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Abstract: - An approach to modeling channel and pipe flows of incompressible viscous fluid based on a unified 
variational principle valid for both laminar and turbulent regimes is proposed. For low Reynolds numbers this 
variational principle reduces to the principle of minimum dissipation. For high Reynolds numbers it enables one to 
calculate the velocity profiles and the corresponding friction factors with reasonably good accuracy. 
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1   Introduction 
One of long-standing issues in fluid dynamics is how to 
propose a unified theory of channel and pipe flows 
which can predict the transition from laminar to 
turbulent regime and simultaneously calculate the 
velocity profile and the friction factors for all Reynolds 
numbers [1]. Up to now, most of researchers in the field 
share the believe that this could be done by solving the 
Navier-Stokes equation [2,3]. 
     The present paper proposes an approach deviating 
largely from this main stream. It focuses on the turbulent 
modeling [4] rather than solving the Navier-Stokes 
equation. The starting point is the variational principle of 
minimum dissipation which is indeed the direct 
consequence of the Navier-Stokes equation and which 
can be used to determine the velocity profiles of laminar 
flows. However, as the Reynolds number becomes large, 
new vortices may occur and we assume that the 
Reynolds stress depends on the flow generated by these 
new vortices. We attempt at formulating a variational 
principle involving the statistically average velocities of 
turbulent flow and the flow generated by new vortices by 
taking into account the interaction between large-scale 
and small-scale vortices through the energy cascade [5]. 
The empirical law of wall [6,7] is used to find the 
nonlinear term responsible for the interaction between 
vortices. We will show that the proposed variational 
principle reduces to the principle of minimum 
dissipation for small Reynolds number. For large 
Reynolds numbers it enables one to predict the velocity 
profile and the friction factors for turbulent flows with 
reasonable accuracy as compared with experimental 
data. 
 
 
2   Shear flow 
Consider an incompressible viscous fluid bounded by 
two parallel plates of infinite extent. The lower plate 

occupying the plane 0=y  is at rest. To the upper plate 
occupying the plane hy 2=  the constant force τ  per 
unit area is applied. The shear flow (or Couette flow) 
driven by the motion of this plate exerts the resistance to 
it through the viscous shear stress. If the resistance is 
equal to the applied force, the stationary flow will be 
settled. The problem is to determine the velocity of the 
stationary flow as function of τ . 
     It turns out that the solution of this problem exhibits 
extremely different behaviors at small and large τ . In 
the laminar case (at small τ ) the solution can be found 
by the following variational principle: among all 
admissible velocity fields  satisfying )(yu 0)0( =u  the 
true velocity field  minimizes the dissipation 
functional 

)(ˆ yu

)2(22
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1 hudyuD
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τη −′= ∫ ,                                          (1)    

with η  being the viscosity and the prime denoting the 
derivative. The first term in (1) describes the dissipation 
(per unit area), while the second term corresponds to the 
power of the external force and can be regarded as the 
energy source. 
     It is easy to show that the minimizer of (1) satisfies 
the equation τη =′u  which leads to the linear profile of 
velocity yyu η

τ=)( . Thus, the average velocity u  is 

equal to the velocity in the middle of the flow at hy = , 
ητ /huu m == . Consequently, the friction coefficient 

reads 
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22

2 ==
m

f u
c

ρ
τ

, 

with ρ  the mass density, and ηρ /Re hum=  the 
Reynolds number [1]. It is more convenient to use 
another definition of Reynolds number which is directly 
related to τ  (the so-called friction Reynolds number) 
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ρτηρ ττ /,/ == uhuR . 

Because  for laminar flows, we have in this 
case . 

