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Eulerian equilibria of a rigid body in the three body problem
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Abstract: We consider the non-canonical Hamiltonian dynamics of a rigid body in the three body problem. By
means of geometric-mechanics methods we will study the approximate dynamics that arises when we develop the
potential in series of Legendre and truncate this in an arbitrary order. Working in the reduced problem, we will
study the existence of equilibria that we will denominate of Euler in analogy with classic results on the topic. In
this way, we generalize the classical results on equilibria of the three-body problem and many of those obtained by
other authors using more classic techniques for the case of rigid bodies.
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1 Introduction

In the study of configurations of relative equilibria
by differential geometry methods or by more classi-
cal ones; we will mention here the papers of Wang et
al. [7], about the problem of a rigid body in a central
Newtonian field; Maciejewski [2], about the problem
of two rigid bodies in mutual Newtonian attraction.

For the problem of three rigid bodies we would
like to mention that Vidiakin [6] and Duboshin [1]
proved the existence of Euler and Lagrange configu-
rations of equilibria when the bodies possess symme-
tries; Zhuravlev [8] made a review of the results up to
1990.

In Vera [3] and a series of recent papers of Vera
and Vigueras ([4],[5]) we study the non-canonical
Hamiltonian dynamics of. + 1 bodies in Newto-
nian attraction, where of them are rigid bodies with
spherical distribution of mass or material points and
the other one is a triaxial rigid body.

In this paper, we take = 2 and as a first ap-
proach to the qualitative study of this system, we will
describe the approximate dynamics that arises in a
natural way when we take the Legendre development
of the potential function and truncate this until an first
order. We will see global conditions on the existence
of relative equilibria and in analogy with classic re-
sults on the topic, we will study the existence of rela-
tive equilibria that we will denominate &ulerin the
case in whichSy, Sy are spherical or punctual bod-
ies andS; is a triaxial rigid body. We will obtain
necessary and sufficient conditions for their existence
and we will give explicit expressions of this relative

equilibria, useful for the later study of the stability of
the same ones. The analysis is done in vectorial form
avoiding the use of canonical variables and the tedious
expressions associated with them.

We should notice that the studied system, has po-
tential interest both in astrodynamics (dealing with
spacecrafts) as well as in the understanding of the evo-
lution of planetary systems recently found (and more
to appear), where some of the planets may be modeled
like a rigid body rather than a rigid body. In fact, the
equilibria reported might well be compared with the
ones taken for the ‘parking areas’ of the space mis-
sions (GENESIS, SOHO, DARWIN, etc) around the
Eulerian points of the Sun-Earth and the Earth-Moon
systems.

To finish this introduction, we will describe the
structure of the article. The paper is organized in
five sections, two appendixes and the bibliography.
In the five sections we study the equations of motion,
Casimir functions and integrals of the system, the rela-
tive equilibria and the existence of Eulerian equilibria
in an approximate dynamics, in particular the study
of the bifurcations of Eulerian relative equilibria in an
approximate dynamics of order zero and one.

2 Equations of motion

Following the line of Vera and Vigueras [5] 16 be a
rigid body of massng and.Sy, S, two spherical rigid
bodies of masses; andms. We use the following
notation. Fom, v € R3, u - v is the dot product, u |
is the Euclidean norm of the vectarandu x v is the
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cross productlys is the identity matrix and is the
zero matrix of order three. We considet diag(I;,
I;, Ii,), I; # I; # I, the diagonal tensor of inertia of
the rigid body with
I, =AB,C I, =AB,C Is=AB,C

beingA, B andC' the principal inertia moments &%.

The vectorz = (I, A, px, , Py) € R is
a generic element of the twice reduced problem ob-
tained using the symmetries of the system. We con-
sider 2 the angular velocity of5y, II = 12 the to-
tal rotational angular momentum vector of the rigid
body in the body framg, which is attached to its rigid
part and whose axes have the direction of the principal
axes of inertia ofS,. The elements\, i, py andp,,
are respectively the barycentric coordinates and the
linear momenta expressed in the body fraime

The twice reduced Hamiltonian of the system, ob-
tained by the action of the groli(3), has the fol-
lowing expression

2
1
| Py | Wy jja ) § NNV,
2g2 2

_ Il

H(z) o0

(1)

+
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with V the potential function of the system. The po-
tential function is given by the formula
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LetM = R'®, and we consider the Poisson mani-
fold (M, {, },H), with Poisson brackets, } defined
by means of the Poisson tensor

1;[ A Px I Pu
A 0 Ipz 0 0
B(z)=| px -Izgz 0 0 0 (3)
g 0 0 0 Iy
P, 0 0 —Ip O
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In B(z), v is considered to be the image of the
vectorv € R? by the standard isomorphism between
the Lie AlgebraR? andso(3), i.e.

0 —vU3 ()
V= V3 0 —U1
—V2 (%1 0

The equations of the motion is given by the fol-
lowing expression

dz

o (4)

{z, H(z)}(z) = B(2)V,H(2)
with V,V is the gradient o¥’ with respect to an arbi-
trary vectoru.

Developing{z, H(z)}, we obtain the following
group of vectorial equations of the motion

dIl

%:HXQ—FAXV)\V‘FHXV“V

dXx  px dpx

Lo AaxQ, =2 = Q-

7t g1+ x €, 7 P X ViV

dp _ Py dpu _

T + px €, o =pu X Q-V,V
)

Important elements oB(z) are the associate
Casimir functions. We consider the total angular mo-
mentumL given by

(6)

Then the following result is verified (see Vera and
Vigueras [5] for details).

