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Abstract: - The aim of this paper is to present the stochastic version of the multivalued neural model MREM,
which has achieved very good results in many applications, as an optimization technique. The purpose of this
stochastic version is to avoid certain local minima of the objective function minimized by the network, that is, the
energy function. To this end, the description of the theoretical bases of this model, guaranteeing the convergence to
minima, is carried out rigorously. In order to show the efficiency of this new model, the model, in its two versions,
deterministic and stochastic, has been applied to the resolution of the well-known problem of graph partition,
MaxCut. Computational experiments show that in most cases the stochastic model achieves better results than the
deterministic one.
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1 Introduction
In classical literature, the MaxCut problem is defined
as follows: Given an undirected weighted graphG =
(V, E), whereV = {vi} is the set ofN vertices and
E is the set ofne edges, and edge weights are given
by matrixC = (ci,j)i,j=1,...,N (meaning that the weight
or cost of the edge joining nodesi andj is ci,j ≥ 0),
find amaximum cutof G, i.e., a partition ofV into two
sets that maximizes the total cost of the edges with end-
points in different sets.

This problem arises in the resolution of many practi-
cal or theoretical situations. Some examples include:
pattern recognition, clustering, statistical physics and
the design of communication networks, VLSI circuits
and circuit layout [1].

So, this problem is well-known in literature. Due
to its wide applicability, many variants of it have been
formulated, placing restrictions on the original formu-
lation.

The original problem, with all the variants, is known
to be NP-complete [2], making their resolution compu-
tationally intractable, but in the case of planar graphs
they belong toP , that is, there exists a solution in poly-
nomial time. So, many algorithms have appeared to
tackle MaxCut in the general case.

In 1997, Alberti et al. presented a Hopfield-like neu-
ral model for MaxCut [3], but its performance is worse
than the presented by Bertoni et al [4]. Takefuyi and
his colleagues [5] developed a powerful neural model
named ‘maximum’ and it proved to perform better than
the rest of algorithms in solving a wide range of combi-
natorial optimization problems.

In the last few years, Galán-Maŕın et al. [6] pro-
posed a new neural model named OCHOM which ob-
tains much more efficient solutions than ‘maximum’.
Moreover, it can be used for many problems and it
also has the advantage of fast convergence to a valid
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solution without tuning any parameter. In order to
make OCHOM escape from local minima, Wang et al.
[7] have recently proposed a stochastic dynamics for
OCHOM, permitting temporary decreases of the objec-
tive function.

Note that there exists very few bibliographic refer-
ences forK-partitioning (most of the references is fo-
cused in bipartition).

Recently, Ḿerida et al. [8] presented a neural model
called MREM that has the ability ofK-partitioning the
graph, since it is a multivalued model. This model had
been very successful in other combinatorial optimiza-
tion problems, see for example [9, 10, 11, 12].

The aim of this work is to present the stochastic ver-
sion of this model MREM that helps to escape from
certain local minima, improving so its efficiency when
dealing with problems presenting difficulties, like the
one studied in this paper.

2 Formal Description of the Problem
Let G = (V,E) be an undirected graph without self-
connections.V = {vi} is the set of vertices andE is
the set ofne arcs. For each edge inE there is a weight
ci,j ∈ R+. All weights can be expressed by a symmetric
real matrixC, with ci,j = 0 when it does not exist an
arc with endpointsvi andvj .

The Maximum Cut Problem (MaxCut): consists
in finding a partition ofV into two subsetsA1 andA2,
such that

∑
vi∈A1,vj∈A2,i>j,m6=n ci,j is maximum.

Generalization of the MaxCut Problem (K-
MaxCut): It looks for a partition ofV into K disjoint
setsAi such that the sum of the weights of the edges
from E that have their endpoints in different elements
of the partition is maximum. So, the function to be max-
imized is ∑

vi∈Am,vj∈An,i>j

ci,j (1)

3 The Stochastic MREM model
Let us remember that the deterministic MREM neu-
ral model consists of a series of multivalued neurons,
where the state ofi-th neuron is characterized by its
outputsi, taking any value in a finite set, denoted by
M.

Network state is completely determined by a state
vector ~S = (s1, s2, . . . , sN ) ∈ MN , whereN is the
number of neurons in the net.

An energy function is associated to each state of the

net, and is defined in the following terms:

E(~S) = −1
2

N∑

i=1

N∑

j=1

wi,jf(si, sj) (2)

where W = (wi,j) is a N × N matrix represent-
ing the connection between the different neurons (wi,j

is the weight that neuronj makes on neuroni) and
f : M × M → R is a similarity function, that is,
f(si, sj) represents a measure of the similarity between
outputs of neuronsi andj.

