
 

1. Introduction 
 
It is known that logical reasoning aims at solving 
problems, or proving validity. Calculi provide a way 
of testing the validity of formulas in a purely 
mechanical way [5]. In the aspect of reasoning about 
dynamic, continuous systems, the research 
standpoint concentrated on specialized logical 
formalisms, typically of the event calculus and its 
extensions [15, 16, 9, 18, 20, 3, 12,  22]. 
The event calculus is a logical formalism presented 
by Kowalski [10] for reasoning about time and 
events. It uses general rules to derive that a new 
property holds as the result of the event and 
associates local time periods. In [16, 20, 21, 3], 
similar attempts based on the logical formalisms of 
the event calculus have been exploited for 
representing continuous change. However, these 
ideas have not yet been exploited to define a high 
level action semantics serving as basis for a formal 
justification of such calculi, their comparison, and an 
assessment of the range of their applicability.  
Whereas these previously described formalisms have 
directly focused on creating new or extending 
already existing specialized logical formalisms, the 
other research consists in the development of an 
appropriate semantic [7, 19, 24] as the basis for a 
general theory of action and change, and successfully 
applied to concrete calculi [2, 6, 23]. In [7], the 
Action Description Language was developed which 

is based on the concept of single-step actions, and 
does not include the notion of time. In [19], the 
duration of actions is not fixed, but an equidistant 
discretization of time is assumed and state transitions 
only occur when actions are executed. In [24], it is 
allowed for user-independent events to cause state 
transitions. Again equidistant discretization is 
assumed. But these formalisms are not suitable for 
calculi dealing with continuous change. 
This paper builds on the work of Herrmann and 
Thielscher [8] and Shanahan [20, 22] to integrate a 
high-level semantics of processes with the event 
calculus to reason about continuous change. Our aim 
is to overcome some of limitations of the earlier 
works and furthermore, to present the possibility of 
embedding the high level semantics of processes in 
the logical programming framework. With a case 
study we show how the high level semantics of 
processes can be integrated with the event calculus to 
reason about complex processes and continuous 
change. In section 2, an example domain is 
introduced, and a conventional mathematical model 
is constructed in some detail. Section 3 will describe 
how to represent the semantics of processes in the 
event calculus. In section 4, logical programming is 
implemented to support the semantics of processes 
with the event calculus. In section 5, we have a 
summary for this work. 
 

 

2.  A Case Study 
We illustrate how an example, the interaction 
between a pendulum and balls that travels along a 
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1-dimension space, can be formalized. As described 
in Fig.1, a pendulum collides at angle ϕ  = 0 with a 
ball being at position cyy =  at the same time. We 
need to find appropriate equations describing various 
possible movements and interactions. 
Supposing the damping factor is neglected, the 
motion of the pendulum can be described by the 
following differential equation. 
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where l is the length of the pendulum, m is the mass 
of the pendulum, and g is 9.8m/ 2s . Solving the 
differential equation results in the angle of the 
pendulum ϕ , the angular velocity 'ϕ  and the angular 
acceleration ''ϕ . 
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Fig. 1.  Pendulum P and balls A and B in positions 

 
As the process scheme for the motion of the 
pendulum we obtain PendulumPτ = 〈 C’, F’ 〉  where C’ = 

},,{ max cyγϕ and F’ = }'',',{ ϕϕϕ .   
Here we define two different types of events. The 
first is the collision of two balls A and B, caused by 
identical locations at a certain time. The second type 
of event is the collision between one of the balls and 
the pendulum P, defined by the angle of the 
pendulum being zero while the ball's position is at the 
y-axis position of the pendulum cy , at the same time. 
The pendulum is assumed to be of much larger mass 
than the balls, such that the collision will simply be 
an elastic impact with one of the balls (reflection into 
opposite direction) while the pendulum keeps 
moving continuously.  
 

