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Abstract: - A simple yet efficient algorithm was presented by Jan and Huang recently to distribute loads evenly
on multiprocessor computers with hypercube interconnection networks. That algorithm was developed based on
the well-known dimension exchange method. However, the error accumulation suffered by other algorithms
based on the dimension exchange method is avoided by exploiting the notion of regular distributions, which are
commonly deployed for data distributions in parallel programming. The cube-connected cycles (CCC) proposed
by Preparata and Vuillemin are very similar in structure to the hypercube as an efficient general-purpose parallel
system for its fixed-degree, and compact and regular layout. In this article, we propose a simple algorithm based
on our previous work to distribute loads evenly on cube-connected cycles. This algorithm achieves perfect load
balance over P processors with error of 1 and the worst-case time complexity of 2( log )M P , where M is the
maximum load assigned to each processor initially. More importantly, it could achieve perfect load balance over
subcubes as well -- .if the cube is decomposed into two subcubes by bit 0, then the difference between the
numbers of the total tasks in the subcubes is at most 1.

Key-Words: - multiprocessor, hypercube, interconnection network, cube-connected cycles, load
balancing, parallel programming

1 Introduction
Distributing tasks evenly on processors is essential for
multiprocessor computers, since load imbalance leads to
low utilization of some processors. Load balancing on
hypercubes has been studied extensively [1, 2, 6-10,
12, 14, 16]. The problem is often called the token
distribution problem [1].

Most load balancing algorithms for hypercube and
cube-connected cycles multiprocessor computers are
developed based on the dimension exchange method
[15]. The main advantage of this approach is that
every processor can redistribute tasks to its
neighboring processors without the information of
global distributions of tasks. However, it can not
always reach the perfect load balancing. Specifically,
if error is defined as the difference between the
maximum number of tasks at any processors and the
minimum number of tasks at any processors, then on
P processors tokens, will be balanced with error

2log P in the worst case. In order to balance
loads evenly on multiprocessor systems, the
information of global load distributions must
somehow be available to processors. Techniques
have been proposed to gather the global load
distributions to achieve the perfect load balancing.

However, preprocessing must be applied before tasks
are redistributed based on the information [1].

Recently, we proposed an efficient algorithm to
distribute loads evenly on multiprocessor computers
with hypercube interconnection networks [8]. That
algorithm was developed based upon the well-known
dimension exchange method. However, the error
accumulation suffered by other algorithms based on
the dimension exchange method is avoided by
exploiting the notion of regular distributions, which
are commonly deployed for data distributions in
parallel programming. That algorithm achieves
perfect load balance over P processors with error of 1
and the worst-case time complexity of 2( log )M P ,
where M is the maximum load assigned to each
processor initially. Furthermore, perfect load balance
is achieved over subcubes as well - once a cube is
balanced, if the cube is decomposed into two
subcubes by the lowest bit of node addresses, then the
difference between the numbers of the total tasks of
these subcubes is at most 1.

This article proposes a simple algorithm based on
our previous work to distribute loads evenly on
cube-connected cycles. The features of this algorithm
are twofold:
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 It does not require preprocessing to gather the
global load distributions in order to achieve the
prefect load balancing.

 The algorithm achieves perfect load balance over
P processors with error of 1 and the worst-case
time complexity of 2( log )M P , where M is the
maximum load assigned to each processor
initially. In addition, perfect load balance is
achieved over subcubes as well. Let 0

1nC  and
1

1nC  be the ( 1)n -dimensional subcubes of an
n-dimensional cube-connected cycles, nC , i.e. the
lowest bit of the node’s hypercube address of
every node is 0 in 0

1nC  , and 1 in 1
1nC  . Once nH

is balanced, the difference of the numbers of total
tasks on 0

1nC  and 1
1nC  is at most 1. In addition,

the same feature of perfect load balancing among
subcubes holds for 0

1nC  and 1
1nC  as well.

The rest of this article will be organized as
follows. Related work will be presented in Section 2.
Section 3 briefly presents the definition of cube-
connected cycles and some background information
for the load balancing algorithm. Section 4 will
outline the algorithm that balances the tasks on the
cube-connected cycles, and the time complexity of
the algorithm will be analyzed in Section 5. Section 6
concludes this article.

