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Abstract: - In this paper the principle of Turbulent Frame Indifference is revised. The present-day LES models 
and the drawbacks of the dynamic calculation of the closure coefficient for the generalized SGS turbulent stress 
tensor are analyzed. A new closure relation for the generalized SGS turbulent stress tensor is proposed. The 
proposed closure relation for the generalized SGS turbulent stress tensor: complies with the principle of 
turbulent frame indifference; takes into account both the anisotropy of the turbulence velocity scales and 
turbulence length scales; removes any balance assumption between the production and dissipation of SGS 
turbulent kinetic energy. In the proposed model the generalized SGS turbulent stress tensor is related 
exclusively to the generalized SGS turbulent kinetic energy (which is calculated by means of its balance 
equation) and the modified Leonard tensor; the SGS viscous dissipation ε of the generalized SGS turbulent 
kinetic energy is calculated by solving the ε balance equation. The modelled balance equation of ε respects the 
properties of form-invariance and frame-dependence of the exact balance equation. 
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1 The principle of Turbulent Frame 
Indifference 
To date many efforts have been made to establish 
new closure relations for the unknown turbulent 
quantities in the resolved equations that govern 
turbulent, three-dimensional unsteady flows (LES). 
In the framework of ordinary continuum 
thermodynamics these relations (or turbulence 
models) could be interpreted as constitutive 
equations which are necessary to close the equations 
of motion and the internal energy equation. 
The constitutive equations represent, in an idealized 
form, the behaviour of the materials and, 
consequently, they must fulfil the principle of 
Material Frame Indifference [1]. 
This basic working principle of continuum 
mechanics requires the constitutive equations to be 
the same for observers in inertial systems and in 
non-inertial ones. The above mentioned principle 
imposes that the functional relations (between 
unknown tensors and kinematic quantities) must 
fulfil two distinct requirements [2]: 
a) form-invariance under the most general class of 
transformations of the reference frame; 
b) frame indifference, in particular independence of 
the translational and angular velocity of the frame. 

The principle of Turbulent Frame Indifference is the 
equivalent in turbulence of the principle of Material 
Frame Indifference and implies form-invariance and 
frame indifference on the turbulent closure relations 
[3]. 
Sadiki and Hutter [2] emphasized that form-
invariance in a) and frame-independence in b) are 
two distinct matters. 
A turbulent closure relation is form-invariant if it 
does not modify its formal expression under 
transformations of the frame and is constructed only 
with objective tensors. The objective tensors of rank 
n (n=0,1,2) are said to be objective because they 
transform like geometric objects [2] [4]. 
Considering an inertial frame, in which a material 
point has coordinate xi at time t, and a non-inertial 
frame in which the same point has coordinate xi

* at 
time t*, the most general law which governs the 
transformations of the coordinates and the time 
expressed in the two frames is that given by the 
Euclidean transformations 

( ) ( ),tbxtQx i
*

jiji +=    att * +=   (1) 
where Qij(t) are the components of a time-dependent 
proper orthogonal tensor, bi(t) is the time-dependent 
distance between the origins of the two frames and 
a  is any constant. Tensors of rank n (n = 0,1,2) are 
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said to be objective, if the components transform 
according to 
 *SS =                 objective scalar 

*
jiji VQV =   objective vector    (2) 

 mn*jnimij AQQA =   objective tensor 
A turbulent closure relation is frame indifferent if it 
is expressed in terms of tensors that are independent 
of the angular and translational velocity of the 
frame. Weiss and Hutter [4] emphasized the 
difference between the form-invariance and the 
frame indifference by underlining the existence of 
tensors that are objective but dependent on the 
angular velocity of the frame. 
For example the antisymmetric part of the velocity 
gradient is not an objective quantity: let Wij and Wij

* 
be, respectively, the representations of this quantity 
in an inertial and non-inertial frame, the law of 
transformation of these representations is given by 

jkik*mnjnimij QQWQQW &+=    (3) 
It is possible to associate an objective tensor, called 
absolute velocity tensor Wij

Ω to the quantity Wij. The 
law of transformation between the representations of 
this tensor in the different frames of reference is 
given by 

