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Abstract: - In this work a method combining finite element analysis and genetic algorithms (GAs) is adopted to 
inversely determine the elastic constants from the full-field measurement of the surface displacements of plates 
under flexural loads. The principle of this method is to measure the displacements of the plate and to adjust the 
parameters put in a numerical model in such a way that measured and computed values match as precisely as 
possible. The unknown parameters are simultaneously identified by a single test and without damaging the 
structure. Numerical investigations were performed on different thin and moderately thick square orthotropic 
laminates. Results have permitted to test the effectiveness of the procedure and identify its applicability 
limitations as well as it robustness to the noise effects. 
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1 Introduction 
The knowledge of the elastic properties is essential 
for design and application of composite materials 
[1]. In recent years many researchers have 
investigated the feasibility of determining the whole 
set of rigidities of anisotropic materials from a 
single plate subjected to a reduced number of testing 
configurations. Both static [2-5] and dynamic [6] 
approaches have been adopted. The former 
approach involves the measurement, almost always 
by optical techniques, of the superficial 
displacements field of a properly loaded specimen, 
while in the second it is necessary to measure the 
frequencies and/or shape of the first modes of 
vibration of plates or beams. Extracting elastic 
constants from these experimental measurements 
requires the use of the so-called inverse approaches 
[7]. The present paper describes an inverse method, 
which combines finite element analysis and genetic 
algorithms to identify the elastic properties of 
isotropic or anisotropic materials by the full-field 
measurement of the surface displacements of a plate 
under suitable flexural loads. An optimising process 
updates the elastic constants in a finite element 
model so that the outputs from the numerical 
analysis fit the experimental data. In this way, the 
unknown parameters can be identified 
simultaneously in a single test and without 
damaging the structure. 
In the last three decades coherent optics has 
provided several interferometric techniques which 

enable the full-field surface displacement of an 
object to be determined with an accuracy of a few 
tens of nanometers without any contact with the 
investigated surface [7]. The amount of data that 
optical interferometric whole-field methods provide 
is much greater than the number of the unknowns to 
be estimated. This fact makes the elastic 
characterization an over-posed inverse problem and 
its solution can be easily obtained when the problem 
is well-posed. For this reason, great care needs to be 
taken in choosing the geometry and the way of 
loading and constraining the specimen [5]. The 
resulting interferometric fringe pattern must contain 
sufficient information for determining all the 
unknown parameters quickly and unequivocally. 
Besides, to reduce the effects of noise that 
inevitably disturb the displacement field on the 
solution, it must also be sufficiently sensitive to the 
variation in each elastic parameter.  
In this paper, a very practical loading and 
constraining configuration for a plate specimen is 
proposed by which the elastic constants of the 
material are identified from measuring the out-of-
plane component (normal to the surface) of the 
displacement field. This configuration can be 
successfully employed for the elastic 
characterization of thin square isotropic or 
orthotropic plates. In the paper, the results of 
numerical simulations carried out on laminates with 
different composite materials are reported. 
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2 Problem Formulation 
Recently, the feasibility of using iterative strategies 
to identify the elastic constants of a material from 
the interferometric fringe pattern, observed on the 
surface of a properly loaded plate, has been 
investigated [3-5]. In such studies, the unknown 
parameters (elastic constants) are identified by 
iteratively adjusting their values in a numerical 
model until an error function ϕ is minimized. ϕ is 
usually, related to the difference between the 
computed displacement field (numerical fringe 
pattern) and the measured one (experimental fringe 
pattern). Note that it is not always easy to minimize 
the error function ϕ, especially in the case of 
orthotropic materials, and that the right choice of 
minimization procedure is fundamental. In any case, 
it is desirable to use a robust and reliable 
optimization procedure able to converge to the 
target values of elastic properties regardless of load 
type, initial guess values, boundary conditions etc.  
Genetic algorithms (GAs) are able to find the global 
optimum even for ill-conditioned functions. 
Therefore, they appear to be highly suitable for the 
characterization of anisotropic materials for which ϕ 
is a highly non-smooth function and gradient-based 
optimization methods would not work well. The 
fundamental idea may be found in [9]. Based on 
probabilistic rules, GAs use the processes of natural 
selection by imitating the concept of survival of the 
fittest. Due to the way the genetic algorithm 
explores the region of interest, it avoids getting 
trapped at a particular local minimum and locates 
the global optimum. Genetic algorithms, unlike the 
gradient-based method, do not require initial 
estimates, but instead work within a suitable set of 
bounds that can often be rather broad. For these 
reasons in the recent years many researchers have 
used GAs for the elastic characterization of 
materials [5, 10-12].  
The first step of the genetic algorithm is the creation 
of a population of individuals (initial population) 
chosen from a set of potential solutions of the 
problem. Each individual is subjected to evaluation 
based on a given fitness function. Then, a selection 
process permits those individuals of superior fitness 
to reproduce and create a new population, which 
combines the desirable characteristics of the old 
population. The reproduction is generally based on 
two operators; crossover and mutation. The new 
population then replaces the old one and the process 
restarts. New generations of solutions are created 
through the genetic manipulation, and this iterative 
process is repeated for a fixed number of 
generations or for a fixed number of analyses until 

there is no improvement in the best solution. The 
diagram of the genetic algorithm used for the 
identification of the elastic constants in this paper is 
shown in Fig. 1. 
It differs from that used in [5] with regard to an 
adaptive range module [13] that was added to      

