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Abstract: In this paper, we study convergence properties of a finite difference scheme on a Shishkin mesh
applied to a singularly perturbed Volterra integro-differential equation in security technologies. We derive a
priori error estimate that is robust with respect to perturbation parameter ¢, and prove that the finite difference
scheme is almost second order accurate. Numerical results support the theoretical results.
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1 Introduction
Singular perturbation problems arise in severa
branches of engineering and applied mathematics
which include fluid dynamics, security technologies,
chemical reactor theory, gas porous electrodes theory,
etc. To solve these types of problems various
methods are proposed in the literature, more details
can be found in the books of Farrell et a. [1] and
Roos et dl. [2].

In this paper we consider the following singularly
perturbed Volterra integro-differential equation in
security technologies:

au' (t) + a(t)u(t) + j; K (t,s)u(s)ds = f (1),

1

tel =[0]],
u(0) = A, @)
where 0< ¢ <<1 is the perturbation parameter,
a.zalt)2a>0 f(t) (tel) and

K(t,s) ( (t,s) el xI) are sufficiently smooth
functions and A is a given constant. On putting
=0 in equation (1), we obtain the reduced
equation

a(t)u, (t) + j; K (t, S)u,(s)ds = f (1),

which is a Volterra integral equation of the second
kind. The solution u of (1),(2) has a boundary layer
at t=0(see eg., [34.59)]).

The asymptotic structure of the solution to
equation (1),(2) was examined by Angell and
Olmstead [6,7]. The numerical discretization of
singularly perturbed Volterra integro-differential
equations and Volterra integral equations by tension

spline collocation methods in certain tension spline
spaces are considered in Ref. [8]. An exponentially
fitted difference scheme on a uniform mesh is
discussed in Ref. [9].

This present study is devoted to afinite difference
method for the Volterra integro-differential equation
(1),(2) on a Shishkin mesh. We first present bounds
for u and its derivatives. These bounds enable us to
construct a specia piecewise uniform mesh on which
we can prove that the finite difference scheme is
almost second-order accurate, uniformly in . Our
analysis is based on discrete comparison principle,
truncation error analysis and appropriate barrier
functions.

An outline of the paper is as follows: in section 2
we state some properties of the exact solution. Based
on these results we introduce a Shishkin mesh and a
finite difference scheme in section 3. In section 4 we
analyse the convergence properties of the scheme.
Finally, numerical results are presented in section 5.

Notation 1. Throughout the paper, C will denote a
generic positive constant (possibly subscripted) that
is independent of &£ and of the mesh. Note that Cis
not necessarily the same at each occurence.

2 Propertiesof the exact solution
To construct layer-adapted meshes correctly, it is
crucia to have a precise knowledge of the asymptotic
behavior of the exact solution.

Lemma 1. Thesolution u(X) of the problem (1),(2)
satisfies the following bound

UM< C@+e*e™), tel k=0123.
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Proof. See [9] for a proof with k=0and k =1;
the argument works also for k = 2,3.

3 The Shishkin mesh and a finite

difference scheme
In this section we describe the piecewise-uniform
Shishkin mesh and a finite difference scheme based
on trapezoidal integration.

The construction of the Shishkin mesh is based on
the bounds of the exact solution and its derivatives.
Let A denote amesh transition parameter defined by

A=mint, 2N} | (3)
2 «
Assumption 1. We now make the mild assumption
that ﬂzEInN . as otherwise N7 s
o

exponentialy small compared with ¢ . We shall also
assume throughout the paper that s <CN ™' as is
generally the casein practice.