*
mnjnimij WQQW ΩΩ = , where knkm*mn

*
mn QQWW &+=Ω   (4) 

The absolute vorticity tensor Wij
Ω is an objective 

tensor (since its representations in the different 
frames transform according to Equation 2) but is 
frame-dependent since its representations depend on 
the frame by means of the term knkmQQ & , associated 
with the angular velocity of the non-inertial frame 
[3], [4]. Consequently, it is always possible to 
deduce an objective but frame-dependent tensor 
from the representation in an inertial frame of a non-
objective quantity. 
A turbulent closure relation, which is expressed in 
terms of objective tensors that are dependent on the 
angular velocity of the frame, does not fulfil the 
principle of Turbulent Frame Indifference, because 
it is form invariant but frame dependent. 
Must all the turbulent closure relations fulfil the 
Principle of Turbulent Frame Indifference? 
The turbulent phenomena are not associated to the 
properties of the materials: consequently, turbulent 
closure relations do not represent the material 
behaviour. 
Turbulent closure relations must always be form 
invariant, but must not necessarily be frame 
indifferent [3], [4]. 
In other words not all the turbulent closure relations 
must fulfil the principle of Turbulent Frame 
Indifference. 

In the turbulent closure relations, the modelled 
expressions of an unknown objective tensor must be 
formulated in terms of objective tensors (allowing 
the closure relations to fulfil the requirement of 
form invariance) and must retain the same 
dependence (on the angular velocity of the frame) of 
the unknown tensor. 
As demonstrated by Gallerano et al. [5], the 
generalised SGS turbulent stress tensor ijτ  is an 
objective tensor and is independent of the angular 
and translational velocity of the frame. 
Consequently, the closure relation for this tensor 
must fulfil the principle of Turbulent Frame 
Indifference. In other words, the closure relations 
for the generalised SGS turbulent stress tensor ijτ : 
- must be form invariant (or rather, must be 
expressed in terms of objective tensors); 
- must be frame indifferent (or rather, must be 
expressed in terms of tensors that are 
independent of the angular and translational 
velocity of the frame). 
 
 
2 Closure relations based on the 
Smagorinsky model 
Among the most common LES models present in 
literature are the dynamic mixed models [6] [7] [8] 
[9] [10] based on the Smagorinsky closure relation, 
in which the generalized SGS turbulent stress tensor 
is related to the resolved strain-rate tensor, ijS , by 
means of a scalar eddy viscosity, Tν : 

ijT
m
ijij S2L ντ −=     (5) 

where the overbar ( ). indicates the filter operation 
and m

ijL  is the modified Leonard tensor [11]. It is 
assumed, in these models, that the eddy viscosity is 
a scalar proportional to the cubic root of the 
generalized SGS turbulent kinetic energy dissipation 
and that such dissipation is locally and 
instantaneously balanced by the production of the 
generalized SGS turbulent kinetic energy (i.e., by 
the rate of kinetic energy per unit of mass 
transferred from the large scales, larger than the 
filter size, to the unresolved ones). Consequently, 
the eddy viscosity takes the form: 

