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Abstract:  Field measurements of conductivity, porosity, etc. have shown their are high heterogeneity, the bounds 
of such heterogeneity increasing as the scale of observations changes. This has led to the development of fractal 
models, renormgroup methods, and methods of subgrid modeling. The subgrid modeling approach, associated 
with problems of the subsurface hydrodynamics, is presented. We consider a single-phase flow of an 
incompressible fluid through a random porous medium. The joint multi-point probability distribution for porosity 
and permeability is supposed to be log-normal and satisfy the conditions of the Kolmogorov refined scaling 
hypothesis. A subgrid model is derived which is similar to the Landau-Lifschitz formula. The theoretical result is 
compared to the results of the direct numerical modeling and to the results of "ordinary" perturbation theory. 
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1   Introduction 
When studying the mass transfer in a 
heterogeneous medium, the small-scale details of 
conductivity and porosity are unknown. They 
should be considered within the statistical 
approach, introducing effective parameters. The 
search for the effective coefficients in the 
equations for the large-scale components of 
filtration and dispersion may be regarded as a 
version of the subgrid modeling. Our use of the 
subgrid modeling method is motivated by the 
refined scaling properties [1] that were 
experimentally observed in the subsurface 
hydrodynamics [2]. In [3], [4], Kuz'min and 
Soboleva defined a conformal symmetric model 
of heterogeneous media and deduced the subgrid 
formulas for the effective permeability. In [4], the 
authors used the ideas of the Wilson 
renormalization group (RG) [5] and derived the 
Landau-Lifshits formula for the effective 
permeability coefficient. According to the 
arguments stated in [6], the renormalization group 
methods partially take account of high orders of 
perturbation theory and hence improve the 
accuracy of the derived formulas. The same 
arguments are also applicable to the subgrid 
modeling. The direct numerical verification of 
this statement is the main subject of this paper. If 
a medium is assumed to satisfy the refined 
scaling Kolmogorov hypothesis [1], the subgrid 
model equations take an especially simple form. 
In the present paper, we find the subgrid 
modeling formulas for solving problems of 
filtration and dispersion in a fractal porous media. 

In differential equations, which describe 
renormalization of effective parameters, one may 
abandon the self-similarity requirements. The RG 
methods for the filtration theory are developed 
many authors [7], [8]. The subgrid modeling 
methods propose to treat conductivity and 
porosity directly as a multifractal, but not to treat 
such parameters through the “window” of a 
logarithm. This is especially necessary, when 
parameters have a log-stable distribution. In this 
case, the variance of conductivity under certain 
values parameters is finite, although the variance 
of the logarithm conductivity is infinite. Such 
statements have been experimentally supported 
[9]. 
 
 
2 The refined scaling of the porous 
media 
Let an incompressible fluid flow through a 
heterogeneous medium with a conductivity 
coefficient ( )ε x . At low Reynolds numbers, the 
filtration velocity and the pressure v p are related 
by the Darcy law ( ) pε= ∇v x . The condition of 
incompressibility  yields the equation  0div =v
 ( ) ( ) ( ) 00, ( ),

S
p p pi iε∇ ∇ = =x xx x  (1) 

where  is a boundary of the domain V . Let the 
field of conductivity be known. This means that it 
is measured at each point as the fluid is pumped 
through a sample of small size . A random 
function of spatial coordinates 

S

x
0l

( )ε x  is 
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considered as limit of the conductivity ( )
0l

ε x . 

As , we have . To pass to a 

coarser grid , one can smooth the resultant field 
0 0l → ( ) ( )

0l
ε ε→x x

1l
( )

0l
ε x using the scale . The obtained field 

is not the true conductivity that describes 
filtration in the interval of scales 

1 0l l>

( )1,l L , where  
is a maximum scale of heterogeneities. To find 
conductivity on a coarser grid, one has to repeat 
the measurements, pumping the fluid through a 
larger sample of size . This procedure is 
necessary since the conductivity fluctuations 
within the scale interval (

L

1l

)0 1,l l have correlations 
with the pressure fluctuations induced by them. 
Similar to [1, 3], we consider a dimensionless 
field ψ equal to the ratio of conductivity 
smoothed using two different scales 
( ) ( ) ( )

