
A Public-Key Cryptosystem Scheme on Conic Curves over the Ring Zn 
 

Zhigang Chen, Xinxia Song, Jifang Li 
Computer Science and Information Technology College  

Zhejiang Wanli University  
No.8 South Qian Hu Road Ningbo 

  CHINA  
 
 

Abstract: - A public key cryptosystem scheme is proposed that are based on conic curves over the ring Zn. Our 
scheme is motivated by KMOV scheme on elliptic curves, but our scheme remove some restrictive condition 
from KMOV scheme and constructed on conic curves. Its security bases on the difficulty of factoring a 
composite number n, just like RSA. It can resist some of the known attacks on RSA. We also constructed digital 
signature and a proxy signature on our scheme. Since encoding and decoding over conic are easily implement, it 
has enabled our scheme to greatly enhance efficiency. Also, our schemes can be used in the mobile payment 
system with the limited bandwidth. 
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1   Introduction 
Since the discovery of public-key cryptography by 
Diffie and Hellman [1], several attempts have been 
made to find practical public key systems depending 
on the difficulty of solving some problems. There are 
three main families of public key cryptosystems 
based on computational number theory [2]. The first 
family includes RSA and related variants 
(Rabin-Williams, LUC, Dickson, elliptic curve 
embodiments of RSA-like KMOV). The second 
family is based on Diffie-Hellman-type schemes 
(ElGamal and variants, Cramer-Shoup) which exploit 
properties of exponentiation over finite cyclic groups. 
Finally, the third family is based on high degree 
residuosity classes (Goldwasser-Micali, Benaloh, 
Naccache-Stern, Okamoto-Uchiyama and variants). 
     In this paper, we propose a public key scheme 
belonging to this first family. Our scheme based on 
conic curves over ring Zn. In 1998, after Zhang 
designed a conic group in literature [4], Cao 
creatively presented the concept of conic curve 
cryptography in [3]. Later Cao proposed a conic 
analog of RSA cryptosystem and some improved 
RSA cryptosystems in [5]. A important conclusion 
about cryptosystem based on conic curves in [6] is 
that the efficiency and the security of the public key 
cryptosystem based on the DLP in conic curve 
groups are not stronger than those based on the DLP 
in finite fields. But an exciting characteristic of conic 
is both encoding and decoding over conic are easily 
implemented. As an alternative algebra curve 
technology, we believe conic deserves the further 
study in cryptography. 

     In this paper, we propose a public key 
cryptosystem scheme on conic curves over the ring 
Zn. Our scheme is motivated by KMOV scheme [8], 
but it remove some restrictive condition from KMOV 
scheme and constructed on conic curves. Its security 
bases on the difficulty of factoring a composite 
number n, just like RSA. It can resist some of the 
known attacks on RSA. We constructed digital 
signature and a proxy signature on our scheme. 

The remainder of the paper is organized as 
follows. Section 2 gives a short introduction to conic 
curves over a finite field. In section 3, we show some 
properties of conic curves over a ring, which are used 
in the succeeding sections. Section 4 proposes a 
public key cryptosystem scheme on conic curves 
over the ring Zn. Section 5 describes the signature 
scheme. Section 6 discusses the security of the 
proposed scheme, and Section 7 describes a proxy 
signature scheme.  
 
 
2  Conic Curves over a Finite Field  
Let p be an odd prime and pF  be a finite field of p 

elements. Let *
pF  be tile multiplication group of pF .                    

Then, without loss of generality, we can assume 
{0,1, , 1}p p= −LF , 
* \ {0}p p=F F . 

Let us further consider the conic over an affine 
plane 2( )pA F  , 

2 2 *( ) : , ,p pC y ax bx a b= − ∈F F   (1) 
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Obviously, when 0x = , we have the origin ο (0, 
0). If 0x ≠ , let 1t yx−=  and fill y xt=  in the 
equation (1). Then, we get 

2 *( ) , , px a t b a b− = ∈F .  (2) 

If 2a t= , the equation (2) doesn’t hold; If 2a t≠ , 
from the equation (2), we will have 

2 1

2 1

( )
( )

x b a t
y bt a t

−

−

= −

= −
   (3) 

where *, pa b∈F  and ( )-1 denotes the multiplication 

inverse in *
pF . 

For any pt∈F and 2t a≠ , let ( )P t  be the point 

( , )x y  over ( )pC F  established by the equation (3). 
Moreover, an ideally defined point ο , namely the 
point at infinity ( )P ∞ , is also recognized as a point 
over ( )pC F . 

Let 
2{ ; } { }pH t t a= ∈ ≠ ∪ ∞F  

then, : ( )pP H C→ F  is a one-to-one map. 
According to [4], let us define the addition ⊕ of 

elements in ( )pC F . 