Fig. 1 Flow chart for optimal design by genetic 
algorithm. 
 
explore the search space more efficiently. The 
algorithm was developed on a personal computer in 
MatLab environment (distributed by MathWorks 
Inc). It applies the general-purpose numerical code 
MSC-NASTRAN to carry out the static analysis. 
The process starts with the generation of a random 
initial population of sets of elastic constant values. 
Each design is formed randomly by choosing the 
elastic constant values within an interval of positive 
values set by the user. To take the proper set of 
elastic constants into account, for each design of the 
population, in the NASTRAN pre-processor stage, 
the MSC/NASTRAN input file is adjusted by 
modifying the MAT1 or MAT8 bulk data entry, 
defining isotropic and two dimensional orthotropic 
stress-strain relationships, respectively. Then the 
actual static analysis is carried out.  
In the post-processing stage, by using the 
displacement field extracted from the NASTRAN 
result file, for each design, the error function 
(fitness) is evaluated. After that, both the fitness and 
the relative elastic constants are saved, all the FEM 
output files are removed to release the computer 
memory and, the cycle restarts.  
The fitness processor begins to operate at the end of 
the processing of the population arranging the 
fitness values of the population in decreasing order 
and checking the convergence criteria. If the 
convergence criteria are not reached, the most 
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suitable solutions are selected and then processed by 
means of the genetic operators to create the new 
population. The process is repeated for a fixed 
number of analyses until there is no further 
improvement in the best solution.  
To explore the search space more efficiently, the 
algorithm described above was provided with an 
adaptive range procedure [13] by which the entire 
population is regenerated every M (with M>1) 
generations. Then, three additional steps were 
incorporated into the structure of the algorithm. In 
the first step, every M generations, the top half (the 
fittest individuals) of the previous generation is 
collected as a group; for each elastic constant the 
average (µ group) and standard deviation (σ group) of 
this group is calculated and then a new average and 
standard deviation for each elastic constant are 
obtained updating the previous values according to 
the following equations: 
 

µ new = µ old + ωµ  ( µ group  - µ old )                          (1) 
σ new = σ old + ωσ  ( σ group  - σ old )                        (2) 

where ωµ  and ωσ are relaxation factors that provide 
robustness during the range adaptation. In the 
second step, a new search range (lmin, l,max) for each 
elastic constants is calculated using average and 
standard deviation computed in the previous step by 
the following equations 
 

lmin = µ new -  κ σ new                                                (3) 

lmax =µ new + κ σ new                                                (4) 
 

where  κ  (1≤κ ≤10) is a measure of the overlap 
between the group and the new generation. In the 
final step, almost all but two individuals in the 
population are generated randomly according to the 
new range. The population is completed including 
the two fittest individuals of the old population. The 
goal of the optimisation is to minimize the error 
function defined  as 
 

! 

" = s
i
# s

i

i=1

n

$                                                          (5) 

 

which accounts for the sum of the absolute errors 
between the calculated displacements and the 
measured ones. 
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calculated and measured component of the 
displacement, respectively, at a point i on the 
surface of the plate. n is the number of sampling 
points considered. A proportional selection scheme 
was adopted for the reproduction of the child 
generation and two procedures (arithmetical and 
replacing types) used to carry out the crossover 
operation. In order to speed up the evolution and to 
improve the convergence performance of the GA a 

mutation and elitism selection have also been 
introduced. 
Greater details on these operators can be found in 
[8] and the values of the parameters involved 
(population size, probability of mutation and 
crossover, etc.), selected on the basis of systematic 
trials, are reported in table 1. 