The purpose of the deterministic net is to minimize
the energy function described before. To this end, a ran-
dom initial state~S0 is introduced into the net and at time
t, state vector~S(t) will be changed for another state
vector ~S(t + 1) (defined by the computational dynam-
ics) if E(~S(t + 1)) < E(~S(t)). If there is not any~S′ in
the neighbourhood of~S(t) such thatE(~S′) < E(~S(t)),
then ~S(t) is a local minimum (for the considered dy-
namics) and the net stops iterating.

The stochastic model sMREM has the same architec-
ture as the deterministic one. It is based in the same
energy function, given by Eq. (2), but the decreasing
of energy is not guaranteed. In fact, it depends on a se-
quence{Tn}, analogous to the temperature sequence in
Simulated Annealing [13].

This new model builds a sequence of state vectors
{S(n)

∗ }, where the super-index(n) shows that in this
state the ‘temperature’ of the net wasTn.

The dynamics consists in:

• S
(1)
1 is randomly generated.

• Given a state of the net,~S = ~S
(n)
m , another state

vector ~S′ is randomly sampled from a neighbour-
hoodN~S of ~S.

• The increment of energy corresponding to updat-
ing the net from~S to ~S′ is computed: ∆E =
E(~S′)− E(~S).

• Then, the net accepts the next state of the net
~S

(n)
m+1 = ~S′ with probability P(∆E), depending

on the value ofTn.

• If m + 1 = M , then define, for simplicity,~S(n)
∗ =

~S
(n)
M , increment the value ofn andm = 1. Other-

wise, increment the value ofm.

A pair of conditions must be satisfied in order to guar-
antee convergence to states of minimal energy:
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1. lim
n→∞P

(
E(~S(n)

m+1) > E(~S(n)
m )

)
= 0 for all m ∈

{1, . . . , M − 1}

2. The acceptation probability of~S′ as~S
(n)
m+1 is of the

form

P(∆E) =
{

1, if ∆E < 0
gn(∆E) < 1, if ∆E ≥ 0

where gn : R+ → [0, 1) and ∆E = E(~S′) −
E(~S(n)

m ). In addition, it must begn(∆E) > 0 for
all ∆E. Note that the definition ofgn depends on
the temperatureTn.

It can be proved that if{gn} converges uniformly to
0, then the second condition implies the first one.

Next we describe the theoretical basis of this model
that guarantees the convergence to states of minimal en-
ergy:

Theorem 1 With probability 1, there existsL ∈ R such
thatL = lim

n→∞E(~S(n)
∗ ).

We omit the proof of this theorem because of the lim-
itation on the length of the present paper.

Corollary 2 If ~̂S is an accumulation point of the se-
quence{~S(n)

∗ }, then, with probability 1, we have

E( ~̂S) = lim
n→∞E(~S(n)

∗ ).

We will accept without demonstration, due to the lim-
itation on the length of this paper, the following lemma:

Lemma 3 The next equality holds

lim
n→∞P

(
E(~S(n)

m ) ≥ E(~S(n)
∗ )

)
= 1 for all

m ∈ {1, . . . , M − 1}.
By making use of this lemma, we can prove the fol-

lowing theorem:

Theorem 4 Let ~S be a state vector withE(~S) < L,
where

L = lim
n→∞E(~S(n)

∗ )

Then, the probability of sampling~S is 0 for all n ≥
N .

Proof.
We know thatL = lim

n→∞E(~S(n)
∗ ) with probability 1 if,

and only if, for allε > 0 there existsn0 ∈ N such that

if n ≥ n0 then|E(~S(n)
∗ ) − L| < ε with probability 1,

that is,E(~S(n)
∗ ) ∈ (L− ε, L + ε) with probability 1.

Let us considerε = L−E(~S)
2 . Then,E(~S) < L− ε =

E(~S) + ε.
Let n ≥ n0.
Let us suppose that the probability of sampling the

vector~S is ρ > 0.
We can consider the setA = {E(~S(n+1)

∗ ) 6∈ (L −
ε, L + ε)} and compute a bound for its probability:

P(A) ≥ P(sampling~S) · P(accepting~S(n+1)
m = ~S)·

·P
(
E(~S(n+1)

m ) ≥ E(~S(n+1)
∗ )

)

The first of these 3 probabilities is equal toρ. The
third one has limit 1 asn tends to∞ (by the previous
lemma), so there existsn1 such that ifn ≥ n1 then
that probability is greater thanη > 0. The second one
is always positive, since we imposed the hypothesis of
gn(∆E) > 0 for all n. In particular, it is positive for all
n ≥ n1.