2 Related Work
Ranka et al. and Cybenko introduced the dimension
exchange method for load balancing on hypercube [3,
14]. It is a simple but usually heuristic and has been
adapted by many researchers to perform parallel load
balancing. However, its worst-case error is n on an
n-dimensional hypercube. Plaxton developed a
couple of load balancing algorithms based on the
similar approach, and hence the error would be n as
well [10]. Recently, Rim et al. adapted the dimension
exchange method to distribute quantized loads with
 2log P  [15].

Raghavendra et al. proposed a distributed load
balancing algorithm DBALANCE the concentration
operation [12]. It is required that the set of
overloaded processors oS and the set of under-
loaded processors uS are known before DBALANCE

can be performed to distribute tasks evenly.
Furthermore, the total number of tasks N must be
multiple of the number of processors P, i.e.

oS  uS where oS and uS denote the numbers of
overloaded and underloaded processors, respectively.

Chlebus et al. improved the load balancing
algorithms developed by Plaxton to avoid the error

accumulation over dimensions [2, 10]. Similar to the
algorithm presented in this paper, the worse-case
performance of the algorithm is bounded by

2( log )M P . However, Chlebus’s algorithm must
perform preprocessing to globally determine where
loose tasks should be placed before tasks are
redistributed by dimension exchanging.

Jan and Hwang recently presented a simple yet
efficient algorithm to distribute loads evenly on
multiprocessor computers with hypercube inter-
connection networks [8]. That algorithm does not
require preprocessing to gather global information of
task distributions. Exploiting the regular distributions
in parallel programming languages provides a
convenient way to represent global task distributions.
Besides, perfect load balancing is achieved not only
on processors of the hypercube but also on subcubes.

3 Definitions and Background
3.1 Hypercubes
An n-dimension hypercube nH consists of P 2n

processors. Each processor (0 )mp m P  is
identified by an n-bit binary address with the form of
m  0 1 1... ...i nd d d d  , where id 0 1(0 )i n and 0d
is the most significant bit (MSB). Processor

0 1 1... ...i nd d d dP


is connected to each processor in the set of

processors  
0 1 1... ...

0
i nd d d d

P i n


 , where id denotes

the complement of bit id . As a result, processor

0 1 1... ...i nd d d dP


is connected to processor
0 1 1... ...i nd d d d

P


at

dimension i.

3.2 Cube-Connected Cycles
In general, an n-dimensional cube-connected cycles,
denoted by CCC ( , 2 )nn , is constructed from an
n-dimensional hypercube by replacing each node of
the hypercube with a cycle of n node in the CCC
( , 2 )nn interconnection network [11]. A CCC

( , 2 )nn system is an interconnection network of
computers in which processors are located at the
nodes and communication channels between
processors are the links. Every processor is a RAM
(random access machine) with some local memory
and can perform any of the basic operations such as
addition, subtraction, etc., in one unit of time. Two
nodes ,i jp and ,i jp are linked using an edge in the

CCC ( , 2 )nn interconnection network if and only if
either: (1) i i and j j  1 mod n or (2) j j
and i differs from iin precisely the jth bit. Edges of
the first type are called cycle edges, while edges of
the second type are referred to as hypercube edges.
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For convenience, let iCL denote the ith cycle and

,i jp represent the jth processor in the ith cycles,

where 0 2 1ni  and 0 1j n   . Let
,ji j

p

represent the processor whose hypercube address i is
different from that of ,i jp in the jth bit. Based on this

notation, processor ,i jp is adjacent to
,ji j

p , , 1i jp  ,

and , 1i jp  . An example of the CCC 3(3, 2 ) inter-

connection network is shown in figure 1.
It is quite apparent from its construction that the

cube-connected cycles is very similar in structure to
the hypercube. In particular, any step of the P-node
hypercube can be simulated in logP P-node cube-
connected cycles by using each log P cycle of the
cube-connected cycles to simulate the action of the
corresponding node of the hypercube [7].

3.3 Token Distribution Problem
The problem of distributing tasks evenly over
multiprocessors is often called the token distribution
problem if the following assumptions are taken
 there are no dependences between tasks. (i.e.

tokens)
 each task takes a unit-time to execute.

