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Abstract: In this paper, we study convergence properties of a finite difference scheme on a Shishkin mesh 
applied to a singularly perturbed Volterra integro-differential equation in security technologies. We derive a 
priori error estimate that is robust with respect to perturbation parameter ε , and prove that the finite difference 
scheme is almost second order accurate. Numerical results support the theoretical results. 
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1   Introduction 
Singular perturbation problems arise in several 
branches of engineering and applied mathematics 
which include fluid dynamics, security technologies, 
chemical reactor theory, gas porous electrodes theory, 
etc. To solve these types of problems various 
methods are proposed in the literature, more details 
can be found in the books of Farrell et al. [1] and 
Roos et al. [2]. 

In this paper we consider the following singularly 
perturbed Volterra integro-differential equation in 
security technologies: 
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where 10 <<< ε  is the perturbation parameter, 

0)(* >≥≥ αα ta , )(tf )( It ∈ and 
),( stK ( )),( IIst ×∈  are sufficiently smooth 

functions and A  is a given constant. On putting 
0=ε  in equation (1), we obtain the reduced 

equation 
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which is a Volterra integral equation of the second 
kind. The solution u of (1),(2) has a boundary layer 
at 0=t (see, e.g., [3,4,5]). 

The asymptotic structure of the solution to 
equation (1),(2) was examined by Angell and 
Olmstead [6,7]. The numerical discretization of 
singularly perturbed Volterra integro-differential 
equations and Volterra integral equations by tension 

spline collocation methods in certain tension spline 
spaces are considered in Ref. [8]. An exponentially 
fitted difference scheme on a uniform mesh is 
discussed in Ref. [9]. 

This present study is devoted to a finite difference 
method for the Volterra integro-differential equation 
(1),(2) on a Shishkin mesh. We first present bounds 
for u  and its derivatives. These bounds enable us to 
construct a special piecewise uniform mesh on which 
we can prove that the finite difference scheme is 
almost second-order accurate, uniformly in ε . Our 
analysis is based on discrete comparison principle, 
truncation error analysis and appropriate barrier 
functions. 

An outline of the paper is as follows: in section 2 
we state some properties of the exact solution. Based 
on these results we introduce a Shishkin mesh and a 
finite difference scheme in section 3. In section 4 we 
analyse the convergence properties of the scheme. 
Finally, numerical results are presented in section 5. 

Notation 1. Throughout the paper,C will denote a 
generic positive constant (possibly subscripted) that 
is independent of ε  and of the mesh. Note that C is 
not necessarily the same at each occurence. 
 
 
2   Properties of the exact solution 
To construct layer-adapted meshes correctly, it is 
crucial to have a precise knowledge of the asymptotic 
behavior of the exact solution. 

Lemma 1. The solution )(xu of the problem (1),(2) 
satisfies the following bound 

)1()( /)( εαε tkk eCtu −−+≤ , It ∈  , 3,2,1,0=k . 

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006      147



 

Proof. See [9] for a proof with 0=k and 1=k ; 
the argument works also for 3,2=k . 

 
 

3 The Shishkin mesh and a finite 
difference scheme 
In this section we describe the piecewise-uniform 
Shishkin mesh and a finite difference scheme based 
on trapezoidal integration. 

The construction of the Shishkin mesh is based on 
the bounds of the exact solution and its derivatives. 
Let λ  denote a mesh transition parameter defined by  

                     }ln2,
2
1min{ N

α
ελ = .                  （3） 

Assumption 1. We now make the mild assumption 

that Nln2
α
ελ = , as otherwise 1−N is 

exponentially small compared with ε . We shall also 
assume throughout the paper that 1−≤ CNε  as is 
generally the case in practice. 

We divide each of the subintervals ],0[ λ  and 
]1,[λ  into 2/N  equidistant subintervals. Then our 

mesh is 





+=−−−
=

=
.,,12//))(1(21

,2/,,1,0/2
NNiNiN

NiNi
ti

L

L

λ
λ

 

           (4)              
We denote by h  and H  the mesh widths inside and 
outside the boundary layer, i.e., 
        NNh ln4 11 −−= εα , 1)1(2 −−= NH λ .   (5) 

The finite difference scheme that we present 
consists of midpoint difference operator and 
trapezoidal integration in approximating the Volterra 
integral. Based on the Shishkin mesh, we propose the 
finite difference scheme for problem (1),(2): 
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where 
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and )2/)(( 12/1 iii ttaa += −− ; similarly for 2/1−if  
and ),( 12/1 −− ji ttK . 
 
