
A Multiplier to Enhance the Speed of Encryption/Decryption 
 

YANG Ai-Min,ZHANG Wen-Xiang 
Doctor of  Wuhan University of Technology; 

 
Computer Science and Information Technology College 

Zhejiang Wanli University  
No.8, South Qian Hu Road Ningbo, Zhejiang Province 

China  
 
 

Abstract: - It has become increasingly common to implement discrete-algorithm based public-key protocols on 
elliptic curves over finite fields. The operations, especially multiplication, over finite fields affect greatly the 
speed of encryption/decryption. For this reason the contribution describes a fast multiplier for Elliptic Curve 
Cryptosystems over finite fields GF（（2m1）m2）. This multiplier adopts mixed parallel-serial approaches., The 
number of clock cycles for one field multiplication can be reduced from former m= m2m1 to current m2 with less 
increase of hardware scales. 
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1   Introduction 
The finite field GF（2m） is a digital system with 2m  
elements. Each  element can be expressed in the form 
of m binary numbers when practically applied in the 
field GF（2m） .   Besides its application in the 
encoding theory,  the computation of the finite field 
GF（2m）has also been applied in the communication 
security  of  the digital  information , such as the 
enciphering and deciphering computation. The most 
important   computation  in  the  finite  field is 
multiplication.   There are three presentations of 
computation data: Dual, Normal and Standard (or 
Polynomial).   For the Dual  multiplication, the 
multiplicand  is  expressed  in  Dual , while the 
multiplier is  expressed  in  Standard; and yet the 
result is  expressed  in  Dual[1].  In assey-Omura 
multiplication, both the multiplier and the 
multiplicand are presented with Normal[2 ， 3]. In 
Scott-Tavares-Peppard multiplication, however, all 
the elements in the finite filed are presented with the 
Standard[4]. Among the multipliers presented by the 
three data, the Dual multiplication requires the fewest 
gate counts, and thus, it occupies the smallest areas in 
the VLSI design. Massey-Omura multiplication is 
very effective in the inversion, square and index 
computations where the operation process only 
involves a shift. It directly maps the binary input and 
output of the data. Nevertheless, both Dual and 
Massey-Omura multiplications involve the data 
transformation. The circuit structure is irregular. 
Moreover, when the dimension m increases in the 
finite field, the circuit size of Massey-Omura 
multiplier will augment rapidly, and thus it is not 

suitable to the actualization of VLSI. Comparatively, 
there is no requirement for the transformation of data 
presentation in the Standard multiplication, its circuit 
being regular, simple and fast. It is much easier for 
the standard multiplication to be actualized when the 
dimension m increases in the finite field. Besides, the 
irreducible unary primitive polynomial in the field 
can be changeable, while in Dual and Massey-Omura 
multiplications. it must be selected.  
     Of the public key systems, the elliptic curve 
cryptosystem has been regarded as an ideal type. 
What makes this system superior lies in its use of 
shorter key on precondition of security. It is generally 
believed that, for the elliptic curve cryptosystem of q 
meta-field, when the length of q is 160bit, its security 
equals that of RSA applying 1024bit modulo. If the 
selected finite field is GF（2m）, only when m≥160, 
can the elliptic curve cryptosystem be regarded 
secure. Therefore, to make the elliptic curve 
cryptosystem in the finite field GF（2m）possible, the 
Standard base presentation should be used in design, 
with a consideration of the computation 
characteristics of the elliptic curve. And the finite 
computation should mainly be multiplication with 
parallel and serial ways combined 
 
 
2 Multiplication based on the finite 
field 
 
  
2.1   Traditional finite field multiplication 
Here the computation of module multiplication by 
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using matrix should be introduced. Suppose the two 
elements A, B in GF（2n）are as follows: 
A(x)=an-1xn-1+…+ a1x+ a0 ai ∈ GF （ 2n ）

B(x)=bn-1xn-1+…+ b1x+ b0 bi∈GF（2n） 
Q(x)=xn+ qn-1xn-1…+ q1x+ q0  , q0=1, qi ∈GF(2) is the 
irreducible unary primitive polynomial of the finite 
field GF（2n）.   
If C(x)=A(x)×B(x) mod Q(x), then  
Cn-1xn-1+…+c0=(an-1xn-1+…+a0) (bn-1xn-1+…+b0)  
mod Q(x)                                        (1) 
     To compute the value of xn,xn-1,…,x2n-2 mod Q(x), 
then      
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Thus the value of qi,j  satisfies  
q0,j=qj j=0,1,…,n-1. 