Therefore, perfect load balancing is achieved
when the error is at most 1 (i.e. 1 ). In other words,

each processor will have either N P  or N P  
tasks, where N is the total number of tasks and P is
the number of processors.

3.4 Perfect Load Balance
A perfect load balance means the tasks on the
cube-connected cycles are distributed evenly on
subcubes of all levels with error 1 . Specifically,

let 0
1nC  and 1

1nC  be the (n-1)-dimensional sub-
cubes of an n-dimensional cube-connected cycles,

nC , i.e. the lowest bit of the node hypercube address

of every node is 0 in 0
1nC  , and 1 in 1

1nC  . Once nC is

balanced, the difference between the total numbers of
tasks on 0

1nC  and 1
1nC  is at most 1. In addition, the

same load balancing feature among subcubes holds
for 0

1nC  and 1
1nC  as well. In other words, if 00

2nC  and
10

2nC  are the subcubes of 0
1nC  , and 01

2nC  and 11
2nC  are

the subcubes of 1
1nC  , then the numbers of total tasks

on these four (n-2)-dimensional subcubes will be
balanced with an error of at most 1 as well.
Furthermore, the process can be iterated up to
1-dimensional subcubes and the same property will
hold for all dimensions.

Consider the 3-dimensional cube-connected
cycles, CCC 3(3, 2 ) or 3C in short, shown in Figure 2.
The number beside each cycle denotes the total
number of tasks on each cycle. When 3C is divided

into two subcubes, i.e. 0
2C {000,010,100,110} and

1
2C {001,011,101,111} , the numbers of total tasks

on 0
2C and 1

2C are 10 and 9 and hence the difference
is 1. In addition, both 2-dimensional subcubes can be
partitioned into 1-dimensional subcubes, i.e. 00

1C 

{000,100} , 10
1C {010,110} , 01

1C {001,101} , and
11
1C {011,111} . The total numbers of tasks on these

1-dimensional subcubes are 5, 5, 5, and 4, and the
error is still 1. Furthermore, each of the 1-
dimensional subcubes can be split into 0-dimensional
subcubes, and hence there are total 8 subcubes -

000
0C  {000} , 100

0C  {100} , 010
0C  {010} ,

110
0C  {110} , 001

0C  {001} , 101
0C  {101} ,

110
0C {110} , and 111

0C {111} . Since the subcubes
of all dimensions are balanced with the error of at
most 1, the cube-connected cycles CCC 3(3, 2 ) has
reached a perfect load balance.

3.5 Dimension Exchange Method on
Hypercubes

This method goes through all dimensions, from
dimension 0 to n-1, and balances loads by redis-
tributing the tasks across the links of each dimension.

For 0i  to 1n  do

Figure 1: A 3-dimensional cube-connected cycles
CCC 3(3, 2 ) interconnection network.
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Figure 2: A 3-dimensional cube-connected cycles.
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Balance the hypercube across dimension i
End do

Before load balancing is performed, each proces-
sor of the hypercube can be viewed as a 0-
dimensional subcube 0H with balanced load (i.e.
tasks are distributed evenly over processors in the
subcube since there is only one processor). Once
iteration 0 is executed, each pair of 0-dimensional
subcubes 0

0H and 1
0H that are connected by a link of

dimension 0 will be combined into a 1-dimensional
subcube 1H . Furthermore, the tasks of 0

0H and 1
0H

will be redistributed through the link, and as a result
1H is balanced. The same process will go on until

load balancing is performed on all dimensions to
form an n-dimensional hypercube with balanced
load.

To balance 1-dimensional subcubes 1H by redis-

tributing tasks of 0-dimensional subcubes 0
0H and

1
0H , results in balanced 1-dimensional subcubes with

error 1 . In other words, if 0
0H and 1

0H have x
and y tasks respectively, after redistribution, one of

0
0H and 1

0H will have ( ) 2x y  tasks, and the

other will have ( ) 2x y  tasks. If x y is odd,
the one of the two subcubes has one more task than
the other. This extra task is usually called the loose
task [2], and it can be placed at either of two subcubes
and load balancing is still preserved.

The error will accumulate as a sequence of load
balancing operations are performed through all
dimensions, as redistributing tasks through every
dimension might generate loose tasks. Specifically,
after redistributing tasks across links of n dimensions,
the hypercube will be balanced with an error n .