 
 

3 Loading and constraining conditions 
Optical full-field techniques provide an enormous 
number of information. This information is much 
more than that necessary for the determination of 
the elastic constants of the specimen investigated. 
Consequently, the elastic characterization problem 
is an over-posed inverse problem. Obviously, 
solutions of this problem can be obtained if it is 
well-posed, and therefore great care needs to be 
taken in choosing how to load and constrain the 
plate so that the resulting displacement field 
contains enough information to determine all the 
unknown parameters, quickly and unequivocally.  
In [5], a numerical procedure for optimizing the 
loading and constraining conditions of the specimen 
is proposed. Basically, the procedure consists in 
determining the conditions minimizing the 
“correlation index” ic. This index represents the 
degree of statistical correlation between the 
variation of the displacement fields due to a 
variation of the elastic constants and its absolute 
value is for definition ≤1. In case of isotropic plate 
the correlation index coincides with the usual 
correlation coefficient, while for orthotropic plate 
the correlation index is the mean of the absolute 
values of the correlation coefficients. In [5], to 
illustrate the procedure, a referenced configuration 
for testing square plates under flexural loads was 
analyzed. Such a configuration proved to be suitable 
for solving the problem with two unknowns, but it 
was not very appropriate for solving the problem 
with four unknowns (mainly, because of the 
practical difficulty of applying the load at the 
location which corresponds to the lower ic). 
In the present paper, we propose an alternative 
configuration which also solves the problem with 
four unknowns properly. This configuration (see 
figure 2) requires loading and constraining 
conditions similar to those of the previous 
configuration, but which are easier to set up. The 
square plate is simple supported on three points   P1, 

Tab. 1 Genetic algorithm parameters 
Population number 120 M 35 
Crossover probability 80% ωµ =ωσ  0.5 
Mutation probability 5% κ  10 
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Fig. 3 Aluminium 
correlation index map. 

[900] unidirectional 
laminates 
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Fig. 6 Map of the mean 
correlation index. 

 

Fig. 2 The loading configuration 
 

P2 and P3 lying on the corners of an isosceles 
triangle. Considering a rectangular coordinate 
system, 0xyz, with the origin located at the centre of 
the plate and the axes parallel to the sides of the 
plate, the locations of the three support points are 
completely definite by means of the length a.  
The fields W of the out-of-plane components of the 
displacements, undergone by the upper surface of 
the plate, were considered. The correlation index 
was calculated for each possible location of the 
force on the surface (all the nodes of the mesh). The 
area around each location was coloured with a grey, 
proportional to the corresponding value of the 
calculated correlation index (from black for ic = 0 to 
white for ic ≥ 0.5), and maps similar to that of Fig. 3 
were obtained. 

To obtain the maps, a 
variation of the elastic 
constants equal to 10% 
was considered. The 
calculus of the 
displacement fields was 
carried out using a finite 
element code, the side l, 
the length a and the 

applied force F were 50 mm, 

! 

23 50  l  mm, and 1 N, 
respectively. The thickness h of the plates was 

! 

1 50  l  mm. The plates were discretized into 2500 
(50x50) quadratic eight node QUAD elements. The 
usefulness of these maps will be clarified in the 
following. An intensive numerical analysis revealed 
that plates of different isotropic materials have very 
similar correlation index maps.  
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Fig 4 Correlation index maps of unidirectional 
laminates. 

In Fig. 3 the map relative to an aluminium plate is 
reported to show the behaviour of this class of 
materials. In addition, little difference has been 
observed among the maps of unidirectional thin 
laminates of different material. In Fig. 4, for 
example, the maps of the correlation index of three 
different laminates with fibers parallel to the x axis 
(θ = 00) are illustrated. 
The properties of the material examined, 
Aluminium, Carbon/Epoxy (C/E), Glassy/Epoxy 
(G/E) and Pitch/Epoxy (P/E), respectively, are 
reported in Tab. 2.  
 

In all the cases, the distributions of the correlation 
index are characterized by low-level values and 
common areas can be distinguished, where the 
correlation index is minimal. Such areas can be 
more easily identified by observing the mean and 
the standard deviation of all the maps (Fig. 5).  
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Fig. 5 Mean and standard deviation of the correlation maps. 
 
From such figures an area can be identified, around 
the point C of coordinates xF=

! 

1 25 l  mm and 
yF=

! 

7 25 l  mm, characterized by the lower values of 
the mean correlation index (≤ 0.14) and with a 
negligible standard deviation (≤ 0.05). This area 
represents one of the better location for the 
application of the force to profitably characterize 
both isotropic and unidirectional laminates. 
It is important to underline that when the fibers are 

oriented parallel to the y 
axis (θ = 90°) the values 
of the correlation index 
are generally higher than 
those obtained in 
laminates with the 0° 
orientation (see, in Fig. 6, 
the mean map). As a 
consequence this last 
orientation (θ=0°) is 

 

Table 2 Material properties. 
material E1 

GPa 
E2 

GPa 
ν12 G12 

GPa 
Aluminium 70.0 70.0 0.33 26.3 

Carbon/Epoxy 134.0 8.9 0.24 7.0 
Glassy/Epoxy 38.6 8.3 0.26 4.14 

Pitch/Epoxy 462.0 6.2 0.31 5.58 
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certainly preferable for a faster and more accurate 
characterization.   
To investigate the limits of the approach proposed 
some multidirectional laminates were also analysed.  
In Fig. 7, the correlation index maps related to three 
of the simpler thin multidirectional laminates, a 

Fig. 7 Correlation maps of multidirectional 
laminates. 
 
cross-ply laminate [0°, 90°]s, an angle-ply laminate 
[±15°]s and a quasi-isotropic Pi/3 laminate [0°, 60°, 
-60°]s, respectively, are shown. It can be observed 
that the correct point of application of the load 
depends on the type of laminate and point C is not 
more suitable. Similar results were obtained for 
other multidirectional laminates. 