( ) ( )pP t C∀ ∈ F  and t H∈ ,such that 
( ) ( ) ( ) ( )P t P P P t⊕ ∞ = ∞ ⊕   (4) 

Assume 1( )P t , 2( )P t ∈ ( )pC F ,where 

1t , 2t ∈ H  and 1t , 2t ≠ ∞ ,such that  

1 2 3( ) ( ) ( )P t P t P t⊕ =  (5) 
where  

1
1 2 1 2 1 2

3
1 2

( )( ) , 0,
, 0.

t t a t t t t
t

t t

−⎧ + + + ≠
⎨
∞ + =⎩

 

Obviously, 3t H∈ , and operation ⊕  is 
commutative. 

Any ( ) ( )pP t C∈ F , negative element 
( ) ( ),
( ) ( ).

P P
P t P t

− ∞ = ∞
− = −

  (6) 

And then, from (4) ~ (6), we can easily prove 
∀ 1( )P t , 2( )P t , 3( )P t ∈ ( )pC F , 

1 2 3 1 2 3( ( ) ( )) ( ) ( ) ( ( ) ( ))P t P t P t P t P t P t⊕ ⊕ = ⊕ ⊕   (7) 
Therefore, ( ( ), , ( ))pC P⊕ ∞F  is a finite abelian 

group. And ( )pC F  can be defined as, 

1,( ) 1,
( )

1,( ) 1.
p

ap
p

C
ap
p

⎧ − =⎪⎪= ⎨
⎪ + = −
⎪⎩

F  

where (
a
p

) is Legendre Symbol. 

An exciting characteristic of conic is both 
encoding and decoding over conic are easily 
implemented. Denote H\{∞ } as H*, and assume a 
message m ∈H*, let's demonstrate how to code it. 

Encoding:  
( ) ( , )m mP m X Y= , 

2 1

2 1

( ) (mod )

( ) (mod )
m

m

X b a m n

Y bm a m n

−

−

⎧ = −⎪
⎨

= −⎪⎩
 

Decoding: 
1(mod )m mm Y X p−= ⋅  

 
 

3   Conic Curves over the ring Zn  
We now consider conic curves over the ring  Zn, 
where n is an odd composite squarefree integer.     

Similar to the definition of ( , )pC a b , an conic 

curve  ( , )nC a b  can be defined as the set of pairs 

( , )x y ∈ 2
nZ  satisfying 2y 2ax bx≡ −  (mod n).          

Obviously, (0,0)ο ∈ ( , )nC a b . Accord to [7]，
all the points of ( , )nC a b can be obtained by 

( , ) ( , )p qC a b C a b× , hence the order of ( , )nC a b  

can be obtained by the use of  ( , )pC a b  and 

( , )qC a b . We have： 

Proposition 1: If ( ) 1a
p

= − , ( , )nC a b  = ( 1)p +  

( 1)q + . 
The proof we refer to [7]. 
By the map φ in [7], the add operation is defined 

by using  of the add operation of conic curve on finite 

field  pF , i.e. ( , )nC a b φ ( , )pC a b ×  ( , )qC a b , for 

any two points  P ,Q∈ ( , )nC a b ，  
P Q⊕ = 1( , )p p q qP Q P Qφ− ⊕ ⊕ .  (8) 

( ( , ), )nC a b ⊕ constructs a finite Abel group in [7], 
where⊕  is defined as equation (8).  
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Theorem 1：Let A∈ ( , )nC a b ，the order of A is 
the minimal positive integral k such that  kA=0，and 
denote ( )A kο = . , ,nA x y C a b∀ = ∈（ ） （ ）,there is a 
unique point A in ( , ) ( , )p qC a b C a b× response to 

the point ( , )p qA A and the order of A 
Aο =（ ）  ( ( ), ( ))p qlcm A Aο ο . 

Corollary: let p, q two distinctness large prime 

and n＝pq，such that (
a
p

)=(
a
q

)＝-1，and 1p + ＝

2 r , 1q + =2 s , where both r  and s are prime，then 
there exist one  point G  in the curve ( , )nC a b ，

which order 2nN rs= . 
The above proof can be found in [7].  
Theorem 2: Let conic curve ( , )nC a b , where 

n = pq ( , :p q prime). Let nN = (lcm p#C (a,b),                        

q#C (a,b)) ，then for any P ∈ ( , )nC a b and any 

integer k , we have： 
( k · nN 1+ ) · P ≡ P (mod )n . 

