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Abstract: - In this paper we provide a history and use of concept maps and discuss the use of such maps in 
education, referring to the various stages of the instructional process. We also define concept graphs and trees, 
which provide educational researchers access to the rich tools and methods of graph theory. For  concept graphs 
and trees various optimality criterion have been introduced and an algorithm for constructing such graphs/trees has 
been provided. Updating concept graphs by using the Bayesian approach has been discussed and an example for a 
introductory statistics course is given. Later in the paper concept trees are extended to concept vines. An algorithm 
for the concept vines is also provided. Instructional technology tools that make use of concept maps/ 
graphs/trees/vines are needed  to make them accessible in education.  
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1 Introduction, Motivation, and 
History 
Cognitive maps, also referred to as concept maps, 
mind maps, knowledge maps, cause maps and 
graphic organizers have been used to explain 
cognitive structures in the brain and to make visible 
individuals’ understanding of particular concepts. 
Two types of cognitive mapping studies are reported 
in the literature, those that are involved primarily 
with schemata and those that involve mapping 
perceptions held in the mind concerning space and 
place.  Geographers, for example are interested in 
how mental images are constructed, how these 
images relate to real spaces, and how people differ in 
their evaluation of places [15] [24].  On the other 
hand, cognitive maps involving schemata in the form 
of ideas and perceptions are used for identifying 
expert knowledge, organizing ideas or plans, and 
evaluating individuals’ understanding of concepts.  

   Cognitive mapping-spatial and information in the 
form of ideas and concepts involve schemata, the 
precepts or information that is coded and stored in 
the brain for later spatial ability and abstract thinking.  
Cognitive structures or coding systems are expanded 
as new information is mapped onto existing maps 
[22]. Assimilation occurs as new information is 
added to existing information; accommodation 
occurs when previous information is altered due to 
changes in the cognitive map [2] [16].  Overall, 
mental maps or schemata help to organize data, 
making it understandable and retrievable when 
needed to respond to stimuli [24].  Use of concept 
maps, specifically concept graphs/trees/vines as tools 
for educational curriculum design and instruction is 
the focus of this paper. 
 
1.1 Concepts and Concept Maps 
Concepts are general ideas or understandings that are 
the result of specific occurrences. Regularity in 
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objects, events, or experiences over time is 
understood, labeled, and shared. Individuals come to 
understand concepts through meaningful learning 
experiences. For young children this is often through 
recognition of pattern and discovery learning as 
mental structures are built. For others learning is 
mediated through language, along with modeling, 
concrete experiences, and reception learning [2] [13] 
[17] [25].   
   Concept maps are tools which allow users to 
represent knowledge by illustrating relationships 
among concepts through use of nodes and links [23], 
nodes being the ideas, links being propositions.  
These maps may take the form of static, dynamic, 
interactive, or multi-layered. A variety of 
instructional technology tools allow users to make 
use sophisticated levels of concept mapping. Novak 
& Canas explain that these maps include “concepts, 
usually enclosed in circles or boxes of some type, 
and relationships between concepts indicated by a 
connecting line linking two concepts.  Words on the 
line, referred to as linking words or linking phrases, 
specify the relationship between the two concepts” 
[13]. Propositions are statements about two or more 
concepts connected with linking words or phrases to 
form a meaningful statement. Maps acting as mental 
models, are used to model the cognitive structures 
and reflect cognitive processes of respondents [8]. 
Williams describes concept maps as a “direct method 
of looking at an individual’s knowledge within a 
particular domain and at the fluency and efficiency 
with which knowledge can be used” [27].  
 
