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Abstract: A new Multivariate Two-Sample Randomization Test is introduced. The test
is designed to check the null hypothesis that two multidimensional groups are random
samples of the same probability distribution. The test is robust to non Gaussian dis-
tribution, to serially correlated data, and outliers. The test can be used to compare
either two groups defined a priori, or two groups generated by (for example) a cluster-
ing algorithm. The performances of the test are analyzed on simulated two-dimensional
datasets, and on a real sixty-dimensional dataset coming from a semiconductor environment.
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1 Introduction

Data analysis in a semiconductor environment
need to cope with two daunting peculiarities.

On one side, datasets of high dimensionality,
of several thousands or even millions of mea-
surements, from hundreds of variables, are really
common. Such measurements are collected from
many different sources, from dies over wafers
to lots and include the following: (i) Electrical
wafer sorting (EWS), i.e. Yield data to mea-
sure the overall quality of the product; (ii) Para-
metric testing (PT), i.e. data coming from con-
trol, structures on a wafer for the quality of the
process, for example, leakage; (iii) Inline data for
items such as the thickness of layers; (iv) Equip-
ment and advance process control (APC) data,
for example temperature or pressure of process
equipmnets.

On the other side, in semiconductor envi-
ronments the three main assumptions classical

methods of statistical inference depend heavily
on (i.e., that the data are (i) nearly normal, (ii)
serially uncorrelated, and (iii) outlier-free) fre-
quently do not hold true.

The former peculiarity pushes the data analy-
sis in semiconductor environments toward the
use of multivariate methods, the latter toward
the use of robust non-parametric methods. In
fact, for example, in [1] projection pursuit tech-
niques are employed, while in [2] Kohonen’s Self
Organizing Maps are applied to EWS data.

This work focuses on a particular aspect of
data analysis in semiconductor environment —
statistical inference. The comparison of samples
(typically groups of lots or wafers) against a ref-
erence sample is a common procedure both in
the development of new semiconductor processes
and in semiconductor manufacturing. Just to
give an example, to test which parameter have
been affected by a change of the production
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process, the lots produced with the “old” process
are compared against the lots produced in the
“new” one.

Given two groups (either defined a priori or
generated by a clustering techniques) of mul-
tidimensional measures, a common question is
whether or not these groups are really differ-
ent, i.e. if we can assume that they are random
sample coming out from two different probabil-
ity distributions. For the univariate (one dimen-
sional) version of this problem there exist many
statistical tests (t-test, Wilcoxon test,. . . ), able
to check the null hypothesis that the two samples
come from the same distribution. But, at best
of my knowledge, there does not exist statistical
tests able to compare two multivariate samples
for which the classical hypotheses of statistics
cannot be assumed.

This work introduces a a new multivariate ro-
bust statistical test — The two-sample multivari-
ate randomization test. This test is based on ran-
domization techniques (see for example [3, 4]),
and can be used to compare either two groups
defined a priori, or two groups generated by a
clustering algorithm.

The rest of the paper is organized as follows.
Section 2 gives more details on the need for
multivariate and robust methods. Section 3 in-
troduces randomization technique, and Section
4 describes the new test. At last the perfor-
mances of the new test are analyzed on simu-
lated datasets, and on a real dataset coming from
Parametric Testing of a Plant of STMicroelec-
tronics.

2 The need for robust multi-
variate analysis

There are many situations in which the si-
multaneous monitoring of two or more related
variables (or parameters, or quality characteris-
tics,. . . ) is necessary. For example, let suppose
to have a dataset (called DS4 and described in
more details in Section 5.1) with two variables
(x and y) and two groups (A and B) of observa-
tions. Each variable can be examined indepen-
dently, as illustrated in Figure 1. If a statistical

Figure 1: Box plot of x and y variables of dataset
DS4. The observations are divide in two groups,
A and B

Figure 2: Scatter plot of datasets DS4.

test is applied to each variable independently,
it will accept the null hypothesis that the two
groups come from the same probability distrib-
utions. But, by looking at the two dimensional
scatter plot of the dataset (Figure 2), it is clear
that analyzing the two variables independently is
misleading. The two groups are, indeed, differ-
ent. This kind of effects increase as the number
of variables increases [5].