We divide each of the subintervals [0, 1] and
[4.]] into N/2 equidistant subintervals. Then our
meshis

- 21N i=01---,N/2
" l1-20-A)(N-)/N i=N/2+1---,N.
4

We denoteby h and H the mesh widthsinside and
outside the boundary layer, i.e.,

h=4saN"InN, H=2(1-A)N". (5)

The finite difference scheme that we present

consists of midpoint difference operator and

trapezoidal integration in approximating the Volterra

integral. Based on the Shishkin mesh, we propose the

finite difference scheme for problem (1),(2):

u —u

STH + ai—lIZ(UiN + ui'\—ll)/2+

h 3 1
Z[EK(ti—lIZ’ti—l)ui’\—ll +EK(ti—1/2’ti)uiN] (6)

+ K‘(tof'"ti—l;ug‘1”'ui’\—‘1): fia =L N,

uy = A, ©)
where
K(to""1ti—1;u§""ui,jl) =

0 i=1
hj N N ;
Z?[K(ti—llﬂt]’)uj + Ky, )u,] 1>1

i-1

=1

(8)

and a_y,, =a((t_, +t)/2) ; smilaly for f_j,,
and K(t_y,,t4)-

4 Analysisof the scheme
The analysis is based on the discrete comparison
principle and barrier function technigue introduced in

[10,11].
Lemma 2. Assume that
a(t)+%K(t,t)22a* >0, ©
Then the operator | ™ defined by
My =t R K
1<i<N (10)

satisfies a discrete comparison principle, i.e, if
{v.} and {w} are mesh functions that satisfy
Vo <w, and IMv, <IMw for i =12,---,N , then
v, <w foralli.

Proof. It is easy to verify that the
(N +12)x (N +1) matrix associated with |" is an
M-matrix, asin the proof of [11, Lemma 3.1].

An immediate consequence of this discrete
comparison principleisthe following stability result.

Lemma 3. Under the condition (9), the solution of
the difference initial value problem

INy. =F,i=12,---,N, y,=B
satisfies the following estimate

lvi| <[B|+a R, i=12,N,
where F; > 0 is nondecreasing.

Proof. Applying Lemma 2 to the barrier function
W, =|B|+a'|F|+y; , we can easily get the
desired result.

For the Shishkin mesh (4) we have the following

result that will be used later.
Lemma 4. There exists a constant C such that

[ @+ee @)t <CNINN

for k=12,---,N.
Proof. For kK=N/2+1---,N, we have

J-tk (1+ g_le—at/(Zs))dt _ hk _ge—at/(Zs) |tk
Tk a

It 1

_E§.((3

(94

<CN*'-

ot 1(2e) e—aftk,l /(25))

<CN* +E g 2 29) < N7,
o
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For k=12,---,N/2, wehave which holds true for any positive monotonically
. 2 decreasing function g on [a,b] and for arbitrary
[ @+ete®Nydt=h —Ze @ | Ke N N
b o a k1 € N7; see[12]. By thisinequality we have
1
< h 2 w{tk 1(2¢) (1 eozh,< /(28)) J-t,] (1+ 872 7at/g)(t tJ l)dt
“ (13)
<N+ cllegnien continn. {f (e )dg.
g .
Combine the two inequalities to complete the ~ From th|smequal|ty and Lemma 4 we get the desired
proof. result. _ o
The next lemma gives us a useful formula for the r']\'OW we can get our main result for this difference
scheme.

truncation error of trapezoidal integration in
approximating the Volterraintegral.
Lemma 5. For 1<i < N, there exists a constant

Theorem 1. Under the condition (9), for the
difference problem (6),(7) we have

C such that lu —u" KCN?In>N,0<i<N. (14
) Proof. For 1<i <N, f 6) and (10 h
7, = ﬂ[E K(ti g2t 1)Uy +1 Kty t)u] oL o ! fom (6) and (10) we have
2 N Ny [N 1 n 3N
|| (ui —U; ) |—|| U _{ fi—1/2 — &y oU —
+ K(to’ b g Uiy) 2 8