 
4 Analysis of the scheme 
The analysis is based on the discrete comparison 
principle and barrier function technique introduced in 
[10,11]. 

Lemma 2.  Assume that 
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satisfies a discrete comparison principle, i.e., if 

}{ iv and }{ iw are mesh functions that satisfy 

00 wv ≤ and i
N

i
N wlvl ≤  for Ni ,,2,1 L= , then 

ii wv ≤  for all i . 
Proof. It is easy to verify that the 

)1()1( +×+ NN  matrix associated with Nl  is an 
M-matrix, as in the proof of [11, Lemma 3.1]. 

An immediate consequence of this discrete 
comparison principle is the following stability result. 

Lemma 3. Under the condition (9), the solution of 
the difference initial value problem 

ii
N Fyl = , Ni ,,2,1 L= , By =0  

satisfies the following estimate 

ii FBy 1
*
−+≤ α , Ni ,,2,1 L= , 

where 0≥iF  is nondecreasing. 
Proof. Applying Lemma 2 to the barrier function 

iii yFBW ±+= −1
*α , we can easily get the 

desired result. 
For the Shishkin mesh (4) we have the following 

result that will be used later. 
Lemma 4. There exists a constant C  such that 
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For 2/,,2,1 Nk L= , we have 
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Combine the two inequalities to complete the 
proof.  

The next lemma gives us a useful formula for the 
truncation error of trapezoidal integration in 
approximating the Volterra integral. 

Lemma 5. For Ni ≤≤1 , there exists a constant 
C such that 
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where ),,;,,(~
1010 −− ii uuttK LL is given by (8). 

Proof. The truncation error of trapezoidal 
integration in approximating the Volterra integral 
satisfies 
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where we have used Taylor expansion, Lemma 1 and 
the assumpation that the Kernel ),( stK and its 
derivatives are bounded. 

To bounded (11) we shall use the following 
inequality 
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which holds true for any positive monotonically 
decreasing function g on ],[ ba  and for arbitrary 

+∈ Nk ; see [12]. By this inequality we have 
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From this inequality and Lemma 4 we get the desired 
result. 

Now we can get our main result for this difference 
scheme. 

Theorem 1. Under the condition (9), for the 
difference problem (6),(7) we have 
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Proof. For Ni ≤≤1 , from (6) and (10) we have 
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where we have also used Taylor expansion, (13), 
Lemmas 1,4,5 and the assumpation that the Kernel 

),( stK and its derivatives are bounded. 
Using the discrete comparison principle we have 
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where iw  is the solution of the problem 
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The proof of the theorem is completed. 
 
 
5 Numerical experiments 
In this section we present two examples to illustrate 
the method described in this paper. 

Example 1. Consider the problem 
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where )(tf  is chosen such that ε/)( tettu −+= . 

Example 2. Consider the problem 
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where )(tf  is chosen such that ε/sin)( tettu −+= . 
For our tests we take 810−=ε  which is a 

sufficiently small choice to bring out the singularly 
perturbed nature of the problems. We measure the 
accuracy in the discrete maximum norm 
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Table1 Numerical results for example 1 
 

N  Error  Rate Constant
16 2.9290e-2 1.554 0.9754 
32 9.9764e-3 1.488 0.8505 
64 3.5564e-3 1.568 0.8422 

128 1.1999e-3 1.615 0.8350 
256 3.9181e-4 1.662 0.8351 
512 1.2378e-4 1.697 0.8338 
1024 3.8186e-5 - 0.8334 
 

Table2  Numerical results for example 2 
 

N  Error  Rate Constant
16 1.5938e-2 1.088 0.5308 
32 7.4951e-3 1.015 0.6390 
64 3.7089e-3 1.013 0.8783 

128 1.8383e-3 1.009 1.2793 
256 9.1359e-4 1.005 1.9472 
512 4.5537e-4 1.002 3.0674 
1024 2.2732e-4 - 4.9612 

 
The Table 1 and 2 correspond to the above 

examples respectively. The numerical results are 
clear illustrations of the convergence estimate of 
Theorem. They indicate that the theoretical results 
are fairly sharp. 
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