

1. Introduction

It is known that logical reasoning aims at solving
problems, or proving validity. Calculi provide a way
of testing the validity of formulas in a purely
mechanical way [5]. In the aspect of reasoning about
dynamic, continuous systems, the research
standpoint concentrated on specialized logical
formalisms, typically of the event calculus and its
extensions [15, 16, 9, 18, 20, 3, 12, 22].
The event calculus is a logical formalism presented
by Kowalski [10] for reasoning about time and
events. It uses general rules to derive that a new
property holds as the result of the event and
associates local time periods. In [16, 20, 21, 3],
similar attempts based on the logical formalisms of
the event calculus have been exploited for
representing continuous change. However, these
ideas have not yet been exploited to define a high
level action semantics serving as basis for a formal
justification of such calculi, their comparison, and an
assessment of the range of their applicability.
Whereas these previously described formalisms have
directly focused on creating new or extending
already existing specialized logical formalisms, the
other research consists in the development of an
appropriate semantic [7, 19, 24] as the basis for a
general theory of action and change, and successfully
applied to concrete calculi [2, 6, 23]. In [7], the
Action Description Language was developed which

is based on the concept of single-step actions, and
does not include the notion of time. In [19], the
duration of actions is not fixed, but an equidistant
discretization of time is assumed and state transitions
only occur when actions are executed. In [24], it is
allowed for user-independent events to cause state
transitions. Again equidistant discretization is
assumed. But these formalisms are not suitable for
calculi dealing with continuous change.
This paper builds on the work of Herrmann and
Thielscher [8] and Shanahan [20, 22] to integrate a
high-level semantics of processes with the event
calculus to reason about continuous change. Our aim
is to overcome some of limitations of the earlier
works and furthermore, to present the possibility of
embedding the high level semantics of processes in
the logical programming framework. With a case
study we show how the high level semantics of
processes can be integrated with the event calculus to
reason about complex processes and continuous
change. In section 2, an example domain is
introduced, and a conventional mathematical model
is constructed in some detail. Section 3 will describe
how to represent the semantics of processes in the
event calculus. In section 4, logical programming is
implemented to support the semantics of processes
with the event calculus. In section 5, we have a
summary for this work.

2. A Case Study
We illustrate how an example, the interaction
between a pendulum and balls that travels along a

A Case Study in Reasoning about Processes

 CHUNPING LI
School of Software, Tsinghua University

Beijing 100084
CHINA

cli@tsinghua.edu.cn

Abstract - In this paper, we give a case study to show how a high level semantics of processes can be integrated with
the event calculus to reason about complex, continuous processes. We present a formal method to specify the
semantics of processes in the event calculus and implement the automated reasoning about processes and
continuous change in the logical programming framework.

Key-words: Reasoning, Planning, Event Calculus, Processes, Semantics, Logic Programming

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 158

1-dimension space, can be formalized. As described
in Fig.1, a pendulum collides at angle ϕ = 0 with a
ball being at position cyy = at the same time. We
need to find appropriate equations describing various
possible movements and interactions.
Supposing the damping factor is neglected, the
motion of the pendulum can be described by the
following differential equation.

dt
dllgm

dt
dlm ϕϕϕ

⋅−⋅⋅⋅−=⋅⋅ 2
2

2
2 sin

where l is the length of the pendulum, m is the mass
of the pendulum, and g is 9.8m/ 2s . Solving the
differential equation results in the angle of the
pendulum ϕ , the angular velocity 'ϕ and the angular
acceleration ''ϕ .

 X

 ϕ
 A

 maxϕ p maxϕ− Z
),,(CCC zyx

Y B

Fig. 1. Pendulum P and balls A and B in positions

As the process scheme for the motion of the
pendulum we obtain PendulumPτ = 〈 C’, F’ 〉 where C’ =

},,{ max cyγϕ and F’ = }'',',{ ϕϕϕ .
Here we define two different types of events. The
first is the collision of two balls A and B, caused by
identical locations at a certain time. The second type
of event is the collision between one of the balls and
the pendulum P, defined by the angle of the
pendulum being zero while the ball's position is at the
y-axis position of the pendulum cy , at the same time.
The pendulum is assumed to be of much larger mass
than the balls, such that the collision will simply be
an elastic impact with one of the balls (reflection into
opposite direction) while the pendulum keeps
moving continuously.

