and 

2 are carried out in parallel. 
 

Unless otherwise specified, all variables are non 
negative integer numbers and operations like 
logarithms provide float results. 
 
 
3   Protocol specification 
In the following, we describe the protocol 
specification and requirements. 
 
 
3.1 Requirements 
The protocol aims to be a valid proposal for 
environments in which there are N machines that 
want to establish a common audio channel, so that 
any machine can listen to what the others are saying 
at any moment, even if all of them were to 
communicate simultaneously.  
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This hypothesis is done considering the most 
restrictive conditions possible regarding the machines 
and the transmission channel, which are: first, that all 
machines have limited computational resources, so 
that they are not capable of being the central server or 
super-node; and second, that the transmission channel 
can only support one simultaneous transmission and 
reception. These restrictions are easily found in the 
case of communicating multiple mobile phones or 
PDAs. 

The study of the impact that relaxing some of 
these restrictions would have on the protocol design 
is out of the scope of this paper. 
 
 
3.2 Definition 
The protocol is defined as a packet mixing and 
distribution algorithm in a network of N machines.  

The general algorithm shows adequate packet 
distribution behaviour in the case that N = 2I, but a 
more detailed study is necessary when this is not true.  

There is a subset of these cases for which the 
algorithm can be adapted without any performance 
impact; for the rest of these cases that do impact 
performance, we present several possible alternatives 
giving as a result an adapted version of the algorithm. 
 
3.2.1 General algorithm  
In the case of having N machines connected in a 
virtual ring, with sequential numbering, so that each 
machine has a fixed number from 0 to N-1, we can 
establish the emitting and receiving nodes with  

 
 NninN i

e mod2),( 1−+=  ( 1 ) 
and 
 1( , ) 2 mod ,i

rN n i n N−= −  ( 2 ) 
 
being Ne (n, i) (see ( 1 )) the node to which n must 
send Pe  (see ( 9 ))  during iteration i; and Nr(n, i) (see 
( 2 )) the node from which n must receive Pr  (see 
( 8 )) during iteration i. 

With the previous specifications, we can define an 
algorithm (see Fig. 1) whose mixing and distribution 
characteristics are defined in equations ( 3 ) to ( 7 ).  
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In this way, we can define the following: 
− Pe(n,i) (see ( 3 )) corresponds to the composition 

of the packet that node n will have to send 
during iteration i.  

− Pr(n,i) (see ( 4 )) corresponds to the composition 
of the packet that node n will have to receive 
during iteration i. 

− P(n,i) (see ( 5 )) is the final packet that node n 
will have composed after the reception of the 
last packet during iteration i.  

− Va(n,i) (see ( 6 ))  is the accumulated 
composition of the voice packet for playback at 
node n during iteration i. Va differentiates from 
P in that it does not include Vn. 

− DVa(n) (see ( 7 ))  is the desired accumulated 
voice packet composition for playback at node n 
during iteration i. 

 

 
Fig. 1 General algorithm 

 
In a recursive way, closer to the real behaviour of the 
algorithm, the previous functions can be defined as 
shown in equations ( 8 ) to ( 11 ). 

 
 )),,((),( iinNPinP rer =  ( 8 ) 

 
 )1,(),( −= inPinPe  ( 9 ) 

 

Function TransmitVoice (VoicePacket myVoice, int 
numNodes, int myPosition) 
{ 
  N= numNodes; 
  n= myPosition; 
  AllPacketReceived.add ( myVoice ); 
  For (i=1; i <= log2(N); i++)  { 
    NodeDestination =  n + 2i-1; 
    NodeOrigin = n - 2i-1; 
   
    Parallel    {{ PacketReceive = receive ( NodeOrigin );  
       AllPacketReceived.add (   Mix (PacketReceive, 
AllPacketReceived [i-1] )  );  } 
     { PacketSend =  AllPacketReceived [i-1]; 
      Send(NodeDestination, PacketSend);   } } 
   } 
} 
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Employing equation ( 6 ) we can obtain the table 
shown in Fig. 3 that represents the audio packets 
mixed for playback at machine n with a total of N 
machines.  

This table represents the values of Va(n,i) for node 
n = N-1 because it is the most clear case, having Vk 
values decreasing from k = N-2 to k = 0.  

Observing this table (see Fig. 3), we can extract 
three different cases as a function of the 
correspondence of the generated Va with the DVa 
(desired Va see equation ( 7 )).  

The first case is when N = 2I . 
The second case is when N < > 2I  and N = 2I-1 + 

2x , where x < I.  
The third case is when N < > 2I  and N < > 2I-1 + 

2x where x< I. In the following, we provide a detailed 
study of each one of these cases. 
 
3.2.2   Case N = 2I   
These are the base cases of the algorithm and do not 
require any modification to the general algorithm to 
be treated.  
 
3.2.3   Case N < > 2I  and N = 2I-1 + 2x where x < I 
In this case, with a slight modification of the general 
algorithm we can achieve the same performance than 
in the base case. To do so, it is necessary to modify 
Pe (equation ( 13 )) 
 ( )1

2 2log −−= INx  ( 12 )  
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3.2.4   Case N < > 2I  and N < > 2I-1 + 2x where x < I 
In this case, we cannot achieve the same performance 

as in the base case. A possible approach would be to 
add iterations to transmit the required packet sizes so 
that the Va generated would be the same as the DVa. 

In the worst cases the number of iterations would 
be ⎡ ⎤( ) 1 1-(k)log2 − . 