1.2 History and Uses 
Maps have been used over time to note and find 
location and to explain or put into context important 
information.  Reiter reports the Chinese word t’u, 
often translated as picture, drawing, chart and map is 
found in the literature as early as the 3rd century B.C.   
While maps are a specific kind of t’u serving 
“topographical, administrative, and military 
purposes” [20], t’u also referred  to pictures or charts 
and explanations, each being important in explaining 
information contained in the other. Throughout 
history pictures, diagrams, and flow charts have been 
used to explain ideas and organize plans.   
   Mind maps or mental maps have been researched 
by geographers to understand the cognitive-
behavioral processes that link real world places and 
spaces with representation held in the mind and to 
understand attention as a factor in construction of 

mental maps [15].  In psychology cognitive maps 
have been investigated to understand behavior in 
relation to experiences, thoughts, and feelings.  In the 
area of management, management organization 
cognition (MOC) research makes use of causemaps 
or directed graphs to understand cognitive structures 
that influence the decision making process at 
individual and organizational levels, though these 
processes are not observable. Causemaps are used 
not to study cognition, but rather as a tool for 
representation and analytic tasks.  Causemaps “help 
capture-for overt observation and analysis-covert 
aspects of individual and social thinking” [8].   
 
2 Conceptual Maps in Education 
In education, concept maps have been identified as 
good representational tools for cognitive 
developmental change. David Ausubel and later 
Joseph Novak and colleagues have done extensive 
research in the use of concept maps [2] [11] [12] 
[13]. Ausbuel’s work involves use of concept maps 
in the form of advance organizers for eliciting prior 
knowledge and organizing learning processes for 
students. Novak’s work, a twelve-year long 
longitudinal study, began at Cornell University with 
investigations of children’s science learning. Novak’s 
work based on constructivist learning theory and 
Ausubel’s assimilation theory involves use of 
concept maps as assessment tools.  Both Ausubel and 
Novak suggest that good maps represent hierarchical 
structure and ability of respondents to identify cross-
links between concepts.    
   In education concept maps may be used at different 
stages in the instructional process. Conceptual maps 
are used to organize knowledge prior to instruction 
[12]. Concept maps used in curriculum mapping help 
develop an overall framework of the curriculum or 
course, identify important concepts, determine 
prerequisite knowledge, and construct a course 
outline. 
   Used within the instructional process, concept 
maps serve as scaffolds to organize and structure 
knowledge [2] [3] [9], to elicit prior knowledge-a 
component of meaningful learning [13], to bridge the 
gap between what students already know and new 
knowledge [23], and to motivate critical thinking 
about a topic.   Creating concept maps by 
brainstorming or representing what students already 
know about a given topic is done as a large group or 
as individuals. Advance organizers in the form of 
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partially completed maps are used to help students 
gather information from texts and lectures, as they 
search for the key concepts and principles [12]. 
Advance organizers may also be concept maps used 
to initiate instruction by providing a picture or map 
of the topic for students.  Used in this way, concept 
maps supply big picture and detailed information, 
providing important context for students who are 
field dependent and field independent students.  
These maps serve to organize information, 
demonstrating for students where a line of discussion 
will lead.  Use of concept maps as advance 
organizers [2] provides clarity for students but also 
involves disequilibrium, a search for knowledge, and 
a return to equilibrium.  Similarly, concept maps are 
an effective tool in helping students synthesize 
knowledge construction in online environments, as 
reported by Ortegano-Layne & Gunawardena, in 
which concept maps were used as a tool for 
organization (management and preservation) of 
information [14]. Trepagnier also reports “students 
achieve satisfaction (equilibrium) by determining 
relationships among pieces, some of which are 
obvious, but others of which are more obscure, 
requiring considerable thought and imagination” 
[23].  Lin notes that learners understand 
interrelationships among basic concepts due to topics 
and subordinate levels represented on concept maps 
[9].  Hyperlinks embedded within concept maps 
allow learners to choose paths that support further 
investigation of concepts based on need, interest, and 
time.   
 
2.1 Use in Assessment 
Conceptual maps are also used for assessment.  The 
map is assumed to make visible students’ thinking, 
though it may be a representative sample and may 
not include tacit knowledge [27].  Careful scoring of 
concept maps provides important information useful 
for making informed teaching decisions.  Novak & 
Musonda suggest providing students with a list of 
relevant concepts (always context dependent) and 
assigning numerical scores to concepts, propositions, 
and correct links [11].  “The values selected are 
based on assimilation learning theory, where 
derivative subsumption (e.g., new examples of the 
same concept) is viewed as more easily achieved 
than correlative subsumption (e.g., acquisition of 
alternative but closely related concepts” [11]. 
Williams (1988) also reports use of concept maps for 
assessment as instruments of conceptual 

understanding of function in mathematics education. 
Williams lists valid propositions, levels of hierarchy, 
and cross-links ad categories for scoring concept 
maps [26].  Sim-Knight, Upchurch, Pendergrass, 
Meressi, Fortier, Tchimev, VonderHeide, & Page 
conclude that concept maps may be used to 
effectively assess students’ understanding of content 
and provide information for course and curricular 
improvement [21]. 
 