2Re R=
2/2 Rc f =

     As the Reynolds number increases and exceeds some 
critical value, new vortices may occur. The energy 
required for the nucleation and motion of these new 
vortices is transferred from the energy source through 
the Richardson cascade [4,5]. Because of this energy 
transfer the statistically average velocity of the turbulent 
flow  is reduced considerably. For turbulent regime 
many uncertainties arise except the following balance 
equation of mean momentum for  which seems to 
be firmly established [4,8]  

)(yu

)(yu

0)( =+′ Fu
dy
d τη , 

where Fτ  is the so-called Reynolds stress. However,  
is unknown, and the problem of how to close this 
equation remains (see, for example, the mixing length 
model or the 

F

ε−k  model in [4]). In this paper we shall 
adopt the following two main hypotheses: 

1. Function  depends only on F )(yϕ  which is  
the statistically average velocity of the flow 
generated by new vortices. 

2. The governing equations for  and )(yu )(yϕ  
can be obtained from a variational principle. 

Our aim is to show that the following variational 
principle leads to a satisfactory model for both laminar 
and turbulent flows: among all admissible velocity fields 

 and )(yu )(yϕ  satisfying the boundary conditions 
0)2()0(,0)0( === hu ϕϕ ,                               (2) 

the shear flow is described by those for which the 
dissipation functional 

)2())(( 2
2
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has an extremum. The first term in (3) is the dissipation 
due to viscosity, the second term describes the energy 
transfer from large-scale to small-scale vortices, with 

)(ϕF  a nonlinear function of ϕ , the third term is 
responsible for the reduction in dissipation due to the 
energy storage by small scale vortices, and finally, the 
last term corresponds to the power of the external force 
(or the energy source). Here u′  and ϕ′  are the scalar 
densities of the corresponding vortices. We also assume 
that the wall is ideally smooth so that new vortices 
cannot be nucleated there. This assumption is reflected 
in the second boundary conditions (2). 
     It is convenient to introduce further the following 
dimensionless quantities 

)~()~(~,~,~, τ
ττ

ϕϕϕϕς uFF
uu

uu
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with R  and  being previously described. We shall 
deal further only with these dimensionless quantities, 
therefore the tildes can be dropped for short. In this 
problem the velocity is monotone increasing, therefore 

τu

uu ′=′ . Thus, the dimensionless dissipation ττuD /  
becomes 
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     Varying functional (4) we derive from it the Euler 
equations 

0)(,1)( =′′+′′=+′ ϕϕϕ uFFu           (5) 
The first equation follows directly from the balance of 
mean momentum and the boundary condition at 

R2=ς . Expressing u′  through )(ϕF  in the first 
equation and substituting it into the second equation we 
obtain the governing equation for ϕ  

0))(1)(( =−′+′′ ϕϕϕ FF .           (6) 
Equation (6) has the form of the equation of motion of a 
particle with mass 1 in the potential well 

)()()( 2
2
1 ϕϕϕ FFV −= .           (7) 

The immediate consequence of this is the conservation 
law 

)()(2
2
1

mVV ϕϕϕ =+′ ,            (8)  
where mϕ  is the maximal velocity of the vortex flow 
which is achieved at R=ς . We assume that both )(ϕF  
and )(ϕV  are even function of ϕ . 
     The determination of )(ϕF  is based on the law of 
wall [6,7]. This law states that for Reynolds numbers 
approaching infinity the Reynolds stress ))(( ξϕ∞F  
becomes a universal function )(ξf , with ),0( ∞∈ξ  the 
so-called ``wall coordinate''. From various experimental 
data (see [4,8]) we know that κξξ 11~)( −f  as ∞→ξ , 

with 41.0=κ  the Karman constant, and  
for small 

3~)( ξξ af
ξ . We use therefore the following semi-

empirical formula 

4

3

3 1)(1
11)(

ξκ
ξ

ξ
ξ

b
b

ba
f

+
−

++
−=          (9)     

for this universal function, with 6. 10=a -4, =b 1.085 
10-6 (compare with [8]). Thus, 

2
12

2
1 ))(( =+′ ∞∞ ξϕϕ V  

and, consequently  
)(1))((21)( ξξϕξϕ fV −=−=′ ∞∞ .        (10)      

