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Abstract: - The aim of this paper is to present the stochastic version of the multivalued neural model MREM,
which has achieved very good results in many applications, as an optimization technique. The purpose of this
stochastic version is to avoid certain local minima of the objective function minimized by the network, that is, the
energy function. To this end, the description of the theoretical bases of this model, guaranteeing the convergence to
minima, is carried out rigorously. In order to show the efficiency of this new model, the model, in its two versions,
deterministic and stochastic, has been applied to the resolution of the well-known problem of graph partition,
MaxCut. Computational experiments show that in most cases the stochastic model achieves better results than the
deterministic one.
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1 Introduction The original problem, with all the variants, is known
In classical literature, the MaxCut problem is defmq@ be NP-complete [2], making their resolution compu-
as follows: Given an undirected weighted grah=tationally intractable, but in the case of planar graphs
(V. E), whereV = {v;} is the set ofV vertices and they belong taP, that is, there exists a solution in poly-
E is the set ofn. edges, and edge weights are giveibmial time. So, many algorithms have appeared to

by matrixC' = (c; j)i,j=1,...~ (Mmeaning that the weighttackle MaxCut in the general case.
or cost of the edge joining nodésandj is ¢; ; > 0), ) ] )
find amaximum cubf G, i.e., a partition o’ into two In 1997, Alberti et al. presented a Hopfield-like neu-

sets that maximizes the total cost of the edges with eﬁ?il-mOdel for MaxCut [3], but |t's performance is wprse
points in different sets. than the presented by Bertoni et al [4]. Takefuyi and
This problem arises in the resolution of many pracﬁ—'s collc?agugs [5],deve_loped a powerful neural model
cal or theoretical situations. Some examples inclué@med maximum an_d I prqved to perform better tha_n
pattern recognition, clustering, statistical physics a rgst of qlgprlthms in solving a wide range of combi-
the design of communication networks, VLSI circuit@atorlal optimization problems.
and circuit layout [1]. In the last few years, Gah-Maiin et al. [6] pro-
So, this problem is well-known in literature. Dugosed a new neural model named OCHOM which ob-
to its wide applicability, many variants of it have beetains much more efficient solutions than ‘maximum’.
formulated, placing restrictions on the original formuMoreover, it can be used for many problems and it
lation. also has the advantage of fast convergence to a valid
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solution without tuning any parameter. In order toet, and is defined in the following terms:
make OCHOM escape from local minima, Wang et al.

[7] have recently proposed a stochastic dynamics for 1
OCHOM, permitting temporary decreases of the objec- 2 Z Z wiif (5i, 5) )
tive function. ==t

Note that there exists very few bibliographic refewhere W = (w;;) is a N x N matrix represent-
ences forK -partitioning (most of the references is foing the connection between the different neurongs;(
cused in bipartition). is the weight that neurori makes on neuror) and

Recently, Merida et al. [8] presented a neural modgl : M x M — R is a similarity function, that is,
called MREM that has the ability ok -partitioning the f(s;, s;) represents a measure of the similarity between
graph, since it is a multivalued model. This model hamitputs of neuronsandj.
been very successful in other combinatorial optimiza-The purpose of the deterministic net is to minimize
tion problems, see for example [9, 10, 11, 12]. the energy function described before. To this end, a ran-

The aim of this work is to present the stochastic vetom initial stateSO is introduced into the net and at time
sion of this model MREM that helps to escape fro state vectorS(¢) will be changed for another state
certain local minima, improving so its efficiency WheMeCtorS(t + 1) (defined by the computational dynam-
dealing with problems presenting difficulties, like thigs) if £(S S(t+1)) < E(S( )). If there is not anys" in
one studied in this paper. the neighbourhood of (¢) such thatt(S") < E(S(t)),

then S(t) is a local minimum (for the considered dy-
namics) and the net stops iterating.
2 Formal Description of the Problem The stochastic model SMREM has the same architec-
Let G = (V. E) be an undirected graph without selftyre as the deterministic one. It is based in the same
connections.V = {v;} is the set of vertices anfl is energy function, given by Eq. (2), but the decreasing
the set ofn. arcs. For each edge ifi there is a weight of energy is not guaranteed. In fact, it depends on a se-
¢i,; € RT. Allweights can be expressed by a symmetrifyence{T,, }, analogous to the temperature sequence in
real matrixC', with ¢; ; = 0 when it does not exist angimulated Annealing [13].
arc with endpoints; andv;. This new model builds a sequence of state vectors

The Maximum Cut Problem (MaxCut): consists {5} where the super-indef) shows that in this
in finding a partition ofl” into two subsetsi; and Az, state the ‘temperature’ of the net was.
suchthad |, c 4, v cy,isjmzn Cij IS MaXimum. The dynamics consists in:

Generalization of the MaxCut Problem (K-

MaxCut): It looks for a partition of” into & disjoint  ® S\' is randomly generated.
setsA; such that the sum of the weights of the edges

. . L (n)
from E that have their endpoints in different elements ® Given a/state of the neff = , another state
of the partition is maximum. So, the function to be max-  Vector:S” is randomly sampled from a neighbour-
imized is hood Nz of S.
Z Cij (1) e The increment of _energy corresponding to updat-
V; €A, 0 €EAn,i>] ing the net fromS to S is computed: AE =

E(S") - E(S).
3 The Stochastic MREM model
Let us remember that the deterministic MREM neu-® Then, the net accepts the next state of the net
ral model consists of a series of multivalued neurons, S, = § with probability P(AE), depending
where the state of-th neuron is characterized by its ~ On the value of/;,.

outputs;, taking any value in a finite set, denoted by o If m -1 = M, then define, for simplicityﬁﬁ") _

M. ~(n) -
. ) S(M"), increment the value ot andm = 1. Other-
Network state is completely determined by a state 2~ .
= N _ wise, increment the value of.
vectorS = (s1,892,...,8y) € MY, whereN is the
number of neurons in the net. A pair of conditions must be satisfied in order to guar-

An energy function is associated to each state of tetee convergence to states of minimal energy:
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L lim P (B(S5]) > B(S5Y)) = 0forallm € if n > ny then|B(SI™) — L| < e with probability 1,

n—oo

,....M-1 thatis,E(S"™) € (L — ¢, L + ) with probability 1.
~(n) Let us consider = £= E(S) .Then,E(S) < L—¢ =
2. The acceptation probability oF assS,” 41 lisofthe E(§) te
form Letn > ng.
1, if AE <0 Let us suppose that the probability of sampling the
P(AFE) = . torS i 0.
gn(AE) 1, ifAE>0 vectorS'is p >

We can consider the set = {E(S "*1)) ¢ (L —
whereg,: Rt — [0,1) and AE = E(S') — ¢,L+¢)} and compute a bound for its probability:
E(S%). In addition, it must bey, (AE) > 0 for
all AE. Note that the definition of,, depends on
the temperaturé,,.

P(A) > P(samplingS) - P(acceptings" 1) = §).

P (BSE) = BEY))

It can be proved that ifg, } converges uniformly o g first of these 3 probabilities is equal o The
0, then the second condition implies the firstone.  hi-q one has limit 1 as tends toso (by the previous
Next we describe the theoretical basis of this moqgl,ma), so there exists, such that ifn > n; then

that guarantees the convergence to states of minimal gz probability is greater tham > 0. The second one

ergy. is always positive, since we imposed the hypothesis of
(AE) > 0for all n. In particular, it is positive for all
n>nj.

Let us take N = max{ng,n1} andn > N.

Then we arrive a ) > pnu > 0, wherey =
We omit the proof of this theorem because of the |Ir’@b acceptlngS (n41) §) Therefore, we have that
n+1

itation on the length of the present paper.
9 P pap )) (L—s,L—|—5)>:1—

Corollary 2 If 5 is an accumulation point of the seP(A) < 1 — pnu < 1, what contradicts thaE(gﬁn)) €

quence (S}, then, with probability 1, we have(L —¢, L+ ¢) with probability 1 for alln > n.

E(S) = hm E(S(n)) As cgpclusmn, the probability of sampling the state
vectorS'is 0. g

Theorem 1 With probability 1, there existé € R such In
thatZ = lim B(S™).

(A
the probabilityP ( B(S"

We will accept without demonstration, due to the lim-

itation on the length of this paper, the following lemma: This result provides two important Corollaries deal-

ing with the optimality of the accumulation points of

Lemma 3 The next equality hoIds{S*”)} and the convergence of this sequence.
im P(E(SP) = BGSM) = 1 for al B . -
me{l,...,M—1)}. Proposition 5 Let S be an accumulation point of the

sequencd 5™ Y. Then,E(S) < E(S) forall § € A,
By making use of this lemma, we can prove the fol- - s

lowing theorem: So,S is alocal minimum of.
5 : 3 Proof.
Theorem 4 Let S be a state vector witl/(S) < L, . . , ,
Where The proof is an immediate consequence of the previous
I — lim E(S(n)) theorem. O

n—oo

Then, the probability of sampling is O for all . > For the next result, we will need thég,, } converges
N. uniformly to 0, that is, we will need thatim ||g,||cc =

0 where||gn||oo = sup |gn(t)].
Proof. e

We know thatl, = lim E(5™) with probability 1 f, Proposition 6 If local minima of E are
and only if, for alle > O there existsyy € N such that strict, {g,} converges to 0 uniformly, and
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§ is an accumulation point of {S'}, then K-MaxCut, since it is equivalent to maximize the cost

lim P (§£n+1) _ §”§£n) _ 5) _ 1 of the edges cut by the partltlon anq to minimize the

n—o0 cost of the edges whose endpoints lie within the same
group of the partition.