2.2 Use in Design and Instruction 
Conceptual graph analysis, a form of cognitive task 
analysis is also used to represent cognitive structure, 
in this case, the structure of an expert’s thinking. 
Originally developed to elicit and represent detailed 
knowledge from computer science experts it was 
later adapted for use in instructional design [6].  
While instructional design is concerned with 
improving instructional organization and methods, 
for the purposes of optimizing learning), conceptual 
graph analysis (CGA) uses question probes organized 
by node type to elicit tacit expert knowledge [18] 
[19]. The authors of this paper (ours) suggest concept 
graphs may be used to organize an instructor’s expert 
conceptual knowledge for curriculum design in 
preparation for instruction.  Such design incorporates 
knowledge of instructional elements including 
concepts to be taught, sequencing of concepts to 
support connections between concepts organized 
around course objectives, and careful monitoring of 
student feedback and progress. Conceptual graph 
analysis may also be used for redesign of curriculum 
plans.  Such redesign would follow elicitation of 
students’ prior knowledge and use of student 
assessment within the instructional process. It is 
believed use of concept graphs may support efficient, 
efficacious teaching and learning.  
 
3 From Concept Maps to Graphs/Trees 
Well-developed definitions, tools, methods and 
approaches of the graph theory can be applied to 
concept maps for use in education. Concept graphs 
are directed graphs with annotated nodes and edges, 
in which the concepts (ideas/topics) are contained in 
the nodes of the graph, and the edges serve to 
represent relationships between them. If the 
relationships between the concepts do not lead to a 
cycle, then the concept graph is called a concept 
tree. Concept trees describe a linear, hierarchical 
learning process. On the other hand cycles, reinforce 
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the previous knowledge and initiate a new 
perspective for the learner. 
   Given a concept graph one can create subgraphs 
that are trees, which will be referred as spanning 
concept trees. Under the assumption that two 
concepts cannot be introduced at the same time  
special trees called paths become worthy of study. In 
application to the instructional process one needs to 
move from concept graphs to spanning trees and then 
the paths.  
 
3.1 Optimality Criterion  
It can be easily noticed that for a given family of 
concepts, graphs, trees, spanning trees, paths, and 
vines are not unique. To be able to form “optimal” 
ones, one needs to create a criterion. In graph theory, 
this has been achieved by specifying a “distance, 

” measure between two nodes. At various 
stages of the instructional process a different measure 
can be critical. Some examples of such distance 
measures in education are the following: proportion 
of the knowledge that needs to be retained to move 
from one concept to other, a measure of association 
between the students’ performances on two concepts,  
and  amount of time required to cover the subsequent 
concept after covering the preceding concept.  

dG u,v( )

   Therefore, our criterion will be based on 
D G( )= dG u,v( )all pairs

of concepts
∑ , which is known as the 

Wiener index of the graph [25].  
 
3.2 An Algorithm for Instructional Process 
First of all we will make distinction between primary, 
secondary, and preliminary concepts. Primary 
concepts will stem from the main learning objectives 
of the course. Secondary concepts will feed the 
primary ones. Preliminary concepts are the ones that 
learners bring to the course. They are part of 
students’ prior knowledge developed in prerequisite 
courses and/or previous experiences. 
Step 1. Create a concept graph for the primary 
concepts. 
Step 2. Consider all possible spanning concept trees 
and select the one with the minimum Wiener 
distance. 
Step 3. For each of the primary concepts create a 
concept graph. 
Step 4. Consider all possible spanning concept trees 
and select the one with the minimum Wiener 
distance. 