Equations (5)1 and (10) show that for very large 
Reynolds numbers the vorticity densities of turbulent 
and vortex flows are equal, what seems to be quite 
natural. With function )(ξf  from (9) we find 
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where . The plot of 3/1)( ba +=Λ )(ϕV  using ξ  as 
parameter is shown in Fig.1. This function applies to all 
Reynolds numbers. It is interesting to mention that 
function )(ϕV  behaves like     for small 3ϕa ϕ  and 

 for large 22 /1 κκϕ−− e ϕ . 
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Fig.1: Function )(ϕV  
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Fig.2: Reynolds number as function of mϕ  

     Knowing )(ϕV  one can integrate equation (8) to 
determine ϕ  and then . In particular, u

∫ −
= m

VV
dR
m

ϕ

ϕϕ
ϕ

0 )]()([2
.        (12)        

It is easy to show that  R  tends to infinity as ξ  tends to 
zero like 

)6/5(
)3/4(

2
~

Γ
Γ

ma
R

ξ
π

, 

and tends to infinity as ∞→mξ  tends to infinity like a 
linear function. It has one minimum =16.9714 which 
is achieved at 

cR

mξ =8.4397 (or mϕ =7.805). For cRR <  
the extremal ϕ  must vanish. Thus, the value 

=16.9714 can be regarded as the critical Reynolds 
number, at which the transition from laminar to turbulent 
shear flow takes place (this corresponds to 

=288.028). The plot of 

cR

cRe R  as function of mϕ  is 
shown in Fig.2. One can see that the transition from 
laminar to turbulent regime is ``hard'' in the sense that a 
finite amplitude of velocity of vortex motion is required 
for it. For example, if the disturbances of velocity of 

vortex motion is smaller than 0.163, then the laminar 
regime can be maintained up to the Reynolds number 
R =100. This agrees qualitatively with the stability 
analysis of the Navier-Stokes equation [9]. Mention that 
the continuum description of vortex motion through ϕ  
may not work appropriately for intermittent turbulent 
flows, so the quantitative agreement can hardly be 
expected. 
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Fig.3: Difference κ/ln Rud m −=  as function of 

Reynolds number 
     Finally we find the distribution of velocity )(ςu  of 
turbulent flow from )(ςϕ  by integrating the equation 
(5)1. The velocity in the middle of the flow is the 
function of the Reynolds number R  which behaves 
asymptotically like κ/ln R  for large R . The plot of the 
difference κ/ln Rud m −=  as function of R  is shown 
in Fig.3. As R  tends to infinity, this difference tends to 
the value 7.1 which coincides with the empirical value 
given in [8].  
 
 
3   Channel flow 
Consider next the 2-D flow of the incompressible 
viscous fluid in a channel driven by the constant pressure 
gradient (Poiseuille flow). Both plates are now at rest. In 
the laminar case (low pressure gradient) the velocity 

 is the minimizer of the dissipation functional )(yu

dyyupdyuD
h

h

h

h
)(2

2
1 ∫∫ −−

′+′= η          (13)       

under the constraint 
0)( =±hu . 

Here p′  denote the pressure gradient with respect to x  
which is constant over the cross-section. It is easy to 
show that the velocity profile is parabolic: 

)()( 22
2 yhyu p −= ′
η , so the average velocity is equal to 

η3/2hpu ′−= . This yields the following friction 
coefficient 

22
2
1

18
Ru

hpc f =
′−

=
ρ

, 

where ηρ /huR p= , ρ/hpup ′−= . 
     As the pressure gradient becomes large, a flow 
induced by new vortices occurs. We let  denote as )(yu

Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22, 2006      78



before the statistically average velocity of turbulent flow 
and )(yϕ  the statistically average velocity of flow 
generated by new vortices. Adopting the same 
hypotheses as in the previous case, we formulate the 
following variational principle: among all admissible 
velocity fields  and )(yu )(yϕ  satisfying the boundary 
conditions 