( ) ( ) 2
1

mnmn
2

ST SS2C Δν =     (6) 
where Δ  is the filter width and CS is the closure 
coefficient. It is evident that the dynamic mixed 
models based on the Smagorinsky closure relation 
are fraught with four relevant drawbacks. The first 
drawback is represented by the scalar definition of 
the eddy viscosity; the second one concerns the 
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local balance assumption of the generalized SGS 
turbulent kinetic energy production and dissipation, 
the third drawback is related to the dynamic 
calculation of the coefficient used to model the eddy 
viscosity, whilst the fourth drawback is related to 
the problems arising from the numerical scheme 
adopted for the simulations of three-dimensional 
unsteady flows (LES). 
The scalar definition (first inconsistency) of the 
eddy viscosity is equivalent to assuming that the 
principal axes of the generalized SGS turbulent 
stress tensor, or the unresolved part of it 
(represented by the cross and Reynolds terms), are 
aligned with the principal axes of the resolved 
strain-rate tensor. Moreover, the eddy viscosity is 
proportional to the product of two terms, of which 
the dimensions are, respectively, those of a length 
and a velocity [12]. These terms, which represent, 
respectively, the turbulence length scales and 
turbulence velocity scales, are, more generally, 
second-order tensors of which the product is a 
fourth-order tensor which represents the eddy 
viscosity [13]. The scalar definition  of the eddy 
viscosity, used in the above-mentioned dynamic 
mixed models based on the Smagorinsky closure 
relation, presupposes the existence of a single 
turbulence velocity scale and a single turbulence 
length scale. In this manner, the turbulence 
anisotropy induced by the continuous transfer of 
energy from the mean flow towards the turbulent 
fluctuations, which is generally extremely 
anisotropic, is not considered. 
The second inconsistency of the dynamic mixed 
models based on the Smagorinsky closure relation is 
related to the assumption of a local and 
instantaneous balance between production and 
dissipation of the generalized SGS turbulent kinetic 
energy, formulated in the above-mentioned models 
to obtain the turbulent viscosity expression. This 
assumption is confirmed statistically and never 
instantaneously, and only locally at the scales 
associated with wavenumbers within the inertial 
subrange, and the latter exists only for isotropic 
turbulence and at high Reynolds numbers. 
The third inconsistency of these dynamic models 
concerns the calculation of the above mentioned 
closure coefficient CS. When simulating confined 
flows at high Reynolds number, the results of the 
dynamic procedure are of doubtful reliability in the 
region close to the wall including both the viscous 
sublayer and the buffer layer [14]. In this region, the 
filter width used in the dynamic procedure is larger 
than most eddies that govern the momentum and 
energy transfer. Consequently, the dynamic 
procedure used under these conditions for the 

calculation of the coefficient CS is not able to fully 
account for the local subgrid dissipative processes 
that affect the entire domain. 
The fourth inconsistency of the dynamic mixed 
models based on the Smagorinsky closure relation is 
connected to the problems arising from the 
numerical scheme adopted for the simulations of 
three-dimensional unsteady flows (LES). 
The three-dimensional unsteady flows simulations 
require numerical schemes with a high order of 
accuracy: a low order of accuracy of centered finite 
difference schemes introduces (in the three-
dimensional unsteady flows simulations) an anti-
dissipative factor, which reduces the ability of the 
generalised SGS turbulent stress tensor to represent 
the kinetic energy transfer from the resolved scales 
to the unresolved ones, with an increase of the 
resolved kinetic energy. 
The numerical scheme, besides being accurate, must 
fulfil the conservation requirement. 
As suggested in [15] and [16], conservation 
properties of the mass, the momentum and the 
kinetic energy equations, for incompressible flows, 
are regarded as analytical requirements for a proper 
set of discrete equations. Consider the following 
governing equation for the scalar quantity φ: 

( ) ( ) ( ) 0...QQQ
t

321 =++++
∂
∂ φφφφ         (7) 

the term ( )φQk  is conservative (conserves φ) if it 
can be written in divergence form [8] 

( ) ( )
j

jk
k

x
F

Q
∂

∂
=φ     (8) 

Note that mass is conserved a priori since the 
continuity equation appears in divergence form. For 
the same reason the convective term of the 
momentum equation is conservative a priori 
(conserves momentum) if it is written in divergence 
form: 

( )
j

ij
i x

uu
.Div

∂
∂

=    (9) 

This definition of the conservation a priori indicates 
the property of conserving momentum (in periodic 
field) independently of the modalities by which the 
continuity equation is satisfied. 
The governing equation for the kinetic energy, 
K=uiui / 2, can be developed by taking the vector dot 
product of the velocity and the momentum equation, 

0
x
T

x
p

x
uu

t
uu

j

ij

ij

iji
i =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−
∂
∂

+
∂
∂

+
∂
∂         (10) 

where p is the pressure divided by the constant 
density, and Tij is the viscous stress. In the above 
equation the convective term can be rewritten in the 
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following form, corresponding to that in the 
momentum equation, 

j

j
ii

j

iij

j

ij
i x

u
uu

2
1

x
2/uuu

x
uu

u
∂
∂

+
∂

∂
=

∂
∂   (11) 