3. Axiomatization

3.1 Event Calculus with Circumscription
The event calculus [10] was developed as a theory for
reasoning about time and events in a logical
programming framework. It focuses on the concept
of an event as highlighted in a semantic network
representation of case semantics [11]. In the event
calculus, the ontological primitives are events and
properties. Properties are initiated and terminated by
events. The property, which has been initiated,
continues to hold by default until some event occurs
which terminates it. Therefore, it is concerned with
formalizing the effect of events on objects, and their
properties.
In general, the fact that a property holds for a period
of time can be derived from an event description by
means of the initiation and termination rules:

Holds(after(e, p)) ← Happens(e, t), Initiates(e, p).
Holds(before(e, p)) ← Happens(e, t) , Terminates(e,

p).

where the occurrence of an event e at time t is
denoted by Happens(e, t). The formula Initiates(e, p)
(or Terminates(e, p)) means that event e initiates (or
terminates) the property p.
A property holds at a given time point if it holds for a
period including that time point. This can be
formalized by employing a predicate HoldsAt(e, n).
We can define it by way of the following
expressions.

HoldsAt(p, t) ← Holds(after(e, p)), In(t, after(e ,p)).
HoldsAt(p, t) ← Holds(before(e, p)), In(t, after(e ,p)).
In(t, r) ← Start(r, e), End(r, e'), Time(1,' te),

Time(2,' te), 1t < t < 2t

Shanahan presented a full predicate calculus version
of event using circumscription in [20]. In his
enriched version of event calculus, a many-sorted
language of the first-order predicate calculus with
equality is used, including variables not only for
time),...,,(21 nttt , events),...,,(21 neee and
properties),...,,(21 nppp but also states),...,,(21 nsss
and truth elements),...,,(21 nfff . The domain of
truth-values has two members, denoted by the
constants True and False. A pair 〈p, v〉 is a truth
element. A state is represented as a set of truth
elements. The property p in the given state s are

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 159

described by the predicate HoldsIn with the
following axioms.

HoldsIn(p,s) ← [〈 p, True ∈〉 s ∧¬ Abstate(s)]. (E1)

HoldsIn(p,s) ← [〈 p, False ∈〉 s ∧¬ Abstate(s)]. (E2)

The following axiom defines the predicate State. The
formula State(t, s) represents that time point t is
associated with the state s. Each time point is
associated with a single, characterizing state s, such
that 〈 p, True ∈〉 s if and only if the property p was
initiated by some event before t and still holds at t,
and 〈 p, False ∈〉 s if and only if p was terminated by
some event before t and still does not hold at t.

State(t, s) ↔ (∀ p)[[〈 p, True ∈〉 s↔ Initiates(p, t)]
∧ [〈 p, False ∈〉 s↔Terminates(p, t)]]. (E3)

3.2 Representing the Process Semantics of in
the Event Calculus

The process description of the balls is formalized into
rules as follows.

HoldsAt(moving(Ball,)),,(, tvlx , t)← (PS1)
 Holds(after(e, engine(Ball, F,)),,(, tvlx)), time(e, 0t),
 In(t, after(e, engine(Ball, F,)),,(, tvlx)), 0t ≤ t,
 State(t, s), HoldsIn(engine(Ball, F,)),,(, tvlx)), s),
 ContinuousProperty(engine(Ball, F,)),,(, tvlx , 0t ,

moving(Ball, F,)),,(, tvlx , t).

ContinuousProperty(engine(N, F, x, (l, v, 0t)), 0t ,
(PS2)

moving(N, x, (l, v, 0t)), t) ←).(0ttvlx −×+=

The process description of the pendulum is
formalized into rules as follows.