0)(,0)( =±=± hhu ϕ ,         (14)        
the channel flow is described by those for which the 
dissipation functional 

∫− ′−′′+′′−′=
h

h
dyu

R
hpuhFpuD ))(( 2

2
1

5/2
2

2
1 ϕηαϕη

                 (15) ∫−′+
h

h
dyyup )(

has an extremum. In comparison with the shear flow the 
only new term added in this dissipation functional is the 
third term which is responsible for the energy storage of 
large scale vortices, where α  is now the universal 
parameter which is chosen to be 442.1=α . 
     By changing the variables and unknown functions 

ppp hup
DD
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h
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we transform the dissipation functional to 
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     Observe first that the variational problem (16) always 
has the extremal 0=ϕ  leading to the laminar velocity 
profile. However, for sufficiently large R  there is 
another extremal describing the turbulent flow. For the 
developed turbulent flow (large R ) we assume that 
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for ),( lR −−∈ς , ),( ll−∈ς , and ),( Rl∈ς , 
respectively, with =const and l  being the unknown 
length which must be subject to variation. This 
assumption means that the flow in the middle of the 
channel can be regarded as the flow of ideal fluid. Then 
the half-dissipation becomes 

mu
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     The standard calculus of variation leads to the 
differential equations 

0)(,0))(( =′′+′′=−+′− ϕϕϕ
ς

uF
R
lFu

d
d

,    (18)        

for ),( lR −−∈ς  and 
0=′′ϕ ,            (19)        

for )0,( l−∈ς . The boundary conditions read 
,0)0(,0)()( ==−=− ϕϕ RRu  

),0()0(,0)( −−′=+−′=−′ lllu ϕϕ        (20) 

R
l

R
lF =−− 5/2))(( αϕ . 

     Equation (18)1 and the last boundary condition of 
(20) imply that 

5/2)(
RR

Fu αςϕ +−=+′ .         (21)        

Expressing u′  through )(ϕF  and substituting into the 
second equation of (18) we obtain the following 
governing equation for ϕ  in  ),( lR −−

.0))()(( 5/2 =+−′−′′ ϕαςϕϕ F
RR

F         (22)        

This equation is subject to the boundary conditions 
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RR
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l
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     Since )(ϕF  does not have the explicit analytical 
form, it is convenient to choose the wall coordinate 

)(ςξ  as unknown function in accordance to 
)()()),(()( ξϕςξϕςϕ fF == ∞ ,        (24)       

2)())(1(,))(1( ξξξξϕξξϕ ′′−′′−=′′′−=′ fff . 
In terms of the wall coordinate the governing equation 
becomes 
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This equation is subject to the boundary conditions 
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where  is the inverse function of . Equation (25) 
can also be directly derived from the variational 
principle (15). 

1−f f

     The shooting method can be applied to find the 
solution of the two-point boundary-value problem (25), 
(26). Take for example R =1000. By using the shooting 
method one can show that l =860.042 leads to the 
solution satisfying the boundary conditions (26). The 
plot of phase curve ),( ξξ ′  in the phase plane is shown 
in Fig.4. The plot of the velocity gradient as function of 
ς  from R−  to l−  is shown in Fig.5. In the turbulent 
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core region  the velocity gradient u  is equal to 
zero. This velocity gradient profile agrees with the direct 
numerical simulation of the Navier-Stokes equations for 
channel flow [10] except at the viscous sub-layer where 

. The difference becomes vanishingly 
small as . 

)0,( l− ′

5/2/1~ Ru α+′
∞→R
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Fig.4: The phase curve in the phase plane for R =1000 
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Fig.5: The velocity gradient as function of ς  ( R =1000) 
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Fig.6: The velocity profile for R =1000 

     Knowing )(ςu′  we can find the velocity profile 
)(ςu  by integration. The result is shown in Fig.6 for 

R =1000. In the turbulent core region the velocity 
achieves its maximal value  which is equal to 
20.4242. Then, the average velocity can also be found in 
accordance with 

mu

))(()(
0

11 lududuu mR

l

RRR +== ∫ ∫−

−

−
ςςςς .   