⎪⎩

⎪
⎨
⎧

−=−=+

=−=
=

−−−−

−−

1,...,1;2,...,1
.0;2,...,1

,01,11,1

1,1
, njniqqq

jniq
q

jniji

ni
ji

 
                                          (3) 
 
Therefore, the computation of Formula (1) 
can be demonstrated as: 
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     Of which, 
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     Computation of all the formulae above are done in 
the field GF (2), which requires n2 times of module 
multiplications.  

 
2.2   Improved finite field multiplication 

Given the large number of module multiplication in 
the finite field, the Karatsuba-Ofman computation
（KOA）proposed by Karatsuba and Ofman can 
reduce the workload by 1/4n2 times. The core of KOA 
is the decomposition of polynomial and adoption of 
the recursive algorithm in the module computation of 
the finite field. As A(x)、B(x) is the polynomial of 
the high-order n-1of the field GF（2n） , so the 
high-order of D(x)= A(x)B(x), D(x) is 2n-2. In this 
case, n should be a prime number bigger than 
2(obviously n is an odd number), let r=n+1, 
according to KOA, its decomposition should be as 
follows: 
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                                                                  (6) 
According to Formula (6), the computation  

 
D0(x)= Al(x) Bl (x) 
D1(x)=[ Al(x)+ Ah(x)] [ Bl(x)+ Bh(x)]  
D2(x)= Ah(x) Bh (x) 
 

(7) 
As Fig.1 demonstrates, 
D(x)= A(x)B(x) 
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     Through Formula (7) and (8), the number of times 
of the coefficient multiplication can be reduced from 
the original n2 to 3/4n2 [5]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
     The multiplication and addition computations in 
diagram1(the modulo 2 multiplication and modulo 2 
addition) are all operated in the field GF（2）. Though 
Fig.1 shows the computation of D0(x)= Al(x) Bl (x), it 
can also be applied in the computation of D1(x) and 
D2(x). The only difference is when computing D1(x), 

ar/2-1 …… a0 

br/2-1 …… b0 

ar/2-1b0 …… a0 b0

 …… ….. 

ar/2-1b r/2-1 …… a0 b r/2-1 

D0,r-2 …… D0,0

Fig.1 D0(x)= Al(x) Bl (x)
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an extra computation of Al(x) + Ah(x) and Bl(x)+ Bh(x) 
is needed. This requires at most r/2-1 XOR gates.  
     When it comes to the computation like the form of 
xsW(x) mod Q(x), with the application of xn= 
qn-1xn-1…+ q1x+ q0 mod Q(x), it can be realized 
through the looping of the LFSR s times as 
demonstrated in Fig.2 

 

 
     If W(x)= D1(x) - D0(x) - D2(x)，s=r/2 or W(x)= 
D2(x) s=r is taken out of xsW(x) mod Q(x), the 
computation of C(x)= A(x)×B (x) mod Q can be 
accomplished through the LFSR and the computation 
module in Fig.1. 

 
 

3   Multiplication  structure  in  the 
composite field 
 
 
3.1 Finite compound field 
Suppose F is a finite field, and F is a subfield of F , 
then m is the extended dimension of field F based on 
the subfield F, Em={e0,e1,…,em-1} is a group base of 
field F on the basis of F. Of it, e0,e1,…,em-1∈ F is 
linearly independent. Once given the base Em of field 
F  on the basis of the subfield F, to any A∈ F ，it 
can be indicated by only one m dimension row vector, 
that is,  A=（a0,a1,…,am-1）, of which  a0,a1,…,am-1∈
F. Suppose p and pl are the eigenvalue and base of the 
field F respectively（P is a prime number）. 
     Theorem 1[6]: suppose F contains Pn elements，
then field F contains a subfield F with Pt elements 
and only when n can be divided by t with no 
remainder. 
     Suppose F0，F1，…,Fs are finite fields, and Fi-1 is 
the subfield of Fi, i=1,2,…,s,  mi is the extended 
dimension of Fi-1based on Fi, thus F0，F1，…,Fs 
forms a group of chain fields in descending sort. 
Their relationship can be expressed as the following: 

SmsSmsmm
FFFF >>>> −− 112110 ...        （9） 

     Of them, imii FF >−1  denotes Fi-1 is the compound 

field of Fi with a dimension of mi.  
     Inference1: Suppose F is a finite field, F is a 
subfield of F ， m is the extended dimension 
of F based on the subfield of F, if m=m2m1,  m2,m1 are 
prime numbers,  and mi>1isa positive integer, then 
there is a group of chain fields in descending sort 
between F and F. 
     Theorem 2[7]: suppose  
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Then Fi-1and Fi/ (pi-1(x)) are in isomorphism.  
 