This term is composed by two parts: the first is in 
conservative form and the second involves the 
continuity equation. The convective term (expressed 
in divergence form in the momentum equation) 
conserves a priori  momentum but does not 
conserve a priori kinetic energy: in fact Equation 11 
shows how the continuity equation is involved in the 
kinetic energy conservation property of the 
convective terms that are expressed in divergence 
form. In other words kinetic energy is conserved (by 
divergence form of convective terms) only when the 
continuity equation is perfectly satisfied. 
The passage from the previous analytical 
considerations to the effect that they produce on 
numerical simulations imposes a reflection on the 
following statement: 
the continuity equation cannot be perfectly satisfied 
by numerical simulation. 
In the simulations of three-dimensional unsteady 
flows (LES) (that are realized by a high-order finite 
difference scheme with the divergence form of the 
convective terms) the resolved kinetic energy is not 
perfectly conserved because the continuity equation 
is not perfectly satisfied. Consequently, the resolved 
kinetic energy is destined to rise in long time 
simulations. 
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Fig. 1. Profiles of resolved kinetic energy Reynolds 
averaged over successive intervals of time (T1, T2, T3, 
T4). Simulation performed by using the turbulence model 
of Zang et al. [14]. Channel flow, Re*=395. 
 
In the dynamic mixed models based on the 
Smagorinsky closure relation, the calculation of the 
closure coefficient CS (by dynamic procedure) is not 
able to compensate the effects produced by the 
convective terms (expressed in divergence form in 
the resolved momentum equation) that are not able 
to perfectly conserve resolved kinetic energy. 
In order to verify the above mentioned 
inconsistency of the dynamic mixed models based 

on the Smagorinsky closure relation, simulations of 
a turbulent channel flow at Re*=395 (Re* is the 
friction-velocity-based Reynolds number) have been 
performed, by a fourth-order staggered finite 
difference scheme proposed by Morinishi et al [15]. 
The generalised SGS turbulent stress tensor has 
been calculated by means of the mixed dynamic 
model of Zang et al. [6]. The resolved kinetic 
energy has been averaged over time intervals greater 
than the integral  turbulent time scale. In Figure 1 
the over time averaged resolved kinetic energy 
profiles are shown. 
From the figure it is possible to deduce that the 
resolved kinetic energy increases. 
In this paper it is demonstrated that, in order 
overcome the inconsistencies of the dynamic mixed 
Smagorinsky-type models and in order to contain 
the increase of resolved kinetic energy, the turbulent 
closure relation for the generalised SGS turbulent 
stress tensor must be expressed directly as a 
function of the generalised SGS turbulent kinetic 
energy E and of the SGS viscous dissipation ε. 
The generalised SGS turbulent kinetic energy and 
the SGS viscous dissipation are unknown quantities 
that are calculated by solving the relative balance 
equations. In these equations there are unknown 
terms that are calculated by dynamic procedures. In 
this paper it is shown that the dynamic procedures 
for the production and dissipation terms of the SGS 
viscous dissipation balance equation are able to 
compensate dynamically the increase of resolved 
kinetic energy, and then allow the large eddy 
simulation of three-dimensional unsteady flows, 
also for long time simulations. 
 
 
3 The balance equations of the 
generalised SGS turbulent kinetic 
energy E and of the SGS viscous 
dissipation ε 
The balance equation of the generalized SGS 
turbulent kinetic energy, E, expressed in terms of 
the generalized central moments takes the form [5]. 

( ) ( )

( ) ⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂
∂

−+
∂∂

∂
+

+
∂

∂
−

∂
∂

−
∂

∂
−=

m

k

m

k
kOk

mm

2

m

m

m

k
mk

n

mkk

x
u,

x
uu,F

xx
E

x
u,p

x
u

x
u,u,u

2
1

Dt
DE

νττν

τττ

 (12) 

where OkF  is the force density and 
( ) gffgg,f −=τ  
( )

( ) ( ) ( )gfhhfghgfhgffgh

hgf

,,,

,,

τττ

τ

−−−−

=  
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are, respectively, the generalized second and third 
order central moment related to the generic 
quantities f , g and h [11]. 
As demonstrated in [5], the generalized SGS 
turbulent kinetic energy balance equation is form-
invariant and frame-indifferent, in so much that each 
of the terms that appear in it are representations, in 
inertial and non-inertial frames, of objective tensors 
that are independent of the angular and translational 
velocity of the frame. 
The last term on the right-hand side of Equation 12 
is defined as the viscous dissipation ε of SGS 
turbulent kinetic energy. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∂
∂