11, , /ll l lψ ε ε=x x x , where ( )lε x  is the 

conductivity ( )
0l

ε x  smoothed over scale l , 

. The field  has too many 
arguments. We define a simpler field 

1l l< ( 1, ,l lψ x )

( ) ( ) 1, , , / | , /l l l l lλϕ ψ λ λ 1λ== ∂ ∂ =x x , that 
contains the same information, then we have the 
relation  

 ( ) ( ) .
ln

,ln
l ll

ε
ϕ=

∂
∂

x
x  (2) 

The solution to Eq. (2) has the form  

 ( ) ( )
0

1
0 1

1
0

exp , .
L

l
l

dll
l

ϕε ε
⎡ ⎤
−⎢
⎢ ⎥⎣ ⎦

= ∫ xx ⎥  (3) 

We suppose that the conductivity has 
heterogeneities of the scale   from the interval 1l

( )0 ,l L , where  is minimal and  is maximal 
scales of the measurements, , 

0l L
3L V

( ) ( )
0l

ε ε=x x . The field  is assumed to be 

statistically homogeneous and isotropic and then 
a correlation function is as follows 

( ,lϕ x )

( )( )2 ,y1 1 1( , ) , ) ( , ) ( , ) , ,(l l l l l lϕ ϕ ϕ ϕ− = Φx y x y x −  

where  is the probability averaging. For 
simplicity, we use the same notation  in the 
right-hand side. If the function 

Φ
ϕ  is statistically 

invariant to the scale transform, its correlation is 
satisfied by . The approximation, 

the fields 

( )( 2 2/ lΦ x y− )
( ) ( )1, , ,lϕ ϕx y l  with different scales 

 at any  are considered to be statistically 
independent. This is usually assumed in the 
scaling models and reflects the decay of statistical 

dependence, when the scales of fluctuations 
become different in magnitude. This means that 

1,l l ,x y

( ) ( )1, , ,lϕ ϕx y l  are delta correlated in the 
logarithm of scale. The latter was proposed in [1]. 
A simple model without such a request is a 
conformal symmetric model [3]. To describe the 
probability distribution for the integral from (7) 
for large , we use the theorem about sums of 
independent variables. If the variance of 

0/L l
( ),lϕ x  

at a given point exists, then the theorem says that 
the integral from (7) for very large  tends to 
a normal field. In the opposite case (the second 
correlation function does not exist), the integral 
tends to a field described by a stable distribution 
[10]. The case of a stable distribution is 
considered in [11].  In this paper, for simplicity, it 
is assumed that 

0/L l

( ),lϕ x  has normal distribution. 
 
 
3 A subgrid model 
The conductivity function ( )ε x  is divided into 
two components with respect to the scale . The 
large-scale component (ongrid)

l
( ),lε x   is 

obtained by statistical averaging over all ( )1,lϕ x  
with 0 1 ,l l l< <  where  is small. A 
small-scale (subgrid) component is equal to 

0dl l l= −

'( ) ( ) ( , )lε ε ε= −x x x : 

0

1 1
0 1 1

1 1

( , ) exp ( , ) exp ( , ) ,
L l

l l
dl dll l l
l l

ε ε ϕ ϕ
⎡ ⎤ ⎡ ⎤

= − −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
∫ ∫x x x  

 
0

0

1
1

1

1
1

1

exp ( , )
'( ) ( , ) 1 .

exp ( , )

l

l

l

l

dll
l

l
dll
l

ϕ
ε ε

ϕ

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠= −⎢ ⎥⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫

∫

x
x x

x
 (4) 

A large-scale (ongrid) component of the pressure 
( , )p lx  is obtained as averaging solutions of 

Eq.(1), in which a large-scale component of 
conductivity is fixed, and a small component 
( )'ε x  is a random variable. A subgrid component 

of the pressure is '( ) ( ) ( , )p p p= −x x x l .  
Substituting the expression for ( ), ( )pε x x  in 
Eq.(1) and averaging over a small-scale 
component, we obtain:  
 ( , )( , ) ( , ) '( ) '( ) 0,i i i ll p l p εε ε⎡ ⎤∇ ∇ + < ∇ > =⎣ ⎦xx x x x (5) 

where 
( , )lε x

 is averaging over 1l l<  when 

( ),lε x is fixed. The second term in Eq.(5) is 
unknown. This cannot be rejected without 
preliminary estimation, since the correlation 
between the conductivity and the pressure 
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gradient may be substantial.  The choice of the 
form of the second term in (5) determines the 
subgrid model. This expression is estimated using 
perturbation theory. Subtracting (5) from (1) and 
ignoring the terms of second order of smallness 
including ( , )'( ) '( ) '( ) '( )i ip p ε lε ε∇ − < ∇ > xx x x x , we 
obtain the subgrid equation for the pressure: 