Proof: By the above Theorem, for any P ∈

( , )nC a b , there exist  a unique point corresponding 
( , )p qP P in ( , ) ( , )p qC a b C a b× , 

and ( )Pο = ( ( )plcm Pο , ( ))qPο  ，clear ( ) | nP Nο , 

so we have shown the above identity。 
 
 
4  A Public Key Cryptosystem Scheme 
on Conic Curves over the Ring Zn 
In this section, we propose a public key cryptosystem 
scheme on conic curves over the ring Zn. Let a, b∈ 
Zn be two parameters. The conic curves equation, 
denoted by 2y 2ax bx≡ − (mod n ), satisfy the 
following condition:  
(1) ( , ) ( , ) 1a n b n= =  
(2) n pq= , where p  and q  are two large different 
primes. 
(3)( a

p )=( a
q )=-1. 

Key Generation: User U chooses large primes 
p and q . U computes the product n pq= , and nN
＝ p q(# C (a,b),# C (a,b)) ( 1, 1)lcm lcm p q= + +  . U 

chooses an integer e which is coprime to nN , and 
computes an integer d such that 

1ed ≡  (mod nN ). 

U ’s secret key is d  and 
( p , q , p#C (a,b) , q#C (a,b) , nN ).U ’s public key is 
( ,n e ). 

Encryption: A plaintext M =( xm , ym ) is an 

integer pair, where xm ∈Zn, ym ∈Zn. Let M =( xm , 

ym ) be a point on the conic curve ( , )nC a b . Sender 
A encrypts the point M by encryption function E(•) 
with the receiver’s public key e  and n as 

C ＝E( M )= e· M , 
and sends a ciphertext pair C =( xC , yC ) to a 
receiver B. 

Decryption: Receiver B decrypts a point C by 
decryption function D(•) with his secret key d and 
public key n as 

M =D( C )= d •C . 
Because d ⋅ C = d ⋅ e ⋅ M =( k ⋅ nN 1+ ) ⋅ M =

M . 
An addition operation on the points of an conic 

curve over the ring Zn can be defined that makes it 
into an abelian group. Compared with KMOV 
scheme on elliptic curves, our scheme is not need 
special conic curves over the ring Zn  to construct 
public key cryptosystem. This has enabled our 
scheme to have a more extensive application. In 
addition, some operations on the conic curves will be 
relatively easy, it has enabled our scheme to greatly 
enhance efficiency. 
 
 
5  A Signature Scheme 
The conic curves equation and parameters are 
described above. Before signing a message m , a 
hashing function HASH() should be applied. 
HASH( m ) embedded on ( , )nC a b  is a point M .      

Alice release as public parameters n , a , b and 
e .Then she computes the point Q =( s , t ) on 

( , )nC a b  according to 
Q =( s , t )＝d · M . 

The signature for the message m is the pair 
( s , t ) , which can be checked by computing 

M e Q= ⋅  

on ( , )nC a b and extracting the message m from 
M (because ( )ed M⋅ = M ). 
 
 
6    Security 
The security of our scheme over conic curves is based 
on the difficulty of factoring n . In this section, we 
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discuss the security of these schemes from various 
viewpoints. 

The original RSA schemes can be broken if one 
can determine order of the multiplicative groups. It is 
known that finding ( ) ( 1)( 1)n p qφ = − − is 
computationally equivalent to factoring n . In our 
proposed schemes, a similar relationship holds. 

Theorem 3: Let nN  be ( 1, 1)lcm p q+ + . 
Finding nN  is computationally equivalent to 
factoring the composite number n . 

The security of the original RSA scheme is also 
based on the difficulty of finding the secret multiplier 
key d . We have the following relationship. 

Theorem 4: Solving a secret key d from public 
keys e and n is computationally equivalent to 
factoring a composite number n . 

The encryption-decryption functions E(•) and D(•) 
for our scheme are homomorphic for addition as 
E( 1M + 2M ) = E( 1M ) + E( 2M ) and D 1 2( )M M+ = 
D 1( )M +D 2( )M , for any points 1M and 2M  on the 
same conic curve. The probability that randomly 
chosen integer pairs 1M and 2M are on the same 
conic curve is as negligibly small. Thus, passive 
attacks using homomorphism seem to be ineffective 
against our scheme. 

Consider an active attack(a chosen-plaintext 
attack) using homomorphism. Suppose an attacker A 
wants to make a victim B sign a plaintext M =( xm , 

ym ) without B’s consent. A generates another 

message 'M with B’s public keys ( , )B Be n and 
random integer r , 

'M = M + ( )Be r M⋅ ⋅ , 
and sends 'M  to B. B makes a signature 'S  for 'M  
with his secret key Bd : 

'S = 'Bd M⋅ = ( ( ))B Bd M e r M⋅ + ⋅ ⋅ . 
Then, A computes a signature S for M from 'S  by  

S = 'S r M− ⋅ . 
Using this technique, A can forge B’s signatures 

without B’s secret key. To counter this attack, a 
randomization of a plaintext with a hashing function 
should be applied.  