=
j

i

j

i

x
u,

x
uντε    (13) 

In the proposed LES model a further balance 
equation is introduced for the viscous dissipation ε. 
The balance equation of ε, expressed in terms of the 
generalized central moments, takes the form 

0
x
F,

x
u2

xx
u,

xx
u2

xx
u

x
2

x
u,

x
u

x
u2

x
u,

x
u

x
u2

x
u,

x
u

x
u2

x
u,

x
u,

x
u2

xx
u

x
2

x
p,

x
u

x
2

x
u,u

x
u

x
2

x
u,

x
u,u

xxxx
u

t

j

Oi

j

i

kj

i2

kj

i2
2

kj

i2

j

ik

j

k

k

i

j

i

j

i

j

k

k

i

j

i

k

i

j

k

j

i

j

k

k

i

j

ik

j

i

k

ii

k

kj

i
k

j

i

k

j

i

j

i
k

kkk

2

k

k

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂
∂

∂∂
∂

+

∂∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∂
∂

∂
∂

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∂
∂

∂
∂

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∂
∂

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

∂
∂

−

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∂
∂

∂
∂

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∂
∂

∂
∂

+
∂∂

∂
−

∂
∂

+
∂
∂

νττν

τντν

τντν

νττν

τντν

τνενεε

 (14) 
This equation is obtained from the Navier-Stokes 
equation and the filtered Navier-Stokes equation. 
Above all, it is demonstrated that Equation 14 is 
form-invariant and frame-dependent. In a non-
inertial frame, Equation 14 takes the form: 
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(15) 
in which the tensor itinQQ&  that appears in the 

representation of the 5th, 7th and 11th terms (within 
the respective boxes) is associated with the angular 
velocity of the non-inertial frame with respect to the 
inertial one. The 5th, 7th and 11th terms of 
equations 14 and 15 are the representations (in the 
inertial and non-inertial frame) of zero-order 
objective tensors that are frame-dependent: the 
objectivity of these tensors is guaranteed by the fact 
that the respective representations in the different 
frames are related to each other according to the 
laws of transformation expressed by Equation 2; the 
frame-dependence is given by the presence of the 
above mentioned term itinQQ&  associated with the 
angular velocity of the frame. All the other terms 
that appear in Equations 14 and 15 are 
representations, in the different frames, of objective 
tensors that are independent of the angular velocity 
of the frame. From this consideration and for the 
assumption that an equation is form-invariant if it is 
expressed only in terms of objective tensors, it 
results that the balance equation of ε is form-
invariant. This equation is also frame-dependent, 
through the appearance of itinQQ&  in the 
transformations of the representations of the 5th, 7th 
and 11th terms in the different frames.  
 
 
4 New closure relations  
According to Bardina's scale similarity assumption, 
a closure relation is proposed for the generalized 
SGS turbulent stress tensor, in which there appears 
no coefficient to be calibrated or to be calculated 
dynamically: 
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The closure relation 16 is obtained without any 
assumption of local balance between the production 
and dissipation of generalized SGS turbulent kinetic 
energy and may thus be considered applicable to 
LES with the filter width falling into the range of 
wave numbers greater than the wave number 
corresponding to the maximum turbulent kinetic 
energy. The closure relation 16 for the generalized 
SGS turbulent stress tensor: a) respects the principle 
of turbulent frame indifference; b) takes into 
account both the anisotropy of the turbulence 
velocity scales and turbulence length scales; c) 
assumes scale similarity; d) guarantees an adequate 
energy drain from the grid scales to the subgrid 
scales and guarantees backscatter; e) overcomes the 
inconsistencies linked to the dynamic calculation of 
the closure coefficient used in the modelling of the 
generalized SGS turbulent stress tensor; f) is able to 
eliminate the effects produced by the non-
conservation a priori of the resolved kinetic energy. 
Even though the closure relations in turbulence must 
not necessarily respect the requirement of frame-
indifference, since the generalized SGS turbulent 
stress tensor is an objective tensor and frame-
indifferent [5], the closure   relation for this tensor 
must also be form-invariant and frame-indifferent. 
In other words, the principle of  turbulent frame 
indifference must not necessarily be applied to all 
the closure relations, but must be applied to all the 
functional relations that express the generalized 
SGS turbulent stress tensor (objective and frame-
indifferent) in terms of the resolved kinematic 
quantities. The closure relation 16 for the 
generalized  SGS turbulent stress tensor respects the 
principle of turbulent frame indifference. 
In this paper, the modelled expressions used for the 
unknown terms of the exact generalized SGS 
turbulent kinetic energy balance equation are such 
as to guarantee the respect of the principle that the 
modelled balance equation of E must be form-
invariant and frame-indifferent, like the exact 
balance equation of E. The modelled form of 
Equation 12 is 
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where the scalar coefficient D is dynamically 
calculated by means of a Germano identity applied 
to the 1st and 3rd terms on the right-hand side of 
Equation 12 [5]. 
As demonstrated in section 3, the balance equation 
of the SGS viscous dissipation, ε, is form-invariant 
because it is expressed only in terms of objective 
tensors. This balance equation is also frame-