 ( ) ( ) ( ) ( )1' '
, i i , .p p l
l

ε
ε

Δ = − ∇ ∇x x
x

x  (6) 

The variables ( ),lε x , ( , )p lx  in the right-hand 
side of Eq.(6) are considered to be known, these 
variables and their derivatives varying  slower 
than  and its derivatives. Therefore,  ( )'ε x

( ) ( ) ( ) ( )1 1' ' ' '
4 , j j

V

, ,p d p l
l r

ε
πε

≈ ∇ ∇∫x x x
x

x  (7) 

where 'r = x x− . From (7), obtain  

( )

( ) ( ) ( )
( )

,

2

'( ) '( )

,1 1 ' ' ' '
4 ' ' ,

i l

j

i j

p

.
p l

d
x x r l

εε

ε ε
π

< ∇ > =

∇∂
∂ ∂∫

xx x

x
x x x

xε

(8) 

From (4), as has log-normal distribution, 
we have  

( )'ε x

( ) ( )2'( ) ' ' ( , ) , / .l r l dlε ε ε≈ Φx x x l  (9) 
 

Using (9) and the equality 
  4 / 3 , / ,i j ij i in n d n x rω π δ= =∫
where ω  is a full solid angle, obtain 

( ) ( ) ( )0,' ' ( , ) , / 3i il ,p l l p l dlεε ε< ∇ > ≈ −Φ ∇x x x l

l

(10) 

where . Here, the integration over 
the finite volume V  in (7) is replaced by the 
integration with infinite limits, because the 
correlation function Φ  is small outside the 
domain of scale . Such a substitution gives a 
coarse estimation near to the boundary, but this 
does not affect the determined mean values, 
because Substituting (10) in Eq. (5) in the 
limit , we come to the expression for the 
effective coefficient, which correctly describes a 
mean value of the filtration velocity: 

( ) ( )0 0,lΦ =Φ

L

3 .L V
0l l→

( ) ( )1 1
0 1

1

,exp ,
L

l
l

ef
dll
l

ϕε ε
⎡ ⎤
−⎢ ⎥
⎣ ⎦

= ∫ xx  

 ( )
1
0

0
ln 1 .
ln 6

ld l
d l

ε
ϕ= − + Φ  (11) 

If a function ϕ  is statistically invariant to the 
scale transform, the solution to Eq.(11) has 
especially a simple form: ( ) 0 / 61

0 0 /l L l L ϕε ε − +Φ= , 
where the constant 0Lε  describes  the filtration 

velocity for the largest scale 0 .L pε ∇v = −   
 
 
3 A subgrid model for dispersion 
Let at the initial time a colored liquid flow-in into 
a volume filled with a pure liquid. The interface is 
labeled with passive particles, which are moved 
by a stationary velocity field. Since both liquids 
have the same physical parameters, their filtration 
velocities satisfy Darcy equation (1). The 
movement of the labeled particles is described by 
the equation 

 ( ) ( ) ( ) 0, 0i
i

dm p
dt

ε= ∇ =
xx x x ,ix

N

 (12) 

where 1,...,i =  is the number of a particle. The 
porosity coefficient ( )m x  is constructed similar 
to the conductivity coefficient: 

 ( ) ( )
0

1
0 1

1
0

exp , .
L

l
l

dll
l

m m χ
⎡ ⎤
−⎢
⎢ ⎥⎣ ⎦

= ∫ xx ⎥  (13) 

The function ( )1,lχ x  is assumed to have a 
normal distribution and to be delta correlated in 
the logarithm of scale. In fact, the distribution 
cannot be exactly Gaussian, because the normal 
density has a negative tail. The distribution of the 
integral in (13) is more likely an asymmetric 
stable distribution or the positive part of the 
normal distribution. This case should be 
considered separately, because of cumbersome 
formulas. Here, for the numerical modeling, a 
natural limit for the porosity ( )0 1m< <x  is 
satisfied by selecting normal distribution 
parameters. The correlation between the porosity 
and the conductivity fields is determined via the 
correlation of the fields 