3.  Axiomatization 

3.1 Event Calculus with Circumscription 
The event calculus [10] was developed as a theory for 
reasoning about time and events in a logical 
programming framework. It focuses on the concept 
of an event as highlighted in a semantic network 
representation of case semantics [11]. In the event 
calculus, the ontological primitives are events and 
properties. Properties are initiated and terminated by 
events. The property, which has been initiated, 
continues to hold by default until some event occurs 
which terminates it. Therefore, it is concerned with 
formalizing the effect of events on objects, and their 
properties. 
In general, the fact that a property holds for a period 
of time can be derived from an event description by 
means of the initiation and termination rules: 
 

Holds(after(e, p)) ← Happens(e, t), Initiates(e, p). 
Holds(before(e, p)) ← Happens(e, t) , Terminates(e, 

p). 
 
where the occurrence of an event e at time t is 
denoted by Happens(e, t). The formula Initiates(e, p) 
(or Terminates(e, p)) means that event e initiates (or 
terminates) the property p. 
A property holds at a given time point if it holds for a 
period including that time point. This can be 
formalized by employing a predicate HoldsAt(e, n). 
We can define it by way of the following 
expressions. 
 

HoldsAt(p, t) ← Holds(after(e, p)), In(t, after(e ,p)). 
HoldsAt(p, t) ← Holds(before(e, p)), In(t, after(e ,p)). 
In(t, r) ← Start(r, e), End(r, e'), Time( 1,' te ), 

Time( 2,' te ), 1t < t < 2t  
 

Shanahan presented a full predicate calculus version 
of event using circumscription in [20]. In his 
enriched version of event calculus, a many-sorted 
language of the first-order predicate calculus with 
equality is used, including variables not only for 
time ),...,,( 21 nttt , events ),...,,( 21 neee and 
properties ),...,,( 21 nppp  but also states ),...,,( 21 nsss  
and truth elements ),...,,( 21 nfff . The domain of 
truth-values has two members, denoted by the 
constants True and False. A pair 〈p, v〉 is a truth 
element. A state is represented as a set of truth 
elements. The property p in the given state s are 
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described by the predicate HoldsIn with the 
following axioms. 

 
HoldsIn(p,s) ← [ 〈 p, True ∈〉 s ∧¬ Abstate(s)].           (E1) 
 
HoldsIn(p,s) ← [ 〈 p, False ∈〉 s ∧¬ Abstate(s)].          (E2) 
 
The following axiom defines the predicate State. The 
formula State(t, s) represents that time point t is 
associated with the state s. Each time point is 
associated with a single, characterizing state s, such 
that 〈 p, True ∈〉 s if and only if the property p was 
initiated by some event before t and still holds at t, 
and 〈 p, False ∈〉 s if and only if p was terminated by 
some event before t and still does not hold at t.  
 
State(t, s) ↔ (∀ p)[[ 〈 p, True ∈〉 s↔ Initiates(p, t)] 
∧ [ 〈 p, False ∈〉 s↔Terminates(p, t)]].                         (E3) 

3.2 Representing the Process Semantics of in 
the Event Calculus 

The process description of the balls is formalized into 
rules as follows. 
 
HoldsAt(moving(Ball, )),,(, tvlx , t)←                          (PS1)                                                 
   Holds(after(e, engine(Ball, F, )),,(, tvlx )), time(e, 0t ), 
   In(t, after(e, engine(Ball, F, )),,(, tvlx )), 0t ≤  t,   
   State(t, s), HoldsIn(engine(Ball, F, )),,(, tvlx )), s), 
   ContinuousProperty(engine(Ball, F, )),,(, tvlx , 0t ,  

moving(Ball, F, )),,(, tvlx , t). 
 
ContinuousProperty(engine(N, F, x, (l, v, 0t )), 0t ,      
(PS2)                                     

moving(N, x, (l, v, 0t )), t) ←  ).( 0ttvlx −×+=                    
 
 
The process description of the pendulum is 
formalized into rules as follows. 
 
HoldsAt(angle(PendulumP, ϕ , ),,( max cyγϕ ), t) ←   
(PS3)                                    
 Holds(after(e, swing(PendulumP, 'F , ϕ ,  

),,( max cyγϕ ))), time(e, 0Pt ), 
 In(t, after(e, swing(PendulumP, 'F , ϕ ,  

),,( max cyγϕ ))), 0Pt  ≤  t, 
 State(t, s), HoldsIn(swing(PendulumP, 'F ,  

ϕ , ),,( max cyγϕ ), s), 
 ContinuousProperty1(swing(PendulumP, 'F ,  

ϕ , ),,( max cyγϕ ), 0Pt , 

                    angle(PendulumP, ϕ , ),,( max cyγϕ ), t).        
 