3.6 Regular Distributions
In order to perform load balancing on hypercube
multiprocessors using the dimension exchange
method without accumulating errors across
dimensions, our previous paper exploits the notion of
regular distributions, which are commonly used to
specify the data distributions of arrays in parallel
programming languages such as Fortran D [4] and
HPF [5].

Definition 1 Regular Distributions
Let mn be the number of array elements on processor

(0 )mp m P  . A distribution of N elements over P
processors is called a regular distribution if

 if m < %

otherwisem

PN N P
n

N P

  
  

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11] A[12] A[13] A[14]

0P 1P 2P 3P

(a) Block Distribution

A[1] A[5] A[9] A[13] A[2] A[6] A[10] A[14] A[3] A[7] A[11] A[4] A[8] A[12]

0P 1P 2P 3P

(b) Cyclic Distribution
Figure 3: Regular distributions over 4 processors

where % is the modulo function.
There are two regular data distributions that are

commonly used by the parallel programming com-
munity, namely block distributions and cyclic distri
-butions [12, 14]. A block distribution divides array
elements into contiguous chunks of size N P and
assigns one block to each processor, whereas a cyclic
distribution specifies a round-robin division of the
array elements and assigns every Pth element to the
same processor. Figures 3(a) and (b) depict the layout
of 14 elements of array A on 4 processors in a block
distribution and a cyclic distribution, respectively.

The most significant feature of regular distri-
butions that is exploited is that the number of tasks on
every processor of a subcube can be obtained
analytically, if the tasks are distributed over
processors in the same way as array elements are
partitioned in regular distributions. In other words,
each processor can easily determine the numbers of
tasks on all other processors according to Definition
1. Furthermore, the total number of tasks N and the
number of processors in the subcube are the only
pieces of information that every processor needs to
know in order to determine how tasks are distributed
over all processors.

Enforcing that tasks are partitioned over
processors in regular distributions in every subcube
can greatly simplify the problem of load balancing.
Suppose the total numbers of tasks on k-dimensional
subcubes 0

kH and 1
kH are 0

kN and 1
kN , respectively.

The addresses of nodes on 0
kH and 1

kH have the
forms

1 1... 0 ...
k

k nxxx x d d 



and

1 1... 1 ...
k

k nxxx x d d 



The local addresses of processors in subcubes 0
kH or

1
kH are determined by ...

k

xxx x


part of node addresses.

When tasks of 0
kH and 1

kH are balanced over the
edges of dimension k, the only piece of information
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that 0
kH and 1

kH need to exchange before moving
the tasks is the number of total tasks in its own
subcube, i.e. 0

kN and 1
kN , respectively. Every node

in 0
kH can then easily determine how the tasks are

distributed in 1
kH based on the information 1

kN : the

first 1( %2 )k
kN processors in 1

kH have 1 2k
kN  

tasks each, and the remaining processors have
1 2k
kN  tasks each. Similarity, every node in 1

kH

knows exactly how the tasks are distributed in 0
kH .

Therefore, every node in 0
kH can use this

information to decide how to move tasks between its
corresponding node in 1

kH , and vice versa.

3.7 The Perfect Load Balancing Algorithm on
Hypercubes

This algorithm was developed based upon the
dimension exchange method. It goes through all the
dimensions, from dimension 0 to n-1, and distributes
the tasks across the edges of every dimension [8]. It
first balances the load across the edges of dimension
0 to form subcubes of size 12 with balanced load.
Similarly, the tasks of the subcubes of size 12 will
then be distributed across the edges of dimension 1 to
create balanced subcubes of size 22 . This process
will go on until the whole cube (i.e. 2n ) is balanced.

The algorithm works from dimensions 0 to 1n  :

Algorithm 1: Perfect Load Balancing on Hypercubes
For 0i  to 1n  do

Step 1: Balance the hypercube across dimension i.
Step 2: Redistribute loose tasks in each subcube to

a regular distribution.
End do

At each iteration i, the tasks of two corresponding
i-dimensional subcubes, say 0

iH and 1
iH (each has

iP 2i processors), will be redistributed over the
edges of dimension i. Suppose the numbers of total
tasks on 0

iH and 1
iH are 0

iN and 1
iN , respectively.