HoldsAt(angle(PendulumP, ϕ ,),,(max cyγϕ), t) ←
(PS3)
 Holds(after(e, swing(PendulumP, 'F , ϕ ,

),,(max cyγϕ))), time(e, 0Pt),
 In(t, after(e, swing(PendulumP, 'F , ϕ ,

),,(max cyγϕ))), 0Pt ≤ t,
 State(t, s), HoldsIn(swing(PendulumP, 'F ,

ϕ ,),,(max cyγϕ), s),
 ContinuousProperty1(swing(PendulumP, 'F ,

ϕ ,),,(max cyγϕ), 0Pt ,

 angle(PendulumP, ϕ ,),,(max cyγϕ), t).

ContinuousProperty1(swing(PendulumP, 'F ,

ϕ ,),,(max cyγϕ), 0Pt , angle(PendulumP,
ϕ ϕ ,),,(max cyγϕ), t) ← (PS4)

ϕ))(2cos(0max PTt −⋅⋅−=
γ
πϕϕ .

where 0PT denotes the starting time of the motion of
the pendulum.

The event of the collision between the pendulum and
any of the balls A and B can be transformed into the
rules:

ImplicitHappens(e,t) ← (PS5)

Start(after(e, engine(Ball, F, x,),,(tvl newnew)), e),
End(after('e ,engine(Ball, F, x,),,(oldoldold tvl)), e), 'e <

e,
Holds(after(e, swing(PendulumP, 'F ,

ϕ ,),,(max cyγϕ))),
ConstraintRelation),,,,,,,,(00max tttyvlvl Pcoldoldnewnew ϕ .

ConstraintRelation),,,,,,,,(00max tttyvlvl Pcoldoldnewnew ϕ ←

./)(
,0,,

0tvlyt
vvvyl

oldoldc

oldoldnewcnew
+−=

≠−== (PS6)

where 0t denotes the initial time of moving balls A or
B.

We suppose that ball A starts from position 0 at time
2sec to move with speed 0.4m/sec, while ball B starts
from position 4m at time 4sec with speed -0.3m/sec.
If there is no other event to occur, the two balls A and
B which move toward each other along the y-axis
would have a collision at time 10sec.
Suppose that we start the pendulum with suspension
point cx = 1m, cy = 0.3m, cz = 0, that for the time
constant we have γ = 1 and for the starting angle

o10=ϕ at time 1sec. MoveB and MoveP denote to the
events which cause the balls and the pendulum
to move, respectively. We have the following
domain-dependent formulae.

 Happens(MoveP, 1sec). (PH1)

Happens(MoveA, 2sec). (PH2)
Happens(MoveB, 4sec). (PH3)

Let χ be the conjunction of the axioms PS, PH, and E
without E3.][χecCIRC yields

Abstate(s) ↔ [〈 p, False ∈〉 s ∧ 〈 p, False ∈〉 s] (1)

Happens(e, t) ↔ (2)

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 160

 [e = MoveP ∧ t = 1sec] ∨ [e = MoveA ∧ t = 3sec] ∨ [e
= MoveB ∧ t = 4sec].

Initiates(e, p, t) ↔ (3)

[e = MoveP ∧ p = swing(PendulumP, ϕ,'F , Ax ,
(10, 1sec, 0.3m)) ∧ t = 1sec]

∨ [e = MoveA ∧ p = engine(BallA, F, Ay , (0m,
0.4m/sec, 2sec)) ∧ t = 2sec]
∨ [e = MoveB ∧ p = engine(BallB, F, By , (4m, -0.3m/sec,
4sec)) ∧ t = 4sec].

By the rules (PS3) -- (PS6), a nearest event APe of the
collision between the ball A and the pendulum P
occurs at time 2.75sec, since the condition of the
constraint in (PS5) -- (PS6) is satisfied. From (1), (2),
(3) and (PS5) -- (PS6), it follows that in all models
under circumscription we have

(∃ s)[State(2.75sec, s) ∧ HoldsIn(engine(BallA, F, Ay ,

(0.3m, -0.4m/sec, 2.75sec)), s) ∧ HoldsIn(
swing(PendulumP, ϕ,'F , (10, 1sec, 0.3m)), s)].

