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Abstract: - In this study, an adaptive filter based multisensor fusion system is designed to reduce the effect of 
mechanical Brownian noise in the output value of multiple MEM accelerometers on a single die system. To  this aim,  
a Kalman Filter (KF) based sensor fusion algorithm is developed and simulated. The results are evaluated with respect 
to the case with no fusion process as well as with Least Mean Squares (LMS) based sensor fusion algorithms, also 
simulated for comparison. The results demonstrate the superiority of KFs in comparison to other techniques for the 
sensor fusion of multiple MEM accelerometers on single die system.
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1 - Introduction
Microelectromechanical (MEM) systems have been in 
the market for nearly 20 years and in research 
laboratories for almost 40 years now, serving a variety of 
areas from aerospace and automotive to biomedical and 
military applications. Being mostly used as sensors so 
far, currently, the most popular MEM devices in the 
market are inertial sensors.  

Most of the research in the past years has been on 
seeking ways to improve sensor performance. This was 
started by changing the semiconductor process and 
making new foundries, which is somewhat effective and 
yet an expensive approach.  Changes were also made to 
the mechanical design [11] and to the existing 
topologies[12], as well as low noise low drift electronic 
read-out circuitry. [13]
In this study, adaptive filter based sensor fusion 
techniques are developed and tested to improve the 
performance of the sensors. In spite of numerous studies 
on adaptive filter based sensor fusion, the major 
contribution of this study is the integration of those 
sensor fusion techniques with MEM sensors, in an effort 
to improve the measurement accuracy of those 
significantly low cost devices. To the authors’ best 
knowledge, there is no  reported study on a similar 
approach to address the problem.
The main objective  of the paper is the reduction of 
mechanical noise in MEM accelerometers to improve 
measurement accuracy. To achieve this aim, two sensor 
fusion algorithms which use well known adaptive filters, 

-namely, Least Mean Square (LMS) and Kalman Filters 
(KFs)- are developed and compared in terms of the 
resulting measurement accuracy. The methods are tested 
for the sensor fusion of 3 accelerometers; namely, two of 
identical nature (1-DOF) and one, 6-DOF accelerometer. 

2 - Dynamic Model of MEM 
Accelerometers
Accelerometers are typically constructed in a mass-
spring-damper structure as shown in Fig. 1. Generally in 
silicon processing,  the mass is realized by thick silicon, 
and the spring is realized by thin silicon, while damping 
occurs based on fluid dynamic principles. When an 
acceleration effect is created on the mass, a force of F= 
m·a is applied to the spring, which is thus deflected until 
its elastic force equals the force produced by the 
acceleration. Neglecting the damping , it can be said that 
the force acting on the spring is proportional to its 
deflection, x with F=k·x, so in case of no movement,  the 
deflection is proportional to the acceleration[3],

Figure 1: Mechanical Structure of an 
Accelerometer. [1]
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although under normal conditions,  a damping force 
Fd = - B·v has to be considered. The movement is then 
described by the equation of a forced and damped 
oscillator [2]:

(1)

where m represents the proof mass of the sensor, B 
represents damping constant, k represents spring 
constant of the support and aext represents acceleration of 
global system. [2]

The following parameters can be defined [2]:

- Mechanical sensitivity:

- Natural Frequency: 

- Damping Factor: 

2- Noise Model of MEM Accelerometers
All noise sources, whether mechanical or electrical,  
affect the overall accelerometer resolution. There are 
four noise components in MEM accelerometers: 
Brownian, kT/C, amplifier and quantizier noise.[5]

The mechanical noise is due to the Brownian motion 
of the proof mass and is called Brownian noise. The 
mechanical noise might be reduced by proper 
accelerometer design and by reducing the damping 
factor and using a larger mass. However, this method has 
some disadvantages in terms of reliability [5].

A major noise source in switched-capacitor circuits 
is kT/C noise which is generated by the thermal noise 
sampling of the switches [5].

The readout circuitry uses correlated double 
sampling to cancel the input CMOS amplifier flicker 
noise. This noise is amplified by the ratio of total input 
capacitors (including the parasitic) to the integrating 
capacitor [5].

The effective quantization noise is related by the 
resolution of ADC. As the resolution is increased, 
quantization noise decreases. Thus, quantization noise 
can be reduced, if not totally eliminated[5].

As shown in the Figure 3.1 when acceleration takes 
place, a mechanical noise also occurs in the 
accelerometer, which is called Brownian noise. The 
kT/C noise occurs in the amplifier part of the circuit, as 
explained previously,  in the sample and hold circuits 
and sC (switch Capacitor) filters. Finally, the 

quantization noise occurs in the quantization part of the 
circuit.

 

Figure 2: Noise model of MEMS accelerometer [5]

This study does not deal with quantization, kT/C or 
amplifier noises, as methods do exist in the literature to 
reduce their effects. However, the only existing methods 
against Brownian noise have an adverse effect on 
reliability; hence, the concentration of this study is on 
reducing the Brownian noise using sensor fusion 
techniques without compromising reliability.