Step 5. Consider all of the possible paths and select 
the one with the minimum Wiener distance. At this 
step we construct an order for the contents, that is, an 
ordering such that all ancestors of content i appear 
before i in the ordering. A content order begins with 
a source/basic content and ends with a 
sink/target/outcome content.  In most cases the 
content order is not unique, a criterion is needed to 
select the “optimal” one, such as the Wiener distance. 
Step 6. Update the Wiener distances based on the 
course evaluation/assessment process. 
Step 7. Repeat 1-5. 
 
3.3 Updating the Concept Graphs 
The dynamic and iterative nature of the instructional 
process requires constant updating of the concept 
graphs. Integration of prior knowledge and 
conversion to posterior knowledge based on the 
evaluation/assessment process are the key elements 
of instruction and learning. In this section we will 
look at a way of updating edge properties. We will 
consider the correlation between the students 
understanding or performance between two concepts. 
Let ρij  be such a correlation between concepts i and 
j. we are going to use the Bayesian approach to 
update edge properties. When instructors design a 
course, they will possess a prior state of knowledge, 
which will be reflected in the prior distribution, 
π ρij( ). Given the data from the course 
evaluation/assessment process, one can obtain the 
posterior distribution, π ρij | data( ), by using the 
Bayes’ theorem as follows: 

π ρij | data( )=
f data | ρij( )π ρij( )

f data( )
                            (1) 

The term f data | ρij( ) will tell us how likely one is to 
observe student understanding/performance data 
given the instructors prior knowledge. The term 
1 f data( ) should be viewed as a factor that makes 
the total probability equal to 1 when we consider all 
possible values of the understanding/performance 
measure and it is often referred to as the normalizing 
constant. Therefore, Bayes' theorem can be written as 
Posterior Probability ∝  

Likelihood × Prior Probability. 
   Since the prior distribution has been formed from 
previous experiences, they can be “weighted” with 
the previous number of students the instructor had. 
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Under the assumption of bivariate normality it can be 
shown that the posterior estimate of the correlation is 

ˆ ρ ij = tanh
nprior tanh−1 rprior + ndata tanh−1 rdata

nprior + ndata

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
.     (2) 

 
Consider the following example. An instructor had 
120 students in the past. Based on this prior 
knowledge base, the instructor believes that the 
correlation of performances between two concepts is 
0.70. The instructor teaches the course to 26 students 
and the observed correlation turns out to be 0.27. 
Then the posterior estimate of the correlation will be: 

ˆ ρ ij = tanh 120tanh−1 0.70 + 26tanh−1 0.27
120 + 26

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 0.642(3)     

Another issue that to be addressed is the fact that data 
that will come from student learning outcome 
measures between two concepts will be conditional 
on the concept path followed. Therefore, one needs 
to transform partial correlations, that are the 
correlations of two variables while controlling for (or 
after removing the effect of) a third or more other 
variables, to pairwise correlations. The partial 
correlation between two concepts i and j given that 
the concepts k, l, m and n covered previously will be 
represented by ρij .klmn  for the population and rij .klmn  
for the sample. For instance, r12.34 is the sample 
correlation of learning outcome measures on 
concepts 1 and 2, controlling for (or after removing 
the effect of) learning outcome measures on concepts 
3 and 4. The educator compares the controlled 
correlation (ex., r12.34) with the original correlation 
(ex., r12) and if there is no difference, the inference is 
that the control measures on the outcomes have no 
effect. If the partial correlation approaches 0, the 
inference is that the original correlation is spurious, 
i.e. there is no direct causal link between the two 
original variables because the control variables are 
either (1) common anteceding causes, or (2) 
intervening variables. This translation of  correlation 
will be achieved by using the following formulas [1]: 

ρij.k =
ρij − ρikρ jk

1− ρik
2( )1− ρ jk

2( )
,  (4) 

ρij = ρij.k 1− ρik
2( )1− ρ jk

2( )+ ρikρ jk .                        (5) 

In general: 

  

ρij.q +1,…,p =
ρij.q +2,…,p − ρi,q +1.q +2…,pρ j,q +1.q +2…,p

1− ρi,q +1.q +2…,p
2( )1− ρ j,q +1.q +2…,p

2( )
.     (6) 

3.4 An Example 
A simple example from an introduction to statistics 
course may clarify these ideas. The primary concepts 
of the course are; producing data, descriptive 
statistical analysis, probability models, inferential 
statistical analysis, and statistical models such as 
regression, analysis of variance and analysis of 
contingency tables. Fig.1 provides the connections 
between these primary concepts. The edge properties 
are the prior correlations. Fig. 2 & 3 are the two 
alternative concept paths and associated partial 
correlations based on the priors that have been set by 
the instructor.  
 