A cube 1iH  with 0 1
i iN N tasks will be formed by

merging 0
iH and 1

iH after the load is balanced by
steps 1 and 2.

4 The Proposed Algorithm
Assume that ( , )i j th processor ,i jp has ,i jl tasks and

two buffers, , (0)i jB and , (1)i jB . The initial data is

stored in the buffer , (1)i jB and the data exchange or

other computation is carried out in the buffer , (0)i jB .

The algorithm is composed of three steps:
compute the sum of tasks in each cycle, global
balancing among hypercube, and local balancing
among cycles. The perfect load balancing algorithm
begins with step 1 by summing up all the tasks in
each cycle, iCL , to obtain the iSUM in parallel.
Each cycle in the cube-connected cycles can then be
treated as a supernode in the hypercubes. Step 2
distributes the overloaded tasks from the overloaded
cycles to the underloaded cycles using the Perfect
Load Balancing on Hypercubes algorithm in a
pipelining fashion. Local load balancing among
cycles will be the final step to immigrate the
overloaded tasks ,( ( ) 0)i jDIF p  in each processor

to its neighbor clock wisely in a pipelining fashion
for n iterations. The load balancing in the cycle
function and our proposed algorithm will be
described as follows.

Function 1: Load Balancing in the Cycle.
Step 1: Obtain the load differences in each

processor.
Step 1.1: Compute the iSUM of tasks in each

cycle, iCL . Circulatory summing up all the
tasks stored in the buffer , (1)i jB of processor

,i jp in each cycle, iCL , to obtain the iSUM

and then place it in the buffer , (0)i jB .

Step 1.2: Compute the iAVG  iSUM n  and

then place it in the buffer , (1)i jB of each

processor.
Step 1.3: Compute the ,( )i jDIF p  ,i jl AVG

and then place it in the buffer , (1)i jB of each

processor.
Step 2: Tasks Immigration.

Do in parallel
Simultaneously immigrate the overloaded tasks

,( ( ) 0)i jDIF p  in each processor to its

clockwise neighbor in a pipelining fashion for n
iterations.

Algorithm 2: Perfect Load Balancing on CCC
Step 1: Compute the iSUM of tasks in each cycle,

iCL .
Do in parallel
Circulatory summing up all the tasks stored in
the buffer , (1)i jB of processor ,i jp in each

cycle, iCL , to obtain and then place the iSUM
in the buffer , (0)i jB .

Step 2: Global Balancing among Hypercube.
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Call Algorithm 1: Perfect Load Balancing on
Hypercubes (Each cycle in the cube-
connected cycles can be treated as a supernode
in the hypercubes and the tasks immigration in
each processor of the cycles is in a pipelining
fashion.)

Step 3: Local Load Balancing among Cycles.
Do in parallel CALL Function 1.

5 Performance Analysis
It is obvious that each cycle will obtain its sum of
tasks simultaneously with the time complexity of

(log )P at step 1. If each processor is assigned at
most M tasks before the load balancing algorithm is
performed, then in each iteration i, there are at most
( 2)logM P tasks for a cycle (supernode) to be
immigrated across the hypercube edges of dimension
i at step 2. Therefore, the time complexity
contributed by step 2 will be 2( logM P  3log )P
in the worst case [8]. Regarding to the load balancing
in the cycle function, step 1 is bounded by the time
complexity of (log )P as the first step in the perfect
load balancing on cube-connected cycles algorithm.
Furthermore, the operations that are performed at
step 2 take at most Mn  ( log )M P time units to
immigrate overloaded tasks in any cycle simultane-
ously. Therefore, the worst-case time complexity of
this algorithm is 2( logM P  3log )P . Furthermore,
if M log P , then the time complexity could be

dominated by the factor 2( log )M P .

6 Concluding Remarks
This article proposed an algorithm that could
distribute loads evenly on cube-connected cycles
with the worst-case time complexity of 2( log )M P .
This algorithm could achieve a perfect load balance
over P processors of the cube-connected cycles with
an error of 1. More importantly, perfect load balance
is achieved over subcubes as well -- once a cube is
balanced, if the cube is decomposed into two
subcubes by the lowest bit of node addresses, then the
difference between the numbers of the total tasks of
these subcubes is at most 1.
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