( ) ( ) (1 0, , , ln lnl l l l lχϕ χϕ δΦ = Φ −x x )1 . In this case, 
the self-similarity of these fields is not violated. 
Let us derive a formula for the joint contribution 
of small-scale fluctuations of conductivity and 
porosity to the evolution of a large-scale velocity 
of labeled particles. The field of porosity .is 
divided, as in the previous section, into two 
components with respect to a scale .Here  l
( ),m lx  is determined in the same way as 

conductivity 

0

1
0 1

1

1
1

1

( , ) exp ( , )

exp ( , ) ,

L

l

l

l

dlm l m l
l

dll
l

χ

χ

⎡ ⎤
= −⎢ ⎥

⎣ ⎦

⎡ ⎤
−⎢ ⎥
⎣ ⎦

∫

∫

x x

x
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0

0

1
1

1

1
1

1

exp ( , )
'( ) ( , ) 1 ,

exp ( , )

l

l

l

l

dll
l

m m l
dll
l

χ

χ

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠= −⎢ ⎥⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎝ ⎠⎣

∫

∫

x
x x

x
⎦

(14) 

We carry out similar partitions for the 
displacement and the pressure 
 ( ) ( ), ', ( ) ( , ) '(t t l p p l p= + = +x x x x x x),  
where ( , )p lx , ( ),t lx  are, respectively, the 
solutions to Eq.(1),  Eq.(12) averaged over the 
small-scale fields ', 'mε . Averaging equation (12) 
over ', 'mε  with given , mε  yields the ongrid 
equation for the particles velocities: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,
, ,

'
' ' ' .

i

i

d t l
m l l p l

dt
d t

p m
dt

ε

ε

= − ∇

− ∇ −

x
x x

x
x x x

,x
 (15) 

The velocity of simulated fluctuations 
( )'id t

dt
x

 is 

found from the equation: 

 

( )
( ) ( ) ( )

( ) ( )

( )
( )

( )

' ,' , '
, ,

' ,
.

,

i

i

ld p l p
dt m l m l

m d t l
m l dt

ε ε
= − ∇ − ∇

−

x xx x x
x x

x x
x

 (16) 

The substitution of (16) into Eq.(15) gives 

 

( )
( ) ( )
( ) ( )

( )
( ) ( ) ( )

( )
( )

( )
2

' ''' ,
,

', ,
' '

, ,

i

i

mdm
dt m l

ml d
m p

m l m l dt

ε

ε

− = ∇

+ ∇ +

x xxx
x

xx x
x x

x x
.

p l

t l

x

(17) 

The second statistical moments in Eq. (17) are 
calculated under the same assumptions with 
respect to ( )'m x  and the scale l as for obtaining 
appropriate moments when deriving effective 
conductivity coefficients 

 

( ) ( )
( ) ( )
( ) ( )

2

0

'( ) ' ' ( , ) , / ,

'( ) ' ' ( , ) ( , ) , / ,

'( ) ' ( , ) ( , ) / 3 ,

m m m l r l dl l

m m l l r l dl l

m p l m l p l dl

χχ

ϕχ

ϕχ

ε ε

≈ Φ

≈ Φ

∇ ≈ −Φ ∇

x x x

x x x x

x x x x l

l

(18) 

where . For the ongrid 
component  from (14) follows  

( ) ( )0 0,lϕχ ϕχΦ = Φ
( , )m lx

 ( )1( , ) ( 1 .
2l

dlm l m l
l

χχ χ
⎡ ⎛ ⎞≈ + Φ −⎜ ⎟⎢

⎝ ⎠⎣
x x)

⎤
⎥
⎦

 (19) 

If we substitute (18) into (17), we arrive at: 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

0

0

' 2' ,
3

,
, .

i

i

d dlm l l
dt l

d t ldlm l l
l dt

ϕχ

χχ

ε− ≈ Φ ∇

+ Φ

xx x

x
x

,p lx
 

Thus, the estimation for the last term in ongrid 
equation (15) has been obtained. As a result, the 
equation takes the form: 

( ) ( )

( ) ( )