For R =1000 the numerical calculation gives the value 
u =19.9336. Thus, the difference κ/ln Ru − =3.09 is 
close to the empirical value 3.3 (see [8]). 
     For the Reynolds number R =10000 the numerical 
calculations yield =24.964 and mu u =24.7906. Thus, 

dRu += κ/ln , where d =2.326. 

4   Pipe flow 
For the laminar pipe flow driven by the constant pressure 
gradient (3-D Poiseuille flow) the velocity  is the 
minimizer of the dissipation functional 

)(ru

rdrruprdruD
aa

ππη 2)(2
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2

0 2
1 ∫∫ ′+′=  

under the constraint 
0)( =au . 

Here the polar coordinate r  is used, with a  the radius 
of the circular cross-section, and  is the pressure 
gradient which is constant over the cross-section. It is 
easy to show that the velocity profile is parabolic: 

p′

)()( 22
4 raru p −−= ′
η , which leads to the following 

resistance law 
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where ηρ /auR p= , ρ2/apup ′−= . 
     As the pressure gradient becomes large, a flow 
induced by new vortices occurs. We let  denote as 
before the statistically average velocity of turbulent flow 
and 

)(ru

)(rϕ  the statistically average velocity of flow 
generated by new vortices. We formulate the following 
variational principle: among all admissible velocity 
fields  and )(ru )(rϕ  satisfying the boundary conditions 

0)(,0)( == aau ϕ ,          (27)       
the pipe flow is described by those for which the 
dissipation functional 
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has an extremum, where, as before, α  =1.442. 
      By changing the variables and unknown functions 
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we transform the dissipation functional to 
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     The variational problem (29) always has the extremal 
0=ϕ  leading to the laminar velocity profile. However, 

for sufficiently large R  there is another extremal 
describing the turbulent flow. For the developed 
turbulent flow (large R ) we assume that 
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for ),0( l∈ς  and ),( Rl∈ς , respectively, with 
=const and  being the unknown length which must 

be subject to variation. Thus, the flow in the middle of 
the pipe can be regarded as the flow of ideal fluid. Then 

mu l

15/211
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12

0 2
1 )(( u

R
uFudD
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1 . 

     By the similar method as in the previous sections we 
derive, in terms of the wall coordinate, the governing 
equation  

ξξςξξςξξ ′−+′′−′′− ))(1()())(1( 2 fff  
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and  the boundary conditions 
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lfl ξξαξ . (31) 
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Fig.7: The phase curve in the phase plane for R =1000 

 
900 920 940 960 980 1000

-1

-0.8

-0.6

-0.4

-0.2

�

u'  
Fig.8: The velocity gradient (ς  from  to l R ) 

     Consider for example R =1000. By using the 
shooting method one can show that =876.416 leads to 
the solution of (30) satisfying the boundary conditions 
(31). The plot of phase curve 

l

))(),(( ςξςξ ′  in the phase 
plane is shown in Fig.7. The plot of the velocity gradient 

 as function of 5/2//)( RRfu αςξ −−=′ ς  from l  to 
R  is shown in Fig.8. Knowing )(ςu′  we can find the 
velocity profile )(ςu  by integration. The result is shown 
in Fig.9 for R =1000. In the turbulent core region the 
velocity achieves its maximal value  which is equal 

to 19.8935. Then, the average velocity can also be found. 
For 

mu

R =1000 the numerical calculation gives the value 
u =19.0489. Thus, the difference κ/ln Ru − =2.2 is 
close to the empirical value 1.96 (see [8]). 
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Fig.9: The velocity profile )(ςu  for R =1000 

 
     For the Reynolds number R =10000 the numerical 
calculations yield =24.7894 and mu u =24.4576. Thus, 

dRu += κ/ln , where =1.9934 for d R =10000. This 
is in excellent agreement with the empirical value 1.96. 
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