3- Sensor Fusion using Kalman Filters
A general linear discrete-time system under the effect of 
Gaussian noise can be formulated with the following 
equations: 

 (2)

(3)

where zk: measurement vector, xk : state vector, A : state 
transition matrix, B: control matrix, C: measurement 
matrix, wk : measurement noise vector, which is 
Brownian noise in this study; vk : measurement noise 
vector, which is another noise source in this study. 

As shown in the Equation 2, vk is zero mean Gaussian 
noise whose covariance is Rk. Respectively from (3), wk 
is zero mean Gaussian noise whose covariance is Qk.

The Kalman filter(KF) uses the system model in 
(2) and (3) to propagate the estimated states:

(4)

The plus sign on xk-l(+) indicates that the estimate has 
been updated with a measurement at time k-1. The state 
estimate update in (4) does not equal the true state 
update in (3) as the estimate in general differs from the 
true state, also because the contribution from the process 
noise, Wk, is unknown. Therefore the covariance of the 
estimation, P, needs also to be calculated: [10]
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(5)

Figure 3: Linear discrete system with Kalman filter [10]

If a measurement is available, the estimate is updated 
by fusing the incoming data with a gain, Kk, which is 
calculated using  the following equations:

(6)

(7)

The gain, Kk, is called the Kalman gain and is the 
gain that minimizes the covariance matrix, P(+). The 
covariance after the fusion is: 

(8)

(9)

 ∈ is called the innovation and is the difference 
between predicted and actual measurements. When the 
filter operation reaches steady state, the innovation 
should be a zero-mean white noise sequence. This 
property provides a useful means to monitor the 
optimality of the filter and detect various inconsistencies 
[10]; i.e if the innovation can not attain a zero-mean 
white noise sequence, it can be interpreted that there is a 
problem with the mechanical part of sensor, or with the 
dynamic parameters of the sensor.

The fact that most systems can never be perfectly 
modeled and that noise distributions hardly ever are 
known accurately often sets the limits for the achieved 
performance. However, even when the actual conditions 
are far from those assumed, the Kalman filter can often 

be stabilized and fine tuned by adjusting the process 
noise covariance matrix, Q. [10]

In this study, the KFs are run for each system 
separately and then the state estimates are fused to get a 
better state estimate by using the following relationship 
[7]:

(10)

As seen in (10), the smaller the error covariance of an 
estimate, the larger is its weight in the calculation of the 
global estimate.

4   LMS Based Sensor Fusion

Figure 4: LMS Adaptive Filter [9]

Consider now the case where the input vector x is 
received by a tapped delay line as in Figure 4. Hence the 
input vector can be written as: [9]

(11)

and the output of the sum, the estimated signal sj can be 
written as: 

(12)

which  is the autoregressive (AR) estimation. The LMS 
filter is an AR filter whose coefficients are adapted to 
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make the filter output and the desired input to have 
minimum mean square error. [9]
Setting  dj = xj , w0 = w1 = 0 , wi= -wi+1 ,  i = 1, 2, ,,,, n 
leads to (12). 

(13)

LPC (AR coefficients) of a nonstationary signal can be 
evaluated by using the following formula [9], in which µ
represents a coefficient defining convergence speed. 

(14)

To use LMS filter in sensor fusion application, the LMS 
filters should be run in all the systems concurrently. 
Then the fused result is generated automatically. The 
LMS based sensor fusion approach used in this study is 
given below [9], for the fusion of two identical 1-DOF 
and one 6-DOF accelerometer:

Figure 5: LMS Based Sensor Fusion Diagram

4   Simulation Results
In this section, the two sensor fusion algorithms will be 
tested with simulations for MEM accelerometers with 
known parameters. One set of these accelerometers 
shown in Figure 6 comprises of two standard 1 degree-
of-freedom (DOF) double cantilever beam piezoresistive 
accelerometers, which is used to measure the z axis 
acceleration, while the third one is a 6-DOF 
accelerometer, of which only the z-axis information is 
used. For a realistic evaluation of the techniques, the 
possible mismatches between the two ‘identical’ 1-DOF 
accelerometers are also reflected to the simulation 
models, by giving 10% variation to the parameter values.   

Figure 6: Double Cantilever Beam Piezoresistive 
Accelerometer [4]

The other accelerometer considered in the algorithm is 6-
DOF piezoresistive accelerometer as demonstrated in 
Figure 7. In order to fuse its data with the other 
accelerometers in the algorithm, only the z axes 
acceleration data is used although it can give 
acceleration data in 6 axes,. Only one such accelerometer 
is considered in this algorithm [8].