In designing a multivariate test, it is need
to take care also of the second characteristic of
semiconductor environments, i.e. that usually it
is not possible to rely on three critical assump-
tions: (i) The observations have a common nor-
mal (or Gaussian) distribution, (ii) The obser-
vations are independent, (iii) The data are out-
lier free. In reality, any or all of these assump-
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Figure 3: Histogram with the frequencies of p-
values calculated on all PT parameters. The first
bar is the number of parameters with non-normal
distributions (about 30% of the total).

Figure 4: Autocorrelation chart for a parameter
of parametric testing wafer time series

tions often fail to hold in practice (not only in
semiconductor environment). For example, The
Normality Shapiro-Wilk test[6] has been used to
check if 214 parametric testing (see introduction)
parameters were Gaussian. Figure 3 shows that
one third of them are not. A way to graphically
represent serial correlation is to use the autocor-
relation plots [3] Just to give an example, Figure
4 shows that the selected parameter show a re-
markable degree of autocorrelation.

The assumption about outliers deserves a re-
mark. Naively speaking, outliers are sample val-
ues that causes surprise in relation to the ma-
jority of the sample. Why will it not suffice to
screen data and remove them? There are many
answers [7]. One answer is that the sharp deci-
sion to keep or reject an observation is wasteful;
it is better to downweight dubious observations
instead of rejecting them. Another is that it can
be difficult (or even impossible) to spot outliers
in multivariate or highly structured data.

The final consequence is that the multivariate
test should be robust [8] to the violations of these
assumptions.

3 Brief introduction to ran-
domization tests

In this section we describe randomization test,
a computer-intensive method for comparing two
(independent) groups. Two-sample randomiza-
tion test is designed to test the null hypoth-
esis that two groups have identical probability
curves. This family of test do not assume that
the underlying distribution is gaussian, and do
not assume that the data are identically and in-
dependently distributed (i.i.d.) [3]. On the con-
trary, student t-test is based on both assump-
tions, and Wilcoxon sum-of-rank test on the lat-
ter only.

There is in fact a large class of methods among
randomization tests, here the attention is fo-
cused on a version based on the sample medians.

In general, let suppose that g groups need to
be compared, with sizes n1, . . . , ng, and values
for a total of n =

∑g
i=1 ni items. A random-

ization test involves seeing how an observed test
statistic compares with the distribution of val-
ues obtained when the n items are randomly al-
located, with n1 going to group 1, n2 going to
group 2,. . . , ng going to group g. See [4, 3] for
the theoretical justification of using the random-
ized distribution for comparing two samples.

4 Multivariate two-sample ran-
domization tests

The two-sample multivariate randomization test
is a generalization of the univariate one.

Let D be a dataset with N variables and n
observations. Let the n observations be divided
in two groups, A and B, and let n1 and n2 be
the sample size corresponding to each group. As
in the univariate case there are many possible
choice for the test statistic. The most obvi-
ous one is to use the Euclidean distance of the
means (now elements of RN ) of the two sam-
ples. However this choice is not robust. Here the
chosen test statistic is the Manhattan distance
of the medians. Given x = (x1, . . . , xN ), y =
(y1, . . . , yN ) ∈ RN , the their Manhattan distance
is ‖x−y‖ = (

∑N
l |x1−y1|). Thus the test statis-
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tic is ‖median(A)−median(B)‖. We remark that
many other test statistics are possible, either for
the aggregation functions (trimmed mean, M -
estimator,. . . [8]) or the metric (Minkowski Lp,
L∞, Mahalanobis,. . . ).

The algorithm has only two parameters: The
number of iterations L, and the significance level
α ∈ (0, 1). Usually it is suggested to assign to L
at least a value about 1000. Whereas the “tra-
ditional” value of α is 0.05. The procedure to
perform the randomization test is the following

• Compute the test statistics T =
‖median(A) − median(B)‖ on the ac-
tual data.