In this work, a simple dynamics, named best-2, has

en firstly implemented.

infinite number ofn’s verifying that condition, sincé&  pest-2: It consists in getting the greatest decrease of

is an accumulation point of the sequer{éﬁ")}). Let the energy function just by changing the state of only

Proof.
Let us considen such thatS"™ = § (there exists an e

us compute the probability gf5\" ") £ §}: two neurons at each time. So, a set of neighboring states
must be defined. If neurons to be changedaamdq,
P(ginﬂ) ” §) _ this set will be nameadV,, ,. Then, if S(¢) is the state

of the net at time, S(¢ + 1) will be the vector from a
- P(sampnngg c /\/§) ) P(accepting§ — 55"“)). N, 4 that maximizes the decrease of energ\E. Irl
R the case of this problem, the neighbourhodgl, of .S
[P(no return toS) < P(acceptings = SV include all possible states from ™ that differ from S
only in the outputs of neurons andq (or both). So,
A there will be K2 vectors in\,, ,.
from S = ng Vis An expression for the decrease of energy is here given
in order to reduce the computational cost of the model.
P(AE) = gn(AE) < [|gnloc Suppose that neuropsandq are going to be changed,
o ~(n+1 5 s~ and that we denote;(t) = s; ands;(t + 1) = s/ for
whose limit is 0. ThereforéE’(Si +) # 5| *(‘ )= 5) all i. Then, the decr(e;se of energ; is gi\)/enLqu =

n+1)

The probability of accepting = S\ starting

tends to O. _AE —
From this fact we can conclude that
N ~ N N
Jim P (81770 = S5 = 5) = = 5wy () = Fsh.5))
i=1 j—1
=1 lim P(SZE"“) £ 5|5 :5*) —1 N
and the proof is complete. O =D (Aip+Aig) — Ay 3)

=1

So we have proved that the stochastic MREM modéprovided the symmetry of functiofi), whereA; ; =

with the sampling-accepting scheme developed in tt&'yzsd. (f(3i> s;) — f(sh, 5;,) ]

section, is able to converge to a local minimum of the g he dynamics best-2 can be summarized as fol-
energy functionk. lows:

In addition, we have proved that this convergence is
not dependent on the rate of convergence of the temt. A state for the net is initially randomly assigned.

perature sequendd, }, it only depends on the conver-
gence ofl|g,||oo to O. 2. Repeat until no change in state vector:

4 Aoplicati  the Model to MaxCut Probl (@) The scheduling selects a valué ¢
pplication of the Model to MaxCut Problem Ford > |X], all of the

N
In order to solve the MaxCut problem with this neural {1, 3 2]} ) 2 h

net, we need as many neurons as number of nodes following computations are made twice, and
in the graph. Each neuron taking valsg € M — this way we can save some computational ef-

{1,2,..., K} points to the subset of the partition where fort.

thei-th node is assigned to. (b) The following can be made parallel: every
The cost function of the{-MaxCut problem, given neuronp studies all possibilities of changing

by Eq. (1), must be identified with the energy func- neuronsg andg = (p + d) mod (N), with

tion of Eq. (2). So, for MaxCut, it isv; ; = ¢;;, and 0 < ¢ < N, i.e.,p computes the potential as-

f(x,y) = 02, (Kronecker delta function), also valid for sociated to the possible changes, it is stored
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as a vectoii, whose components are the de- In order to show the effectiveness of this stochastic
crease of energy associated to any vectorvarsion, we have applied these two models to the Max-
N, 4, by applying (3). Cut problem, very well known from the specialized lit-
(c) Neuronp computesi(p) = max i, associ- erature and because of its applications, since MREM
= has recently achieved the best results ever obtained by
ated to a stats g € Npq. a neural model. These experiments have shown that in
(d) The scheduling selects the next state of thgost cases SMREM outperforms MREM, but by using
net, S(t + 1) = S,, for which p = more computational time. The reduction in the compu-
arg max a. tational time used by SMREM is an issue to be studied

) ) as a future research line.
Some experimental results for the dynamics herein

proposed are shown in the next section.
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Table 1: Comparison results between MREM and sSsMREM for the 2-MaxCut problem.
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