0

0 0

,
, 1

2, 1
3

id t ldlm l
l dt

dll p
l

χχ

ϕϕ ϕχ

ε

⎡ ⎤−Φ⎢ ⎥⎣ ⎦
⎡ ⎤Φ + Φ

= −⎢ ⎥
⎣ ⎦

x
x

x x, .l∇

 

Substituting the values ( ) ( ), , ,l m lε x x  from (19) 
and neglecting the second order terms with 
respect to dl, yields  

( ) ( )

( ) ( )

0

0 0

,11
2

1 21 1
6 3

i
l

l

d t ldlm
l dt

dl , .p l
l

χχ

ϕϕ ϕχ

χ

ε ϕ

⎡ ⎤⎛ ⎞− + Φ⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞= − − Φ + Φ − ∇⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

x
x

x x

In the limit , we obtain the equation for the 
effective conductivity and porosity  

0l l→

 
( ) ( )

( )

0
0 0

0
0

ln 1 2 ,
ln 6 3

ln 1 .
ln 2

l

l

d l l
d l

d m l
d l

ϕϕ ϕχ

χχ

ε
ϕ

χ

= − + Φ − Φ

= + Φ
 (20) 

If the functions ,ϕ χ  are statistically invariant to 
the scale transform, the parameters ,ϕ  χ , 

0
χχΦ , 0

ϕχΦ , 0
ϕϕΦ  are constant, we obtain 

 
( )
( )

0 0

0

/ 6 2
0 0

/ 2
0 0

/

/ ,

l L

l L

l L

m m l L

ϕϕ ϕ

χχ

ϕ

ϕ

ε ε − +Φ − Φ

−Φ −

=

=

χ

 (21) 

where the constant  satisfies the equation 0Lm

 0 0 .i
L L

dm p
dt

ε= ∇
x  

 
 
4 Numerical modeling 
For the numerical calculation, we use 
dimensionless variables. The problem is solved 
for 0 =1 ε  in a unit cube. On the edges of the 
cube 0y =  and 1y = , the pressure is set constant 

1 2 1 20 1
, ,

y y
p p p p p p

= =
1= = − = . On the other 

edges of the cube, the pressure is specified by the 
linear relation for : y ( )1 2 1p p p p= + − y . The 
main filtration flow is directed along Y-axis. The 
integrals in (3), (13) are replaced by a finite 
difference formula, in which it is convenient to 
pass to the logarithm with base : 2
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( ) ( )

( ) ( )

0

0

4

6

4

6

exp ln 2 , ,

exp ln 2 , .

il i

il i
m

ε ϕ τ τ

χ τ τ

−

=−

−

=−

⎡ ⎤= − ∑ Δ⎢ ⎥⎣ ⎦
⎡ ⎤= − ∑ Δ⎢ ⎥⎣ ⎦

x x

x x
 (22) 

For the spatial variables, we use  
grid, the scale step 

256 256 256× ×
1τΔ = , 

( )1i iτ τ= − Δ , , 6,... 4i = − − 2 i
il

τ= . The delta 
correlation in the scale logarithm means that the 
fields are generated. Independently, on each scale 

iτ  we use the correlation functions:  

( ) ( )

( ) ( ) ( )

0

20

, , ln 2,
ln 2

, , 1 ,
ln 2

i i

i i i

ϕϕ

χχ

ϕ τ ξ τ ϕ

χ τ γξ τ γ σ τ χ

Φ
= +

Φ
= + − +

x x

x x x ln 2,  

where 1 1γ− ≤ ≤  γ  is a correlation coefficient. 
The independent Gaussian fields ( ), iξ τx , 

( ), iσ τx  have a unit variance, zero mean and the 
correlation function: 

 

( )2 2

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

exp / 2 .i

i j i j

i j i

ij
τ

ζ τ ζ τ ζ τ ζ τ

jζ τ σ τ ζ τ σ τ

δ

−

= −

⎡ ⎤= −⎣ ⎦

x y x y

x y x y

x y−

(23) 

The structure of the correlation matrix allows us 
to represent it in the form of direct product of 
four matrices of lower dimensionality and apply 
the algorithm “along rows and columns” for the 
numerical simulation [12]. 

0

1

0

1
0

5

10

15

20

ε 

x y 

 
Fig.1 The conductivity for three scales in the mid-
span section, 00.15, 0.3ϕϕϕ = Φ = . 
 