dependent, through the appearance of itinQQ&  in the 
transformations of the representations of the 5th, 7th 
and 11th terms of the balance equation in the 
different frames. Consequently, the closure relations 
for the 5th, 7th and 11th terms of Equation 14 must 
be formulated in full respect of the requirement that 
the modelled equation must be form-invariant and 
must maintain the same frame-dependence as the 
exact equation. In this paper the following modelled 
balance equation of the viscous dissipation is 
proposed. 
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where δi=(1,1,1) and in which the closure 
coefficients are calculated dynamically by means of 
the Germano identities. This equation is form-
invariant and has the same dependence on the frame 
as the exact equation. The 5th, 7th and 11th terms of 
Equation 18 are the modelled expression of the 
corresponding unknown terms of the Equation 14. 
These modelled expressions are formulated by using 
the hypothesis of scale-similarity and respecting the 
same frame-dependence as the respective unknown 
terms in 15. 
For example, in the 5th term of the balance equation 
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The hypothesis of scale similarity gives 
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By introducing the following closure relation for the 
unknown term of Equation 19, 
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the final modelled form of the 5th term is 
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where the closure coefficient 1FC
ε

is calculated 
dynamically by means of a Germano identity. 
Under a Euclidean transformation of the frame, the 
exact 5th term of the balance equation of ε 
transforms as. 
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Under the same Euclidean transformation of the 
frame the modelled form of the 5th term of the 
transport equation of ε transforms as 
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The modelled term results as being dependent on the 
frame of reference in the same manner as the exact 
term. A similar result is obtained by repeating the 
same procedure for the others terms of Equation 18. 
The demonstration is omitted for the sake of brevity. 
 
 
5 Results and Discussion 
Turbulent channel flows (between two flat parallel 
plates placed at a distance of 2L) are simulated with 
the proposed Large Eddy Simulation model at 
different friction-velocity-based Reynolds numbers 
(Re*), ranging from 395 to 2340. In order to 
validate the proposed closure relation for the 
generalized SGS turbulent stress tensor, the 
numerical results obtained with the proposed model 
are compared with DNS results [19] and with 
experimental data [20] 

 
Fig. 2. Time-averaged streamwise velocities. Comparison 
between DNS and LES results obtained with DMM and 
the proposed model  (TEM). Channel flow, Re* = 395. 

 
Fig. 3. Time-averaged streamwise velocities. Comparison 
between experimental measurements and LES results 
obtained with the proposed model (TEM). Channel flow, 
Re* = 2340. 
 
In Figure 2 is plotted the profile of the time-
averaged streamwise velocity component obtained 
with the proposed model compared with the profile 
obtained with DNS [19] and the Dynamic Mixed 
Model, DMM [14], for channel flow at Re* = 395. 
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The figure shows that the profile obtained with the 
proposed model agrees more with the DNS velocity 
profile than with the profile obtained with the 
DMM, both in the boundary layer and in the region 
inside the channel. Figure 3 shows the profile of the 
time-averaged streamwise velocity component for a 
channel flow at Re*=2340 obtained with the 
proposed model, compared with the profile of the 
analogous velocity component measured 
experimentally [20]. The agreement between the 
two velocity profiles is very good. 