Let us takeN = max{n0, n1} and n ≥ N .
Then we arrive atP(A) ≥ ρηµ > 0, whereµ =
P(accepting~S(n+1)

m = ~S). Therefore, we have that

the probabilityP
(
E(~S(n+1)

∗ ) ∈ (L− ε, L + ε)
)

= 1−
P(A) < 1− ρηµ < 1, what contradicts thatE(~S(n)

∗ ) ∈
(L− ε, L + ε) with probability 1 for alln ≥ n0.

As conclusion, the probability of sampling the state
vector~S is 0. ¤

This result provides two important Corollaries deal-
ing with the optimality of the accumulation points of
{~S(n)

∗ } and the convergence of this sequence.

Proposition 5 Let ~̂S be an accumulation point of the

sequence{~S(n)
∗ }. Then,E( ~̂S) ≤ E(~S) for all ~S ∈ N

~̂S
.

So, ~̂S is a local minimum ofE.

Proof.
The proof is an immediate consequence of the previous
theorem. ¤

For the next result, we will need that{gn} converges
uniformly to 0, that is, we will need thatlim

n→∞ ||gn||∞ =

0 where||gn||∞ = sup
t∈R+

|gn(t)|.

Proposition 6 If local minima of E are
strict, {gn} converges to 0 uniformly, and
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~̂S is an accumulation point of {~S(n)
∗ }, then

lim
n→∞P

(
~S

(n+1)
∗ = ~̂S|~S(n)

∗ = ~̂S
)

= 1.

Proof.

Let us considern such that~S(n)
∗ = ~̂S (there exists an

infinite number ofn’s verifying that condition, sincê~S
is an accumulation point of the sequence{~S(n)

∗ }). Let

us compute the probability of{~S(n+1)
∗ 6= ~̂S}:

P(~S(n+1)
∗ 6= ~̂S) =

= P(sampling~S ∈ N
~̂S
) · P(accepting~S = ~S

(n+1)
2 )·

·P(no return to~̂S) ≤ P(accepting~S = ~S
(n+1)
2 )

The probability of accepting~S = ~S
(n+1)
2 starting

from ~̂S = ~S
(n+1)
1 is

P(∆E) = gn(∆E) ≤ ||gn||∞

whose limit is 0. Therefore,P(~S(n+1)
∗ 6= ~̂S|~S(n)

∗ = ~̂S)
tends to 0.

From this fact we can conclude that

lim
n→∞P

(
~S

(n+1)
∗ = ~̂S|~S(n)

∗ = ~̂S
)

=

= 1− lim
n→∞P

(
~S

(n+1)
∗ 6= ~̂S|~S(n)

∗ = ~̂S
)

= 1

and the proof is complete. ¤

So we have proved that the stochastic MREM model,
with the sampling-accepting scheme developed in this
section, is able to converge to a local minimum of the
energy functionE.

In addition, we have proved that this convergence is
not dependent on the rate of convergence of the tem-
perature sequence{Tn}, it only depends on the conver-
gence of||gn||∞ to 0.

4 Application of the Model to MaxCut Problem
In order to solve the MaxCut problem with this neural
net, we need as many neurons as number of nodesN
in the graph. Each neuron taking valuesi ∈ M =
{1, 2, . . . ,K} points to the subset of the partition where
thei-th node is assigned to.

The cost function of theK-MaxCut problem, given
by Eq. (1), must be identified with the energy func-
tion of Eq. (2). So, for MaxCut, it iswi,j = ci,j , and
f(x, y) = δx,y (Krönecker delta function), also valid for

K-MaxCut, since it is equivalent to maximize the cost
of the edges cut by the partition and to minimize the
cost of the edges whose endpoints lie within the same
group of the partition.

In this work, a simple dynamics, named best-2, has
been firstly implemented.

best-2: It consists in getting the greatest decrease of
the energy function just by changing the state of only
two neurons at each time. So, a set of neighboring states
must be defined. If neurons to be changed arep andq,
this set will be namedNp,q. Then, if ~S(t) is the state
of the net at timet, ~S(t + 1) will be the vector from a
Np,q that maximizes the decrease of energy,−∆E. In
the case of this problem, the neighbourhoodNp,q of ~S

include all possible states fromMN that differ from~S
only in the outputs of neuronsp andq (or both). So,
there will beK2 vectors inNp,q.