ContinuousProperty1(swing(PendulumP, 'F ,  

ϕ  , ),,( max cyγϕ ), 0Pt , angle(PendulumP,  
ϕ  ϕ , ),,( max cyγϕ ), t) ←                        (PS4) 

ϕ ))(2cos( 0max PTt −⋅⋅−=
γ
πϕϕ . 

where 0PT  denotes the starting time of the motion of 
the pendulum. 
 
The event of the collision between the pendulum and 
any of the balls A and B can be transformed into the 
rules: 
 
ImplicitHappens(e,t) ←                                                (PS5) 

Start(after(e, engine(Ball, F, x, ),,( tvl newnew )), e), 
End(after( 'e ,engine(Ball, F, x, ),,( oldoldold tvl )), e), 'e < 

e, 
Holds(after(e, swing(PendulumP, 'F ,  

ϕ , ),,( max cyγϕ ))), 
ConstraintRelation ),,,,,,,,( 00max tttyvlvl Pcoldoldnewnew ϕ . 
 
ConstraintRelation ),,,,,,,,( 00max tttyvlvl Pcoldoldnewnew ϕ  ←  

./)(
,0,,

0tvlyt
vvvyl

oldoldc

oldoldnewcnew
+−=

≠−==                                           (PS6) 

where 0t  denotes the initial time of moving balls A or 
B. 
 
We suppose that ball A starts from position 0 at time 
2sec to move with speed 0.4m/sec, while ball B starts 
from position 4m at time 4sec with speed -0.3m/sec. 
If there is no other event to occur, the two balls A and 
B which move toward each other along the y-axis 
would have a collision at time 10sec. 
Suppose that we start the pendulum with suspension 
point cx = 1m, cy = 0.3m, cz = 0, that for the time 
constant we have γ  = 1 and for the starting angle 

o10=ϕ at time 1sec. MoveB and MoveP denote to the 
events which cause the balls and the pendulum 
to move, respectively. We have the following 
domain-dependent formulae. 
 
   Happens(MoveP, 1sec).                                             (PH1)  

Happens(MoveA, 2sec).                                            (PH2) 
Happens(MoveB, 4sec).                                            (PH3) 

 
Let χ be the conjunction of the axioms PS, PH, and E 
without E3. ][χecCIRC  yields  

Abstate(s) ↔ [ 〈 p, False ∈〉 s ∧ 〈 p, False ∈〉 s]       (1) 
 
Happens(e,  t) ↔                                                        (2) 
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     [e = MoveP ∧ t = 1sec] ∨  [e = MoveA ∧ t = 3sec] ∨  [e 
= MoveB ∧ t = 4sec]. 
 
Initiates(e, p, t) ↔                                                          (3) 

[e = MoveP ∧  p = swing(PendulumP, ϕ,'F , Ax , 
(10, 1sec, 0.3m)) ∧  t = 1sec]  

∨  [e = MoveA ∧  p = engine(BallA, F, Ay , (0m, 
0.4m/sec, 2sec)) ∧  t = 2sec] 
∨  [e = MoveB ∧  p = engine(BallB, F, By , (4m, -0.3m/sec, 
4sec)) ∧  t = 4sec]. 
 
By the rules (PS3) -- (PS6), a nearest event APe  of the 
collision between the ball A and the pendulum P 
occurs at time 2.75sec, since the condition of the 
constraint in (PS5) -- (PS6) is satisfied. From (1), (2), 
(3) and (PS5) -- (PS6), it follows that in all models 
under circumscription we have  
 
( ∃ s)[State(2.75sec, s) ∧ HoldsIn(engine(BallA, F, Ay , 

(0.3m, -0.4m/sec, 2.75sec)), s) ∧ HoldsIn( 
swing(PendulumP, ϕ,'F , (10, 1sec, 0.3m)), s)]. 