Isomorphism Attacks are same as 
homomorphism attacks. 

 
 

7   A Proxy Signature Scheme 
The concept of the proxy signatures was introduced 
by Mambo et al.[9]. As the proxy signatures in areas 
such as e-commerce and e-money has a good 

application prospects, it has triggered extensive 
research. Based on the above public key 
cryptography, we propose a Proxy Signature 
Scheme. 

The conic curves equation and parameters are 
described above. It is assumed that a signer Alice 
asks a proxy signer Bob to carry out signing for her. 
( , )A An e is the public key of original signer Alice, 
and her corresponding private key is ( , )

AA nd N , 

where 
AnN =

A Ap q(# C (a,b), # C (a,b))lcm .  ( , )B Bn e   
is the public key of original signer Bob, and his 
corresponding private key is ( , )

BB nd N , where 

BnN = 
B Bp q(#C (a,b),#C (a,b))lcm . pe is a proxy 

public key.  
Apd is a proxy private key of Alice, and 

Apd is a proxy private key of Bob. Furthermore, a 
universal secure hash  function h(•) should be 
published. The details are as follows.  

 
 

7.1 System Initialization Phase 
Alice carries out the steps in below: (1) First make a 
warrant mω , which records the delegation policy 
including limits of authority, valid periods of 
delegation etc. (2) Select a random number pe ∈

(1,…, 
AnN ), and compute 

Apd , where gcd( , )
Ap ne N

＝1, 
Ap pe d ≡ 1(mod 

AnN ). (3) Calculate AP  and α , 

where ( ( )) ( , )A A AP P h m x yω= = , 
AA P AP d dα = ⋅ ⋅  

(4) Send ( , , ,A pm P eω α ) to Bob. 
 
 
7.2 Proxy Generation Phase 
Bob first checks whether pe <

BnN or 

gcd( , ) 1
Bp ne N = . If it does not, he rejects those and 

stop. 
Bob checks the equation A p AP e eα= ⋅ ⋅ and 

1 ( )A Ay x h mω
− ≡ (mod An ). If it does not, Bob stop. 

Otherwise he compute 
Bpd , where  

Bp pe d ≡ 1(mod 

BnN ). 
 
 
7.3 Signature Generation Phase  
To sign a message m on behalf of Alice, Bob 
computes 

( ( )) ( , )B B BP P h m x y= =  
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BB P BP d dβ = ⋅ ⋅  

Then (α , β , mω , pe , An , AP , BP , Ae , Bn , Be ) is a 
proxy signature of message m . 
 
 
7.4   Verification Phase 
Anyone can check whether ( α , β , mω , 

pe , An , AP , BP , Ae , Bn , Be ) is a valid proxy signature 
of message m by the follwing equation: 

AP ＝α ⋅ pe ⋅ Ae , 
1 ( )A Ay x h mω
− ≡ (mod An ), 

BP = β ⋅ pe ⋅ Be , 
1 ( )B By x h m− ≡ (mod Bn ). 

If it holds, the signature will be accepted, otherwise 
rejected. 
 
 
7.5   Security Discussion 
We briefly discuss security of the proxy signature 
scheme we propose. 

Unforgeability: Since β contains Bob’s private 
key and proxy secret key, Only Bob can compute β  
to generate a valid proxy signature. 

Veriflablity: Sinceα contains Alice’s private key 
and proxy secret key, Bob can not compute α . 
Alice’s agreement on m is also verified explicitly, 
because Alice’s agreement has included in the proxy 
signature. 

Identifiablity: From the verification equations (8), 
proxy signer Bob's public key information has been 
explicitly included in a valid proxy signature. 
Therefore, anyone can determine the identity of the 
corresponding proxy signer Bob. 
Prevention of misuse: Due to using the proxy warrant, 
the proxy signer Bob can only sign messages that 
have been authorized by the original signer Alice. 
 
 
8   Conclusion 
In this paper, we first propose a public key 
cryptosystem scheme on conic curves over the ring 
Zn, then propose a signature scheme and a proxy 
signature based on conic curves. Our scheme is 
motivated by KMOV scheme, but it remove some 
restrictive condition from KMOV scheme, its 
security bases on the difficulty of factoring a 
composite number n, just like RSA. It can resist some 
of the known attacks on RSA. Since an exciting 
characteristic of conic is both encoding and decoding 
over conic are easily implemented, it can be used in 

the mobile payment system with the limited 
bandwidth. As an alternative algebra curve 
technology, we believe conic deserves the further 
study in cryptography. 
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