 
4 Examples of identification 
The inverse procedure was developed and tested by 
means of a series of numerical simulations. First, the 
FEM forward solver evaluated the behaviour of a 
plate. The component of the displacement along the 
direction normal to the upper surface of the plate 
was calculated at each node of the mesh and, the 
resulting displacement field was used in substitution 
of the experimental data. Then, the genetic 
algorithm, using a part or the whole nodal 
displacement field, identified the elastic constants. 
A comparison, between the results and the values of 
the elastic properties used to simulate the 
experimental displacement field, allowed us to 
refine the procedure and verify its accuracy. 
The contours of the computer-simulated 
displacement field (fringe patterns obtained, for 
example, by an interferometric technique with a 

sensitivity of 0.266 µm/fringe) due to a load force 
equal to 0.45 N are reported, for each plate, in Fig. 8.  
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Fig. 8  Computer-simulated fringe patterns. 
 
In Tab. 3 the mean values of the number of 
executions of the FEM code to converge to the 
solution, with an error less than 0.1%, are reported 
for each case. The bounds on parameters were set at 
approximately ±100% from the true values. For 
each case three GA runs were performed. 
Obviously, in case of aluminium plate, even if, fine 
results can be obtained solving for four unknowns, 
the identification of only two elastic constants is 
recommended because it requires shorter execution 
times.  
 
Table 3 Number of FEM runs for  each material. 

Al 
Two 

unknowns 
Four 

unknowns 
380 4721 

 

[0°] C/E   [0°] G/E [0°] P/E 
4171 4002 7861 

[90°] C/E  Pi/3 C/E [00,900]s C/E [±150]s C/E 
* * * * 

* After 20000 runs convergence was not reached 
 
The stability of the inverse procedure was checked 
using simulated measurements with artificial 
Gaussian noise. In particular, a vector of random 
numbers was generated from a Gaussian distribution 
with the mean 

! 

w  set to zero and standard deviation 

! 

s
w

 equal to a percentage of the sensitivity of the 
interferometric technique. 

! 

s
w

 can be defined as 
0.266 pcnlv where pcnlv is the value to control the 
level of noise contamination. For example, pcnlv =0.5 
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means a 50% noise level, in terms of fringe order 
this noise level is equivalent to half fringe. The 
Gaussian noise was directly added to the computer-
generated fringe patterns.  
In figure 9, the fringe patterns affected by two levels 
of noise, 15% and 30%, respectively, are illustrated 
for the cases of carbon-epoxy plate, glass-epoxy 
plate and pitch-epoxy plate, respectively. Similar 
pattern was obtained and analyzed for the other 
materials. For each case, three GA runs were 
performed. The GA was stopped if no 
improvements were obtained after 35 generations. 
 

Fig. 9 Computer-simulated fringe patterns with 
noise. 
 
The mean values of material properties  obtained by 
the identification procedure are shown in Table 4. It 
was found that the solutions are very stable and 
accurate not only for the noise-free case, but also for 
the other noise levels examined. Results with similar 
accuracy were obtained for all the other 
unidirectional composite plates. 
 
Table 4.  Results for the [0°] C/E thin laminate 
based on computer-simulated responses with 
different noise levels. 

 Noise free 15% Noise 30% Noise 
Material 
Constant 

 
Mean 

% 
sd 

 
Mean 

% 
sd 

 
Mean 

% 
sd 

Ex 134.0 0.0 133.6 0.3 134.7 0.6 
Ey 8.9 0.0 8.9 0.0 8.9 0.0 
νxy 0.24 0.0 0.24 0.2 0.24 1.0 
Gxy 7.0 0.0 7.0 0.0 7.0 0.1 

 
 
 

4 Conclusion 
The procedure proposed has proved to be suitable 
for the elastic identification of unidirectional 
laminates but less appropriate for multidirectional 
ones. In the paper, it was applied to square thin 
plates but other tests will have to be executed in 
order to verify if the procedure is also suitable for 
the characterization of plates with generic shapes 
subjected to in-plane or out-plane loading and 
constraining configurations.  
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