 

INFER. STAT.

DATA 

PROB. MODEL

DESCR.  STAT. 

0.20
0.15

0.40 0.70

0.50

0.80 STAT. MODEL 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Primary concept graph and prior correlations 
for an introduction to statistics course. 
 
   Selecting the “better” concept path will depend on 
the instructor’s teaching philosophy (since all 
possible concept paths were not considered, the term 
“better” is used instead of optimal. One may aim to 
make the connections between the primary concepts 
weaker or stronger. In this case our objective will be 
to maximize the strength of the connections. Since 
the Wiener distance for alternative A is higher than 
B, we will view Fig. 2 as a “better” path to follow.  
   Now we will discuss how these prior probabilities 
may be updated given the course evaluation/ 
assessment process results. For simplicity, we are 
going to assume that each one of the five primary 
concepts are evaluated with an exam, and 
prior/posterior correlations are based on 120 past and 
26 present students, respectively. The prior, 
observed, and posterior correlations are given in 
Table. 1 and the resulting concept paths are given in  
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Fig. 2 Primary concept path and associated partial 
correlations on prior correlations (alternative A). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Primary concept path and associated partial 
correlations on prior correlations (alternative B). 
 

Fig. 4 & 5. Even if the “better” path is still alternative 
A, there is a substantial change in the Wiener 
distance of alternative B. This may indicate that 
further collection of data, may make path B “better”. 

INFER. STAT. 

STAT. MODEL 

DATA 

PROB. MODEL

DESCR.  STAT.  

0.200 

0.000

0.767 

0.925 

 

 C
O

N
C

E
T

S 

D
at

a 

D
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c.
 S

ta
t. 

Pr
ob

. M
od

el
 

In
fe

r.
 S

ta
t. 

St
at

. M
od

el
 

Data 
 

1.000 
1.000 
1.000 

0.200 
0.800 
0.347 

0.000 
0.700 
0.153 

0.000 
0.350 
0.065 

0.150 
0.400 
0.197 

Desc. 
Stat. 

Prior 
Obs. 
Post. 

1.000 
1.000 
1.000 

0.000 
0.900 
0.256 

0.400 
0.650 
0.451 

0.000 
0.300 
0.055 

Prob. 
Model

 Prior 
Obs. 
Post. 

1.000 
1.000 
1.000 

0.700 
0.950 
0.778 

0.500 
0.950 
0.651 

Infer. 
Stat. 

  Prior 
Obs. 
Post. 

1.000 
1.000 
1.000 

0.800 
0.800 
0.800 

Stat. 
Model

   Prior 
Obs. 
Post. 

1.000 
1.000 
1.000 

Table. 1 Prior, observed, and posterior correlations 
 

INFER. STAT. 

STAT. MODEL 

PROB. MODEL

0.200 

0.000 

0.927 

DATA 

DESCR.  STAT.  

0.572 

 

INFER. STAT.

STAT. MODEL 

DATA

PROB. MODEL

DESCR. STAT.

0.347

0.219

0.782

0.852

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Primary concept path and associated partial 
correlations on posterior correlations (alternative A). 
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Fig. 5 Primary concept path and associated partial 
correlations on posterior correlations (alternative B). 
 
4 From Concept Trees to Vines 
Vines are another from of concept graphs that serve 
as effective tool for modeling concepts. The concept 
vine is a nested concept tree where edges of each 
concept tree become the concepts of another concept 
tree [7]. Concept vines are useful when the integrated 
knowledge of pre-concepts (primary and secondary) 
are required.  
 
 
 
 
 
 
 
 
 
Fig. 6 An example of concept vine. 
 