It means that the pendulum P continues its motion in
the same direction, and the ball A moves towards the
opposite direction with its initial speed after the
collision occurs after the collision. Furthermore,

HoldsAt(moving(BallA, Ay , (0.3m, -0.4m/sec, 2.75sec)),
t).
HoldsAt(angle(PendulumP, ϕ , (10, 1sec, 0.3m)), t).

where ≥t 2.75sec.

3.3 Soundness and completeness

Let D = (P, E) be consistent domain description for
process semantics, where P is a set of initial
processes and E is a set of events. We write P =

),...,,(21 nppp and E =),...,,(21 neee .
Soundness Theorem Let D be a consistent domain
description for process semantics and π denote the
translation from the process semantics into the event
calculus, for any process P if π D entails π P, then D
entails P.
Completeness Theorem Let D be a consistent
domain description for process semantics and
π denote the translation from the process semantics
into the event calculus, for any process P if D entails
P, then π D entails π P.

4. LOGIC PROGRAMMING

We have implemented a logic programming system
supporting the process semantics based on the event
calculus in Prolog under the environment of Eclipse.

A logical program for the example of balls and
pendulum is shown in Fig.2.

%primitive actions occurences %
happens (e(2), start_ball(a), 0.4, 0)
happens(e(4), start_ball(b), -0.3, 4)
happens(e(1), start_pendulum(p), 10, 1, 0.3)

%initial process specification %
initial_proc([ball(a), ball(b), pendulum(p), pos(a,0),
pos(b,4), v(a,0),
v(b,0), v(p,0), last_Tdc(0), t(a, 0), t(b, 0), t(p,0)]).

%specification of events and processes%
holdsAt(moving(ball(X), pos(X,Y), v(X,V), t(X,T), L),
TT):-

holds(after(e(T), engine(ball(X), pos(X,Y), v(X,V),
t(X,T),L))),

TT>T, T>2, L is Y + V*(TT-T).
holdsAt(angle(pendulum(p), pos(p, Y), var(p, V), t(p,
T), L), TT):-

holds(after(e(T), swing(pendulum(p), pos(p, Y),
var(p, V), t(p, T), L))),

TT>T, T> 1, L is –10* cos(2*3.14*(TT-T)).
%specification of state translation%
transition(Old, e(T), New) :- next_event(Old, e(T)),
next_proc(Old, e(T), New).
next_event(Old, e(Tdc)) :- proc_match([last_Tdc(T)],

Old, _), trigger(Old, Tdc),Tdc>T.
trigger(_, T):- happens(e(T), _,_,_).
trigger(Old, Tdc):- proc_match([ball(X), pendulum(p),

v(X, VX), var(p, VY),
pos(X, X0), pos(p, Y0), t(X, TX),
t(p, TV)], Old,_),

 Tdc is TX+(Y0-X0)*VX.

Fig. 2. A Logical program for the example of pendulum and
balls

5. SUMMARY

This paper presents an approach based on a
high-level semantics of process to reason about
continuous change. We believe that defining a
well-formed semantics description is critical to solve
the problem of reasoning in physical continuous
system. With a case study we have shown how to
integrate a high level semantics description with the

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 161

event calculus to reasoning about relative complex
processes and continuous changes. We have proved
the soundness and completeness of the event calculus
with respect to the process and implemented the
automated reasoning about processes in the logical
programming framework.
The limitation of our approach based on the process
semantics is not to consider events that occur
simultaneously. Attempts to solve this problem have
been made for reasoning about change in the discrete
case [4, 14, 24, 17, 25]. In our approach, if some
events occur at the same time but without mutual
influences, this could be represented by our approach.
But if two or more simultaneous events involve
identical objects, then the overall results might not
simply by the combination of the results of the
involved events. This requires more sophisticated
means to specify suitable state transitions. To extend
our current approach to include simultaneous
occurrences of events will be our future work.

References

[1]. Allen J. Toward a general theory of action and

time. Artificial Intelligence, 1984,
(23):123-154.