K(tl —1/27 % 1)u| 1} K(tO' -t iU N"”’uiﬂl)l

U —Uu_ ' i
< &( h : —Uiy,,) [+ |§K(ti—l/21ti)ui -

—j K (t M,s)u(s)ds KCN2In?N,

where K(to, -+t 1;Ug,-++,U, ;) isgiven by (8).
Proof. The truncation error of trapezoidal

integration in approximating the Volterra integral J‘tH/z K(tifl,z,s)u(s)ds+1ai71,2ui —8,_4;,U 1,
satisfies ° 2
h 3 1 1 3h
T, slz'[—K(tifl,z,tifl)uifl+—K(ti71,2,ti)ui] +2a_1/2U. atg Kz ta)Uy
t|71/2 —}Zt ’---,t. ;UN’---,U.N
__[t [ 1/2’S)U(S)d5|+|K(to’ b (O = To '71)|
h ¢ <|g(u‘_u“1—u' )|+|1a U —a U
uo’...,ui_l)_J-O'*l K(tl_llz’s)u(s)d3| - hI i-1/2 2 i—1/2% -1/2%i-1/2
LTI 1 1
<Ch [ U O 1 -t )t 8l 415802 (0 —u) |
h 3 1
+Czh J. Iu 1t~ tj,)dt +|_[_K(ti—1/2’ti—1)ui—1+EK(ti—1/2’ti)ui]
<Ch [ L+ &% o)t -t )t + Kty b aillo, .U )
EU [T K (t 0 US|
+C> h, j 1+ 2e )t -t )dt
-1 ! tis ! 3hl N
t + |? Kt 120 ) Uy —u) |
<Cmax| (@A+e&?e™)(t—-t )dt, (11
kjs J‘tH( X J_l) “ +|K(to’ " |1’uo_u(')\l1" U_, — |1)|
where we have used Taylor expansion, Lemma 1 and .
the assumpation that the Kernel K(t,s) and its chj't?lw (t) [ (t—t,_,)dt
derivatives are bounded. § . s
To bounded (11) we shal use the following +Cft_ lu@®[(t-t_)dt+CN"In"N
inequality o

L 9000c-a) V<[ 90" i, (12
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i-1
+C> h Ju; —u} |

j=1

<C[' @+&%e™*)(t—t,,)dt+CN2In* N

i-1
+CYohy |up —ul <O @+ e @)
j=l i-1

i-1
+CN2In*N+CY_h; |u; —u} |
j=1

i—1
<CN?In*N+C> h, Ju, —u} |
j=1
where we have also used Taylor expansion, (13),
Lemmas 1,4,5 and the assumpation that the Kernel
K (t, s) and its derivatives are bounded.
Using the discrete comparison principle we have
|u, —uM Kw, 0<i<N,
where w, isthe solution of the problem

CN7ZIn*N i=1

|NW — i-1
"TICNZIN®N+CY h Ju,—u | 1<i<N,
j=1
w, =0.
From here by virtue of Lemma 3 it follows that
U —u < fw|

i—1
<CN?IN*N+CY h, |u; —ul |
j=1
and consequently
i—2
|u_ —u’, KCNZIn*N+C> h, |u, —u}|.
j=1
Application of the recurrence inequality gives
lu,—u" KCN?In*N, fori=01---,N
The proof of the theorem is completed.

5 Numerical experiments
In this section we present two examples to illustrate
the method described in this paper.

Example 1. Consider the problem

au'(t) + 2u(t) + j; su(s)ds= f(t) for t (0],
u(0) =1,

where f (t) ischosen suchthat u(t) =t +e™"'*.
Example 2. Consider the problem

eu'(t)+(t+1)u(t)+J-; (t+s)u(s)ds= f(t) for
te (0], u(0) =1,

where f (t) ischosen suchthat u(t) =sint+e™'*.