The constants 0 0, , ,ϕϕ χϕ χ Φ Φ χ  should be 
chosen from experimental data for natural media 
[2]. In Fig.1, we have the self-similar 
conductivity in the mid-span section for formula 
(22). The scale of the extreme fluctuations is 

. This allows us to replace the statistical 

averaging by the spatial averaging. The minimal 
scale is 1/ , which is conditioned by the 
requirement that the difference problem 
considered should provide a good approximation 
of Eq.(1), Eq.(12). For solving Eq.(1), an iterative 
method combined with the Fourier transform and 
the sweep method is used [13]. According to the 
procedure of deriving the subgrid formulas, we 
have to numerically solve the complete problem 
and perform probability averaging over small-
scale fluctuations to verify the formulas. As a 
result, we obtain a subgrid term, which can be 
compared to the theoretical expression. The 
probability averaging requires a multiple solution 
of the complete problem. We performed a more 
efficient verification, based on the power 
dependence of the velocity of labeled particles for 
a self-similar medium. We determine the 
corresponding mean values replacing the 
statistical averaging by the spatial averaging and 
calculate the same mean values using theoretical 
formulas. We also compare the results obtained to 
our theoretical formulas with the results obtained 
with "ordinary" perturbation theory. The ergodic 
hypothesis is verified. Effective conductivity and 
porosity should yield the true the velocity of the 
front (labeled particles) in the scale interval ( . 
The numerical verification of formula (11) has 
performed in [4]. Let  be the mean velocity 
of the front along Y-axis (the mean velocity along 
other axes is equal to zero): 

1/8L =

32

, )l L

iw

 
( )
( ) ( ), .k

k

k kw p
m
τ

τ

ε
τ∂

= −
∂

x
x

x
 

1 2 3  4
0

0.5

1

1.5

2

2.5

log
2
Ω 

k  
Fig.2 Lines 1, 2, 3 show the theoretical 
dependence for the correlation coefficient 

1, 1, 0.5γ = − , respectively. The results of 
numerical modeling are marked with asterisk. 
 
The following formulas are compared with the 
results of numerical modeling: 

2 0 0
1 2 1log
6 3 2

L

w
w

ϕϕ ϕχ χχτ

τ
0ϕ χ τ⎛ ⎞= − Φ + Φ − − Φ⎜ ⎟

⎝ ⎠
(24) 
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The calculations results use the following 
parameters: 

0 0 0

0

0.15, 0.3, 0.2, 0.05,

0.7 0.015.

mϕϕ χχ

ϕχ

ϕ

χ γ

= Φ = = Φ =

= Φ =
  

Fig.2 shows the dependences for different 
correlation coefficients. We plot the ordinate of a 
point ( )2log /iw w−Ω = 3  and the abscissa 
indicates to the number of scales in (22). In Fig.3, 
we compare the theoretical results for  with the 
results of numerical simulation and results of 
“ordinary” perturbation theory. 

w

1 2 3 4
0

0.5

1

1.5

2
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Fig.3 Lines 2, 3 show the results of “ordinary” 
perturbation theory and the theoretical results. 
The results of numerical modeling are marked 
with asterisk, 00.3, 0.6, 1.ϕϕϕ γ= Φ = =  
 
5 Conclusion 
We have obtained the formulas enabling us to take 
into account the contribution of small-scale 
components to the calculation of mean 
characteristics of the fields. The conductivity and 
the porosity were simulated as extremely 
heterogeneous fields close to multifratals. The 
latter is attained if the scale  in formulas (3), (13) 
tends to zero. Numerical verification is carried out 
for a medium, in which conductivity and porosity 
possess the self-similarity property. The power 
dependences on the scale for the effective porosity 
and conductivity have been calculated. The mean 
of filtration velocity possesses the dependence, as 
well as the mean velocity of the front. The 
formulas obtained are valid in the absence of self-
similarity. In this case, the parameters of 
distributions in formulas (11), (20) depend on the 
scale. It is shown that the subgrid modeling makes 
possible, even with large variance of conductivity, 
to obtain good results. In the approach used, 
analysis is not beyond the scope of the differential 
equations apparatus and the theory of random 

fields. The subject of the investigations is 
parameters of mean values and correlation 
functions which can be measured  
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