An expression for the decrease of energy is here given
in order to reduce the computational cost of the model.
Suppose that neuronsp andq are going to be changed,
and that we denotesi(t) = si andsi(t + 1) = s′i for
all i. Then, the decrease of energy is given byUp,q =
−∆E =

=
1
2

N∑

i=1

N∑

j=1

wi,j

(
f(si, sj)− f(s′i, s

′
j)

)

=
N∑

i=1

(∆i,p + ∆i,q)−∆p,q (3)

(provided the symmetry of functionf ), where∆i,j =

wi,j

(
f(si, sj)− f(s′i, s

′
j)

)
.

So, the dynamics best-2 can be summarized as fol-
lows:

1. A state for the net is initially randomly assigned.

2. Repeat until no change in state vector:

(a) The scheduling selects a valued ∈
{1, . . . , bN

2 c}. For d > bN
2 c, all of the

following computations are made twice, and
this way we can save some computational ef-
fort.

(b) The following can be made parallel: every
neuronp studies all possibilities of changing
neuronsp andq = (p + d) mod (N), with
0 < q ≤ N , i.e.,p computes the potential as-
sociated to the possible changes, it is stored
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as a vector~up whose components are the de-
crease of energy associated to any vector in
Np,q, by applying (3).

(c) Neuronp computes~α(p) = max ~up, associ-

ated to a state~̃Sp,q ∈ Np,q.

(d) The scheduling selects the next state of the

net, ~S(t + 1) = ~̃
Sp,q for which p =

arg max ~α.

Some experimental results for the dynamics herein
proposed are shown in the next section.

5 Experimental Results
In this section we will show the experimental results of
comparing both deterministic and stochastic versions of
the mutivalued model MREM.

A test set was formed by 280 random graphs depend-
ing on two parameters,N ∈ {50, 100, 150, 200} (the
cardinality of the set of vertices), and the second be-
ing ρ ∈ {0.05, 0.15, 0.25, 0.5, 0.75, 0.9} (the density
of edges in the graph, meaning thatne ≈ ρN(N−1)

2 ).
Weights for edges were integers randomly chosen in
[0, 10]. For this set to be complete, the values for the pa-
rameters were chosen to cover a wide range of graphs.

For each graph, 10 independent executions were per-
formed. MREM was used with the dynamics named
best-2, and sMREM used the stochastic version of best-
2, with

gn(∆E) = exp
(−|∆E|

Tn

)

(which converges uniformly to 0), the function of ac-
ceptation defined in a previous section. In this case,
we have only considered a finite number of tempera-
turesT1, . . . , Tna , decreasing lineally fromT1 = 1 to
Tna = 0.

Table 1 presents the results of these experiments.
Showing that in most cases (above 70%) the average re-
sult provided by sMREM is higher than that of MREM.
Its only drawback is the high consumption of time.

6 Conclusions
In this work we have presented the stochastic version of
a multivalued neural model called MREM, very useful
in many combinatorial optimization problems, with the
aim of helping MREM to avoid certain local minima of
the energy function.

We have proposed the theoretical bases of this new
model, based on results proving its convergence to min-
ima of the objective function.

In order to show the effectiveness of this stochastic
version, we have applied these two models to the Max-
Cut problem, very well known from the specialized lit-
erature and because of its applications, since MREM
has recently achieved the best results ever obtained by
a neural model. These experiments have shown that in
most cases sMREM outperforms MREM, but by using
more computational time. The reduction in the compu-
tational time used by sMREM is an issue to be studied
as a future research line.

References:
[1] Barahona, F., Grotschel, M., Junger, M., Reinelt,

G.: An application of combinatorial optimization
to statistical physics and circuit layout design. Op-
erat. Research36 (1988) 493 – 513

[2] Garey, M., Johnson, D.: Computers and
Intractability. A guide to the theory of NP-
Completeness. W. H. Freeman and Company
(1979)

[3] Alberti, A., Bertoni, A., Campadelli, P., Grossi,
G., Posenato, R.: A neural algorithm for max-2sat:
performance analysis and circuit implementation.
Neural Networks10 (1997) 555–560

[4] Bertoni, A., Campadelli, P., Grossi, G.: An ap-
proximation algorithm for the maximum cut prob-
lem and its experimental analysis. In: Algorithms
and Experiments. Volume 9. (1998) 137 – 143

[5] Takefuyi, Y., Wang, J.: Neural computing for op-
timization and combinatorics. Volume 3. World
Scientific (1996)
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Graph partitioning via recurrent multivalued neu-
ral networks. Lecture Notes in Computer Science
3512(2005) 1149 – 1156

[9] Mérida-Casermeiro, E., Galán-Maŕın, G., Mũnoz
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