For our tests we take ¢=10"° which is a
sufficiently small choice to bring out the singularly
perturbed nature of the problems. We measure the

accuracy in the discrete maximum norm Hu —u “ :

Ju-v],

e TRTEI

the rates of convergence

and the constants in the error estimate
Ju-u],
N2In*N "

Tablel Numerical results for example 1

N Error Rate | Constant
16 | 2.9290e-2 | 1.554 | 0.9754
32 |9.9764e-3 | 1.488 | 0.8505
64 | 3.5564e-3 | 1.568 | 0.8422
128 | 1.1999e-3 | 1.615| 0.8350
256 | 3.9181e-4 | 1.662 | 0.8351
512 | 1.2378e-4 | 1.697 | 0.8338
1024 | 3.8186e-5 - 0.8334

Table2 Numerical results for example 2

N Error Rate | Constant
16 | 1.5938e-2 | 1.088 | 0.5308
32 | 7.4951e-3 | 1.015| 0.6390
64 | 3.7089e-3 | 1.013 | 0.8783
128 | 1.8383e-3 | 1.009 | 1.2793
256 | 9.1359e-4 | 1.005 | 1.9472
512 | 45537e-4 | 1.002 | 3.0674
1024 | 2.2732e-4 - 4.9612

The Table 1 and 2 correspond to the above
examples respectively. The numerical results are
clear illustrations of the convergence estimate of
Theorem. They indicate that the theoretical results
arefairly sharp.

Acknowledgments

The work was supported by National Natural Science
Foundation (Grant No. 10301029, 10671180) of
China.

150



Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 151

References:

[1] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E.
O'Riordan and G. I. Shishkin, Robust Computational
Techniques for Boundary Layers, Chapman &
Hall/CRC Press, 2000.

[2] H.-G. Roos, M. Stynesand L. Tobiska, Numerical
Methods for Singularly Perturbed Differential
Equations, Springer, Berlin,1996.

[3] A. S Lodge, J B. McLeod, J. A. Nohel, A
nonlinear singularly perturbed Volterra
integrodifferential equation occurring in polymer
rheology, Proc. Roy. Soc. Edinburgh Sect. A , 80,
1978, pp 99-137.

[4] G. S. Jordan, A nonlinear singularly perturbed
Volterra integrodifferential equation of
nonconvol ution type, Proc. Roy. Soc. Edinburgh Sect.
A, 80, 1978, pp 235-247.

[5] G. S. Jordan, Some nonlinear singularly perturbed
Volterra integro-differential eguations, in: Volterra
Equations (Proc. Helsinki Sympos. Integral
Equations, Otaniemi, 1978), Lecture Notes in
Mathematics, Vol. 737, Springer, Berlin, 1979,
pp.107-119.

[6] J S Angel, W. E. Olmstead, Singularly
perturbed Volterraintegral equations, SIAM J. Appl.
Math., Vol. 47, No. 1, 1987, pp 1-14

[71 J S Angel, W. E. Olmstead, Singularly
perturbed Volterra integral equations 1I, SIAM J.
Appl. Math., Vol. 47, No. 6, 1987, pp 1150-1162.

[8] V. Horvat, M. Rogina, Tension spline collocation
methods for singularly  perturbed Volterra
integro-differential and Volterraintegral equations, J.
Comput. Appl. Math., Vol. 140, No. 1-2, 2002, pp
381-402.

[9] G. M. Amiraliyev, S. Sevgin, Uniform difference
method for singularly  perturbed Volterra
integro-differential equations, Appl. Math. Comput.,
Vol. 179, No. 2, 2006, pp 731-741.

[10] M. Stynes, H. -G. Roos, The midpoint upwind
scheme, Appl. Numer. Math., Vol. 23, No. 32, 1997
pp 361-374.

[11] R. B. Kellogg and A. Tsan, Analysis of some
difference approximations for turning points, Math.
Comp. , Vol. 32, No. 144,1978, pp 1025-1039.

[12] C. de Boor, Good approxiamtion by splines with
variableknots, in: A. Meir, A. Sharma (Eds.), Spline
Functions and Approximation Theory, Proceedings
of the Symposium held at the University of Alberta,
Edmonton, May 29-June 1, 1972, Birkhauser, Basdl,
1973.