 
Fig. 4. Reynolds stress <u1'u3'>. Comparison between 
experimental measurements and LES results obtained 
with the proposed model (TEM). Channel flow, Re* = 
2340. 
 
Figure 4 compares the profile of the component 
<u1'u3'> of the Reynolds stress tensor (where 
indexes (1) and (3) denote, respectively, the 
streamwise and wall-normal directions), calculated 
with the proposed model, with the profile of the 
similar component of the Reynolds stress tensor 
obtained from experimental measurements [20], for 
a channel flow at Re* = 2340. Figure 4 shows that at 
Re* = 2340 the proposed model provides a profile 
of the component <u1'u3'> in agreement with that of 
the corresponding component of the Reynolds stress 
tensor obtained from the experimental 
measurements. 
Figure 5 shows the instantaneous profiles of the 
terms of the balance equations of E averaged over 
homogeneous planes, for channel flow at Re*=2340. 
Figures 5 demonstrates that the balance between 
production and dissipation of the generalized SGS 
turbulent kinetic energy is confirmed only in a 
limited region between the buffer layer and the log 
layer (20<z+<40) whilst it is not confirmed in other 
regions of the domain. The viscous dissipation of E 
is balanced in the viscous sublayer (z+<5) by the 
viscous diffusion term whilst the production of E is 
practically negligible. Moving away from the wall, 
in the first part of the buffer layer, the production 

term of E increases until it reaches its maximum 
value (z+ ≈ 10) and the terms of turbulent transport 
and viscous diffusion of E are comparable with the 
production term of E. In the region between the 
buffer layer and the log layer (20<z+<40) the 
convective and turbulent transport terms and the 
viscous diffusion term are negligible compared with 
the production and dissipation terms. Only in this 
limited region is there a balance between the 
production and the dissipation of E. Towards the 
center of the channel (z+>30) the viscous 
dissipation tends towards a minimum but not 
negligible value. In this region the production term 
of E is balanced not only by the dissipation but also 
by the turbulent transport of E. 

 
Fig. 5. Instantaneous generalized SGS turbulent kinetic 
energy balance terms averaged over homogeneous 
planes. Production: PE; Turbulent transport: TE; 
Convection: CE; Viscous diffusion: DE; Viscous 
dissipation: eps. Channel flow,  Re*=2340. 
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Figure 6: Vortex  identification with λ2 method [21], x-z 
plane 
 
In Figure 6 the near wall vortex structures (inside 
the turbulent boundary layer) are clearly identified 
by the λ2 method [21]: the dimensions of the spatial 
discretisation steps allow the optimal simulation of 
the above mentioned vortex structures that govern 
the transport, the production and the dissipation of 
the turbulent kinetic energy. 
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6 Conclusions 
In this paper the principle of Turbulent Frame 
Indifference is revised. The present-day LES models 
and the drawbacks of the dynamic calculation of the 
closure coefficient for the generalized SGS turbulent 
stress tensor are analyzed. A new closure relation 
for the generalized SGS turbulent stress tensor is 
proposed. The proposed closure relation for the 
generalized SGS turbulent stress tensor: complies 
with the principle of turbulent frame indifference; 
takes into account both the anisotropy of the 
turbulence velocity scales and turbulence length 
scales; removes any balance assumption between 
the production and dissipation of SGS turbulent 
kinetic energy. In the proposed model the 
generalized SGS turbulent stress tensor is related 
exclusively to the generalized SGS turbulent kinetic 
energy (which is calculated by means of its balance 
equation) and the modified Leonard tensor; the 
viscous ε of the generalized SGS turbulent kinetic 
energy is calculated by solving the ε balance 
equation. The modelled balance equation of ε 
respects the properties of form-invariance and 
frame-dependence of the exact balance equation. 
The proposed model has been tested for a turbulent 
channel flow at Reynolds numbers (based on 
friction velocity and channel half-width) ranging 
from 395 to 2340. The proposed model improves 
the agreement between the results obtained with 
LES and those obtained with DNS. 
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