 
It means that the pendulum P continues its motion in 
the same direction, and the ball A moves towards the 
opposite direction with its initial speed after the 
collision occurs after the collision. Furthermore, 
 
HoldsAt(moving(BallA, Ay , (0.3m, -0.4m/sec, 2.75sec)), 
t). 
HoldsAt(angle(PendulumP, ϕ , (10, 1sec, 0.3m)), t). 
 
where ≥t 2.75sec. 

3.3 Soundness and completeness 

Let D = (P, E) be consistent domain description for 
process semantics, where P is a set of initial 
processes and E is a set of events. We write P = 

),...,,( 21 nppp  and E = ),...,,( 21 neee . 
Soundness Theorem Let D be a consistent domain 
description for process semantics and π  denote the 
translation from the process semantics into the event 
calculus, for any process P if π D entails π P, then D 
entails P. 
Completeness Theorem Let D be a consistent 
domain description for process semantics and 
π denote the translation from the process semantics 
into the event calculus, for any process P if D entails 
P, then π D entails π P. 

4. LOGIC PROGRAMMING 

We have implemented a logic programming system 
supporting the process semantics based on the event 
calculus in Prolog under the environment of Eclipse.  
  
A logical program for the example of balls and 
pendulum is shown in Fig.2.  
 

%primitive actions occurences % 
happens (e(2), start_ball(a), 0.4, 0) 
happens(e(4), start_ball(b), -0.3, 4) 
happens(e(1), start_pendulum(p), 10, 1, 0.3) 
 
%initial process specification % 
initial_proc([ball(a), ball(b), pendulum(p), pos(a,0), 
pos(b,4), v(a,0), 
v(b,0), v(p,0), last_Tdc(0), t(a, 0), t(b, 0), t(p,0)]). 
 
%specification of events and processes% 
holdsAt(moving(ball(X), pos(X,Y), v(X,V), t(X,T), L), 
TT):- 

holds(after(e(T), engine(ball(X), pos(X,Y), v(X,V), 
t(X,T),L))), 

TT>T, T>2, L is Y + V*(TT-T). 
holdsAt(angle(pendulum(p), pos(p, Y), var(p, V), t(p, 
T), L), TT):- 

holds(after(e(T), swing(pendulum(p), pos(p, Y), 
var(p, V), t(p, T), L))), 

TT>T, T> 1, L is  –10* cos(2*3.14*(TT-T)).  
%specification of state translation% 
transition(Old, e(T), New) :- next_event(Old, e(T)), 
next_proc(Old, e(T), New). 
next_event(Old, e(Tdc)) :- proc_match([last_Tdc(T)], 

Old, _), trigger(Old, Tdc),Tdc>T. 
trigger(_, T):- happens(e(T), _,_,_). 
trigger(Old, Tdc):-  proc_match([ball(X), pendulum(p),

v(X, VX), var(p, VY), 
pos(X, X0), pos(p, Y0), t(X, TX), 
t(p, TV)], Old,_),  

                                Tdc is  TX+(Y0-X0)*VX. 

Fig. 2.  A Logical program for the example of pendulum and 
balls 

5.    SUMMARY 

This paper presents an approach based on a 
high-level semantics of process to reason about 
continuous change. We believe that defining a 
well-formed semantics description is critical to solve 
the problem of reasoning in physical continuous 
system. With a case study we have shown how to 
integrate a high level semantics description with the 
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event calculus to reasoning about relative complex 
processes and continuous changes. We have proved 
the soundness and completeness of the event calculus 
with respect to the process and implemented the 
automated reasoning about processes in the logical 
programming framework.  
The limitation of our approach based on the process 
semantics is not to consider events that occur 
simultaneously. Attempts to solve this problem have 
been made for reasoning about change in the discrete 
case [4, 14, 24, 17, 25].  In our approach, if some 
events occur at the same time but without mutual 
influences, this could be represented by our approach. 
But if two or more simultaneous events involve 
identical objects, then the overall results might not 
simply by the combination of the results of the 
involved events. This requires more sophisticated 
means to specify suitable state transitions. To extend 
our current approach to include simultaneous 
occurrences of events will be our future work. 
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