In the rest of the cases, the necessary additional 
iterations are within 1 and ⎡ ⎤( ) 2 1-(k)log 2 − .   
 
3.2.5   Final Algorithm 
Adding the necessary changes required for all three 
cases, the final algorithm is as shown in Fig. 2. 

 
Fig. 2 Final Algorithm 

 
3.3   Results 
Observing the table of Fig. 4, we can determine the 
maximum number of machines that the protocol 
would allow using the different algorithms described 
and for several transmission speeds.  

In this table we suppose that each machine has the 
capability of transmitting in full-duplex and 
symmetrically. In the case of an asymmetric speed 
transmission channel, we have to choose the lowest 
speed.  

The best case is the maximum number of possible 
machines if only cases 1 and 2 are allowed; and the 
worst case is the maximum number of possible 

Function TransmitVoice (VoicePacket myVoice, int numNodes, 
int myPosition) 
{ 
  N= numNodes; 
  n= myPosition; 
  AllPacketReceived.add ( myVoice ); 
 
  For (i=1; i < log2(N); i++)  { 
    NodeDestination =  n + 2i-1; 
    NodeOrigin = n - 2i-1; 
   
    Parallel    { { 
       PacketReceive = receive(NodeOrigin);  
       AllPacketReceived.add (  Mix (PacketReceive, 
AllPacketReceived [i-1] )  ); } 
      { PacketSend =  AllPacketReceived [i-1]; 
      Send(NodeDestination, PacketSend);}} 
   } 
  Float  X= ( )1

2 2log −− iN  
 
   If ( 1x x÷ ==⎡ ⎤⎢ ⎥  )   { 
    NodeDestination =  n + 2i-1; 
    NodeOrigin = n - 2i-1; 
   
    Parallel    { { 
       PacketReceive = receive(NodeOrigin);  
       AllPacketReceived.add(Mix(PacketReceive, 
AllPacketReceived[i-1]));   } 
      { PacketSend =  AllPacketReceived [ ( )1

2 2log −− iN  ]; 
      Send(NodeDestination, PacketSend); }} 
   }  
Else 
     TransmitVoiceLastPackets (VoicePacket myVoice,  
int numNodes, int myPosition); 
} 

I N n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 1 0             
2 3 2 1 0 2           
2 4 3 2 1 0           
3 5 4 3 2 1 0 4 3 2       
3 6 5 4 3 2 1 0 5 4          
3 7 6 5 4 3 2 1 0 6          
3 8 7 6 5 4 3 2 1 0       
4 9 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2
4 10 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4  
4 11 10 9 8 7 6 5 4 3 2 1 0 10 9 8 7 6  
4 12 11 10 9 8 7 6 5 4 3 2 1 0 11 10 9 8  
4 13 12 11 10 9 8 7 6 5 4 3 2 1 0 12 11 10  
4 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 13 12  
4 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 14  
4 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig. 3 Table of Va  for diferent N 
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machines allowing all three cases. The server value is 
the maximum number of machines if a machine 
capable of that speed was promoted as a centralized 
server for the rest of nodes.  

These values are determined using equations 
( 16 ), which represents the best case scenario, ( 17 ), 
which represents the worst case scenario, and ( 14 ), 
that represents the server case.  

In all cases the aim is that the required time to 
transmit the data is less than the sampling time. These 
values are considering only the transmission time. 
  
 ( ) ( )
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In equations ( 14 ) to ( 17 ) we consider the 
following: 
− n is the maximum number of machines. 
− k is the maximum number of iterations. 
− Tam is the size of the packet to be sent in bytes. 
− kAddCif is the number of control bytes added by 

the cipher. 
− BpsTrans is the transmission speed in bytes per 

second. 
− BpsSamp is the sampling rate in bytes per 

second. 
 
In our implementation, kAddCif is fixed to 48 bytes, 
BpsM is 11025 bytes per second and Tam is 600 
bytes. 

Observing the results shown in the table of Fig. 4 
we can conclude that with a 1,5 Mbps transmission 
speed we can obtain adequate results for most cases 
and that with 256 Kbps or less, we can begin to have 
a multiconference.  

 
 

4   Conclusion 
In this paper we propose a new original scheme to 
perform multiconference for a wide range of 
applications including secure communication.  

This scheme is P2P based so it limits the damage 
caused by a single node failure and is more resistant 
to denial of service attacks. It is lightweight and 
scalable and can be implemented on limited resources 
machines like mobile phones or PDAs. 

The proposed algorithm presents excellent 
multiconferencing features for all possible 
applications (e. g. distance collaboration systems, 
on-line meetings or internet gaming). 

As future lines of research we plan to introduce 
dynamic audio quality techniques; and to adapt the 
protocol to incorporate different audio processing 
techniques relevant for several future applications. 
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Speed Best Case Worst Case Server  
28,8 Kbps 1 1 1
33,6 Kbps 1 1 1

56 Kbps 1 1 1
64 Kbps 1 1 1

88,2 Kbps 1 1 1
128 Kbps 2 2 1

176,4 Kbps 2 2 1
256 Kbps 4 4 2
384 Kbps 16 8 3
768 Kbps 256 32 5
1,5 Mbps 32768 256 8

2 Mbps 1048576 2048 11
4 Mbps 2,199E+12 2097152 21
6 Mbps 4,6117E+18 4294967296 32

Fig. 4 Table of N  for different transmission speeds 
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