[2]. Kartha F, Lifschitz V. Soundness and
completeness theorem for three formalization
of actions. In Proc. International Joint
Conference on Artificial Intelligence, France,
1993, pp 724-729.

[3]. Belleghem K, Denecker M, de Schreye D.
Representing continuous change in the
abductive event calculus. In Proc. International
Conference on Logic Programming, 1995, pp
225-240.

[4]. Baral C, Gelfond M. Representing concurrent
actions in extended logic programming. In Proc.
International Joint Conference on Artificial
Intelligence, France, 1993, pp 866-871.

[5]. Bibel W, Eder E. Methods and calculus for
deduction. Handbook of Logic in Artificial
Intelligence and Logic Programming,
Clarendon Press, Oxford, 1993, (1): 68-184.

[6]. Grosskreutz, H., Lakermeyer,G.: ccGogol: A
logical language dealing with continuous
change. Logical Journal of IGPL 11 (2) (2003)
179—221

 [7]. Gelfond M, Lifschitz V. Representing action
and change by logic programs. Journal of Logic
Programming, 1993, (17): 301-321.

[8]. Herrmann C, Thielscher M. Reasoning about
continuous change. In Proc. of AAAI, Portland,
U.S.A. 1996, pp639-644.

[9]. Kowalski R, Sadri F. Reconciling the situation
calculus and event calculus. Journal of Logic
Programming, 1997, (31): 39-58.

[10]. Kowalski R, Sergot M. A logic based calculus
of events. New Generation of Computing, 1986,
(4): 319-340.

[11]. Kowalski R. Database updates in the event
calculus. Journal of Logic Programming, 1992,
(12):121-146.

[12]. Li C. Reasoning about processes and
continuous change. Shaker-Verlag, Aachen,
1999.

[13]. Lifschitz V. Circumscription. In The Handbook
of Logic in Artificial Intelligence and Logic
Programming, Vol. 3: Non-monotonic
Reasoning and Uncertain Reasoning
(C.Hogger, D. Gabbay and J. Robinson
eds.),1994, pp297-352.

[14]. Lin F, Shoham Y. Concurrent actions in the
situation calculus. In Proc. AAAI, San Jose,
U.S.A., 1992, pp590-595.

[15]. Miller R. A case study in reasoning about action
and continuous change. In Proc. ECAI,
Budapest, Hungary, 1996, pp624-628.

[16]. Miller R, Shanahan M. Reasoning about
discontinuities in the event calculus. In Proc. 5th
International Conference on Principles of
Knowledge Representation and Reasoning,
Cambridge, Massachusetts, U.S.A., 1996,
pp63-74

[17]. Reiter R. Natural actions, concurrency and
continuous time in the situation calculus. In
Proceedings of the 5th International Conference
on Principles of Knowledge Representation and
Reasoning, Cambridge, Massachusetts, U.S.A.,
1996, pp2-13.

[18]. Sadri F, Kowalski R. Variants of the event
calculus. In Proc. International Conference on
Logic Programming. MIT Press, 1995.

[19]. Sandewall E. The range of applicability and
non-monotonic logics for the inertia problem. In
Proc. International Joint Conference on
Artificial Intelligence, France, 1993,
pp738-743.

[20]. M. Shanahan. A circumscriptive calculus of
events. Artificial Intelligence,1995,
(77):249-284.

[21]. M. Shanahan. Representing continuous change
in the event calculus. In Proc. ECAI 90, 1990,
pp 98-113.

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 162

[22]. M. Shanahan. The event calculus explained.
Lecture Notes in Artificial Intelligence 1600,
Springer-Verlag, 1999, pp409-430.

[23]. Shoham Y, McDermott D. Problems in formal
temporal reasoning. Artificial Intelligence
1988, (36):49-61

[24]. Thielscher M. Representing actions in
equational logic programming. In Proc. Inter-
national Joint Conference on Logic
Programming, Italy, 1994, pp 207-224.

[25]. Thielscher M. The concurrent, continuous
fluent calculus. Journal of Studia Logica, 2000,
(67): pp 315—331

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 163