Figure 7: Double Cantilever Beam Piezoresistive 
Accelerometer [8]

The system dynamics is calculated separately for the 
two accelerometers; however, the general dynamics 
equations for all 3 accelerometers are the same, as only 
the z-axis is taken into account and the x axis and y axis 
of the third accelerometer is not taken into consideration.  
Using (1),

(15)

where k, m and b values are critical; k is calculated as,

(16)

where E represents Young Module, L represents length 
of the beam, W represents width of the beam and t 
represents thickness of the beam[1].

Similarly, b is calculated as,

(17)
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where η represents viscosity of gas surrounding the 
device  (18uPa-sn for air), A is the area of plates and h is 
the distance between plates [6].  System parameters 
which are calculated from these equations are 
represented in Table 1.

M (kg) B (kg/sn2) K (kg/sn)
1st Accelerometer 1.8460e-11 4,9070e-7 22.6648
2nd Accelerometer 1.9485e-11 5,5818e-7 18,5440
3rd Accelerometer 7.6228e-11 3.3234e-6 3.4699

Table 1: Calculated System parameters

The performances of the techniques are compared in 
terms of  RMS of errors, defined as below:

(18)

(19)

where t : simulation time, T : sample period, N : total 
sampled data at time t, anoiseless : applied acceleration in 
time nT  in the simulation, and ac: calculated 
acceleration in time nT. It could be the output of the 
inverse filter, Kalman Filter, LMS based SF filter or 
Kalman based SF filter depending on the simulated case.

The simulations are performed by adding noise 
sources to the system as shown previously in Figure 2. 
Noiseless and noisy acceleration outputs are calculated 
by processing the output from the inverse of system 
dynamics of the sensor, hereafter called, inverse filter.  

Initially, to demonstrate the smoothing effect of the 
KF, each accelerometer is processed through an inverse 
filter as well as a KF and the outputs are compared. 
Figure 8 (a), (b), and (c) demonstrates the improvement 
made by using KFs for the  outputs of  each 
accelerometer type. Next, simulations are performed by 
applying the sensor fusion of the outputs using KF ,via 
(10). Figure 9 depicts the significant improvement made 
by the KF based sensor fusion technique over the other 
approaches in terms of noise elimination.

 Next, simulations are also performed using LMS 
based fusion of the outputs to compare with KF based 
sensor fusion.. As can be seen from Figure 10(b), the 
actual acceleration data in Figure 10(a) is distorted due 
to the Brownian noise. The problem of noise causes 
reduced accuracy. To avoid this problem adaptive filters 
are used as explained previously; the result with KF 
based sensor fusion is given in Fig. 10 (c), while that 
obtained with LMS is in Fig. 10 (d) . It can easily be 
noted  that both methods reduce the noise, which 
indicates that by sensor fusion, an improved 
measurement accuracy can be obtained.
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Figure 8: (a) Inverse Filter vs Kalman Filter for 1st 1-
DOF Accelerometer, (b) Inverse Filter vs Kalman Filter 
for 2nd 1-DOF Accelerometer, (c) Inverse Filter vs 
Kalman Filter for 6-DOF Accelerometer
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Figure 9: Measurement error using Inverse Filters vs 
individual KFs vs KF based Sensor Fusion

Figure 10: (a) Noiseless acceleration output, (b) Noisy 
acceleration output, (c) output which is fused with 
Kalman based Sensor Fusion, (d) output which is fused 
with LMS based Sensor Fusion. 
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Finally, the inverse filter, KF based sensor fusion and 
LMS based sensor fusion performances are compared in 
terms of the RMS values of the errors as presented in 
Figure 11. It can easily be observed that the noise levels 
of the adaptive filter based sensor fusion techniques are 
significantly lower than those of the inverse filter.

When Kalman and LMS based sensor fusion filters are 
compared, it can be demonstrated that the KF approach 
yields a superior performance, particularly in terms of its 
fast convergence rate, which is a well-known property of 
KFs and is noted to be considerably better than the LMS 
filter.  

4   Conclusions
As a conclusion it can be summarized that although there 
are other techniques like process improvement, topology 
improvement, etc. for the performance improvement of 
MEM sensors, the accuracy of MEM sensors can also be 
improved by using adaptive filter based multisensor 
fusion techniques. In this study, this improvement is 
demonstrated with MEM inertial sensors. The proposed 
approach has some advantages over the conventional 
techniques because it is low cost and more flexible, and 
hence is motivating for use in conjunction with other 
MEM inertial devices like gyrometers, magnetometers 
etc.

In this study, KF and LMS based fusion techniques 
are also compared for MEM accelerometers. Both 
techniques are tested for the fusion of two 1-DOF and 
one 6-DOF MEM accelerometers and it has been 
concluded that a higher accuracy and faster convergence 
rate can be achieved by using KF based sensor fusion.

Figure 11: Comparison of  errors obtained in inverse 
filter, SF with Kalman and  SF and LMS 
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