3.2 Multiplication structure of the finite 
composite field 
If the eigenvalue P of F 、F is 2，that is, F is GF
（ 2n ）， F is GF(2) ， in consideration of the 
computation, let m=m2m1，m2，m1 are big prime 
numbers，then the chain fields between GF（2n） and 
GF(2) in descending order should be 
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field GF（（2m1）m2）in short. 
     Suppose U(x),V(x) ∈GF（2

n
），P(x) is the 

irreducible polynomial of GF（2
n
）, compute W(x)= 

U(x)V(x)mod P(x). As is known, in the elliptic curve 
cryptosystem, m should be bigger than 160 from the 
perspective of security. If there is the same 
computation as that in section 2 like the module 
multiplication W(x)= U(x) V (x) mod P(x) in finite 
field ∈GF（2n）,the speed will be very slow because 
of the serialization in the computation. Thus, it is 
necessary to adopt the design of parallel operation 
and the actualization of this design is operated in the 
chain fields in descending sort with an eigenvalue of 
2. The following is the description of the parallel 
multiplication structure of the standard data in chain 
fields in descending sort, the computation base is on 
the following three aspects:  
A.  The finite field GF（2n），the serial computation 
based on GF(2) 
B. The chain fields in descending sort 
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Fig.2    LFSR 

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006      163



GF（2m）. Suppose the two elements of GF（2m） 
U(x),V(x) are as follows respectively: 
     U(x)=um-1xm

2
-1+…+ u1x+ u0 

     V(x)=vm-1xm
2
-1+…+ v1x+ v0  

     As m2 is a big prime number（bigger than 2），
expressed as r= m2+1, the partitioning methods of 
KOA adopted can be: 
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     According to Formula (7), the equivalence 
decomposition of formula (10) can be  
W(x)=W0(x)+xr/2[w1(x)-w0(x)-w2(x)]+xrW2(x) mod P(x)
                                                  (11) 
     The relationship between w 1(x)、w0(x)、w2(x) 
and Uh(x)、Ul(x)、Vh(x)、Vl(x)can be obtained from 
Formula (7). Similar to diagram1, the actualized main 
logic hardware of Formula (11) can be demonstrated 
by Fig.3:  

    
 
 
 
 
 
  
 
 
 
 
 

 
     In Fig.3, ui、vj、w0,k∈GF（2m1）, bit width m1，

w0,k ， i,j=0,1,…,r/2-1,  k=0,1,…,r-1. The 
multiplication and addition of  ui 、 vj as the 
polynomial coefficient are all operated in GF（2m1）, 
yet uivj will be accomplished by the multiplication 
computation in section 2. Based on the LFSR in 
section 2 comes the feedback shift register computing 
xr/2[w1(x)-w0(x)-w2(x)] mod P(x) and xrw2(x) mod 
P(x). 

 
 
 
 
 
 
 

 
 
 
 

Different from Fig.2, the computation bit width in 
Fig.4 is m1bits. The multiplication and addition in Fig. 
4 and 3 are accomplished by the computations in Fig. 
2 and 1 together. If the multiplication and addition 
are divided into patches, Fig. 4 and 3 can be divided 
into m2 patches. The multiplication and addition in 
each patch are operated in serial, while the 
computations between the patches are operated in 
parallel. The shift in Fig.4 is in serial from w0 to wm2-1, 
but the bit number of each transfer is m1bits, thus it is 
a parallel operation. If counted by the bit serial shift, 
it needs m clock cycles. If the shift is to be done as 
shown in Fig.4, it needs only m2 clock cycles. 
 
 
4   Conclusion 
This paper proposes a new parallel multiplier 
structure based on the composite field GF （（2

m1
）

m2
). 

Aiming at the elliptic curve cryptosystem, the 
multiplier adopts the computations in parallel and 
serial. It has a fast computation speed and a regular 
structure. Besides, it is easy to be adopted in module 
design and suitable to the actualization of VLSI. 
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