• For l = 1, . . . , L repeat the following steps
to build up the reference distribution:

– sample without replacement n1 obser-
vations from D.

– compute the test statistics Tl for the
groups given by these n1 observations
and the remaining n2

• compute the p-value p as

p = 1−2
∣∣∣∣12 − {Tl : Tl ≥ T0, l ∈ 1, . . . , L}

L

∣∣∣∣ .

• Reject the null hypothesis if p ≤ α (usually
α = 0.05).

At last, note that the number of all possible

randomization with two groups is
(

n
n1

)
. If

this number is reasonable, the algorithm can pro-
ceed on all the possible cases instead of generat-
ing L random permutations.

5 Data analysis

5.1 Simulated data

To check the MV randomization tests four
different two dimensional datasets (called
DS1,. . . ,DS4)have been simulated. Each dataset
is divided in two groups, of 100 items each. The
groups of the datasets are generated by the fol-
lowing distributions:

DS1 The same 2D Gaussian distribution

Dataset p-value H0 at 5% sign.level
DS1 0 Rejected
DS2 0.68 Accepted
DS3 0.19 Accepted
DS4 0.04 Rejected

Table 1: Result of MV randomization Test on
simulated datasets

DS2 Two different 2D Gaussian distributions
DS3 The same 2D bimodal distribution
DS4 Group A: x = {−2,−1.96, . . . , 1.96, 2}, y =

x+normal gaussian distribution. Group B:
x = {2, 1.96, . . . ,−1.96,−2}, y = x+normal
gaussian distribution.

Figure 5 shows datasets DS1, DS2 and DS3,
whereas Figure 2 shows DS4. Table 1 show the
result of MV randomization test. By taking as
significance level of the test α = 0.05 (i.e, 5%),
the test behaves correctly in all the four cases. It
is true that for DS4, the p-value is very close to
α. However for a test based only on the medians
of the groups, DS4 is a though benchmark.

5.2 Real data

The MV randomization test was applied to a real
dataset coming from Parametric Testing (see in-
troduction), The dataset contains the values of
60 variables measured on 43 lots. On average for
every lot, each variable is measured 125 times
on different sites; then the dataset has about
5000 rows. These measure was taken by three
different testing equipments (here called TE1,
TE2 and TE3), and the problem was to iden-
tify whether or not TE2 and TE3 were aligned
to TE1. The MV randomization test accepted
the hypothesis that T2 was equal to T1 (p-
value=0.58), while rejected the hypothesis that
T3 was equal to T1. These inferences has been
successfully checked by the test engineers. In any
case, to make a counter check, principal compo-
nent analysis [9] has been applied to the dataset.
Figures 6 shows the first two principal compo-
nents of the real dataset of data coming from
parametric testing. The measures are grouped
by test equipment: TE1 (triangles), TE2 (+)
and TE3 (×). From the figure it can be noticed
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Figure 5: Three simulated 2D datasets. From
top two down: DS1, DS2, DS3. The elements of
group A are represented as black squares, while
those of group B as red triangles

that the distribution associated to TE1 and TE2
are both bimodal and almost superposed. While
the distribution associated to TE3 is unimodal.
At last Figure 7 show the boxplot of the three
groups on just one of the sixty dimensions, shows
that the three test equipments are not aligned.

6 Conclusions

In this work a new robust statistical test to com-
pare multivariate data has been presented. Its
applications to simulated and real data shows
the test has the potentiality to correctly identify
distinguished multivariate groups. Thus, for ex-
ample, the test could be used in conjunction with
features space reduction techniques (PCA, ICA,
Projection Pursuit,. . . ) to inspect highly dimen-
sional dataset. In particular Short term future
developments include: (i) an extensive Compar-
ison between different test statistics, (ii) the ex-
tension to many-sample comparison, and (iii) the
theoretical analysis of Type I error and Power of
the test.

In conclusion, although the in depth analysis
of the new test has to be done yet, the first re-
sults obtained are encouraging.
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