   Fig. 6 shows a concept vine on 4 concepts. The 
three nested concept trees are distinguished by the 
line style of the edges; tree 1 has solid lines, tree 2 

has dashed lines, etc. The conditioned ( before |) and 
conditioning ( after |) sets associated with each edge 
are determined as follows: the concepts reachable 
from a given edge are called the constraint content 
set of that edge. When two edges are joined by an 
edge of the next content tree, the intersection of the 
respective constraint content sets are the conditioning 
contents, and the symmetric difference of the 
constraint content sets are the conditioned contents. 
Note that each pair of contents occurs once as 
conditioned variables.   

INFER. STAT. 

STAT. MODEL 

PROB. MODEL

0.322 

0.153 

0.847 

DATA 

DESCR.  STAT.  

0.47

    The following is an algorithm for construction  of 
concept vines. 
Step 1. Content Order. We construct an order for the 
contents, that is, an ordering such that all ancestors of 
content i appear before i in the ordering. A content 
order begins with a source/basic content and ends 
with a sink/target/outcome content.  In most of the 
cases the content order is not unique.  
Step 2. Factorize Overall/Main Content. We first 
factorize the overall content following the content 
order.  If the order is 1,2,...n,   
 
Content(1, 2, …, n) 
Content(1) 
Content(2|1) 
Content(3|1,2) 
… 
Content(n|1,2, …, n-1) 

 
   Next, we underscore those learning nodes in each 
learning condition (prerequisite) which are not 
necessary in the comprehension of the conditioned 
content. For each term, we order the conditioning 
contents, i.e. the contents right of the “|”, such that 
the underscored contents (if any) appear right-most 
and the non-underscored contents left-most.  

C
on

ce
pt

 1
 

C
on

ce
pt

 4
 

C
on

ce
pt

 3
 

C
on

ce
pt

 2
 

Step 3. Quantify Concept Vine for Content n. 
Suppose the last term looks like:  
Content(n | n-1,n-3,...n-2, 3,2,1).  
Construct the concept vine with the content nodes in 
the order in which they appear, starting with n (left) 
and ending with the last underscored node (if any). If 
the vine Content(n-1, n-3,...1) is given, the vine 
Content(n, n-1,...1) can be obtained by adding the 
edges:  
(n, n-1), (n, n-3| n-1)....(n, 1 | n-1,...2).  
   For any underscored content node k, we have 
contents n and k unrelated given all non-underscored 
nodes or any subset of underscored’s not including k. 
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For any non-underscored content node j, the joint 
relationship between contents n and j given non-
underscored contents before j needs to be assessed. 
The conditioned contents (n,j) correspond to an arc in 
the graph. Write these conditional contents next to 
the corresponding arcs in the graph.  
Step 4. Quantify Concept Vine for contents n-1, n-2 
etc. Proceed as in step 3 for contents 1,2,...n-1. 
Notice that the order of these contents need not be 
the same as in the previous step. Continue until we 
reach the content vine for 1 and 2 or until the order 
doesn’t change in smaller subvines. i.e, if for content 
4 the vine is Content(4321)  and for content 3 it is 
Content(321) then we can stop with content 4; or 
better,  we can quantify the vine Content(321) as a 
subvine of Content(4321).  
Step 5. Construct the Concept Vine. Use in the 
instructional process. 
 
5 Conclusion 
The research that we have presented is an outcome of 
interdisciplinary collaboration that includes 
education, graph theory, and statistics. Moving from 
concept maps to concept graphs/trees and concept 
trees to concept vines opens up various opportunities 
to improve all stages of the instructional process. The 
tools introduced in this paper have the potential to 
allow optimization of instruction based on the 
identified target student body, integration of students’ 
prior knowledge and needs, integration of instructors’ 
experience and expertise, and empowerment of 
instructors’ decision making. One needs to weigh the 
time factor for developing such tools with the impact 
on students’ learning that results from the use of 
these tools. We are in the process of expanding the 
implementation, and creating an extensive database  
in more than one field to address this issue. Our 
research indicates  a need for further theoretical work 
on instructional design, statistics, and graph theory. 
We aim to present more results in these fields in our 
next paper. To provide access to the ideas introduced 
in this paper by the educators we aim to develop 
various instructional technology tools in the future.  
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