L=II+AXpy+puXpy

Proposition 1 If ¢ is a real smooth function no con-
L . - . :
stant, thenp(| | ) is a Casimir function of the Pois-

son tensoB(z). MoreoverKerB(z) =< V,p >.

dL .
Also, we havecﬁ = 0, that is to say the total angular
momentum vector remains constant.

Figure 1: Gyrostat in the three body problem
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2.1 Approximate Poisson dynamics

It is outstanding that the integrals of the potential
except for some geometries of the rigid bdgly show
important difficulties for the calculation. It arises in a
natural way to consider the multipolar development
of these potentials, supposing that the involved bodies
are at much more mutual distances than the individ-
ual dimensions of the same ones. Under additional
hypothesis we will be able to develop the potential in
quickly convergent series. Considering the potentials
truncated until an first order, then we will be able to
study the approximated Poisson dynamics.

For a triaxial rigid body at great distance the fol-
lowing formula is verified with great accuracy

V=V+)W (7)
where
Gmimsy Gmimg Gmomy
V) =— i\ + “may Y
Y | Mo | K+ 37, |
1 Gmia Gmaa
Vo=—3 mi 3 m? 3|t
2\ | =32 | BT |
3 [ Gmifp, Gmaf3y
2\ =32 A P [ ptiEA P
and

a=L+1L+13

_ 27712 mo 2
B A p) =p-Ip %A'HH‘F(%) A-IA

2m1 mq 2
Au)=p-I —A-I — ) A-IX
Bo(A, p) = p-Tp + i u+<M2>
with Iy, Iy andI3 the principal moments of inertia of
Sp in the appropriate orientation of the body frafne

Definition 2 Let beM = R'5 and the Poisson man-
ifold (M, { , },H°), with brackets{ , } defined by
means of the Poisson tensor (3). We eglproximate
dynamics of order zerto the differential equations of
motion given by the following expression

d
= = {2.H(2)}(z) = B(2)V,H'(2)
being
2 2
1
HO — |p)\‘ +‘pu‘ +*HH_1H+V A,
(z) 21 292 5 1(A, p)

70

Similarly theapproximate dynamics of order one
is given by(M, {, },H!) with H! = HO + V.

On the other hand, it is easy to verify that
Va(| I [?))B(2) V., H'(2) = 0
and similarly when the rigid body is of revolution
Va(m3)B(2)V,H'(2) = 0

wherems is the third component of the rotational an-
gular momentum of the rigid body. It is verified the
following property.

Theorem 1 In the approximate dynamics of order
zero,| II |? is an integral of motion and also when
the gyrostat is of revolutiomrs is another integral of
motion.

In what continue${ = H*.

2.2 Relative Equilibria

The relative equilibria are the equilibria of the twice
reduced problem whose Hamiltonian function is ob-
tained in Vera and Vigueras [5] for the case= 2.

If we denote byz. = (1L, A, p§, ¢, pj,) @ generic
relative equilibrium of an approximate dynamics of
order one, then this verifies the equations

IT. X Qe4+A X (VaV)e + p¢ X (VV)e =0

%+,\exne:0, p§ x Q. = (VaV),
1

Py

" +pf x Qe =0, ppxQ=(V,V)
(8)

Also by virtue of the relationships obtained in
Vera and Vigueras [5], we have the following result.

Lemma 3 If z. = (I, A%, p§, u°, py,) is a relative
equilibrium of an approximate dynamics of order one
the following relationships are verified

1

a(/\e -(VaV)e)

‘ Qe ‘Z‘Ae |2 - (’\8'96)2

90 P = (- D) = (- (Vb))

The last two previous identities will be used to ob-
tain necessary conditions for the existence of relative
equilibria in this approximate dynamics.

We will study certain relative equilibria in the ap-
proximate dynamics supposing that the vectrs
¢, ut satisfy special geometric properties.
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Definition 4 We say that. is a Eulerian equilibrium
in an approximate dynamics of order one whas,
pc are proportional and(?, is perpendicular to the
straight line that these generate.

From the equations of motion, after some easy
calculations with), the following property is de-
duced.

Proposition 5 In a Eulerian equilibrium for any ap-

proximate dynamics, moments are not exercised on the

rigid body. The vectol® is a eigenvector of the ten-
sor of inertiall.

Next we obtain necessary and sufficient condi-
tions for the existence of Eulerian relative equilibria.

3 Eulerian relative equilibria

According to the relative position of the rigid body
with respect tab; andS; there are three possible equi-
librium configurations: afy52.51, b) 525051 and c)
S52.515.

5
-
5@

Figure 2: Eulerian configuratiofk.S;.5

3.1 Necessary condition of existence

Lemma 6 If z. = (I, A°, p§, u°, py,) is a relative
equilibrium of Euler type, then for the configuration
505251 we have
e @)\e — )\e e_@Ae

!u+M2 =X+ , |
In a similar way, for the configuratiorb,.5y,5; we
have

mi me9
)\e — 6_7Ae e 7}\8
[ A [=]n 7 !+IM+M2 |

Finally, for the configuratiort,S1Sy, we have
6_@)\6 — e @)\e )\e
| 1 V | = | p+ YA |+ A

Next we study necessary and sufficient conditions
for the existence of relative equilibria of Euler type for
the configuratiort S S1; the other configurations are
studied in a similar way. Iz, is a relative equilibrium
of Euler type, in the configuratiof;52.51 in an ap-
proximate dynamics of order one, we have

911 Qe PI A [P= A7 (VaV)e

92 | Qe P | uf [P= p - (VuV)e
and

TN — XS, A= (14 p)A°
v P g (L+p)AS,
(1 + p)m1 + pma)

My
wherep € (0,400) in the caser), p € (—1,0) in the
caseb) andp € (—oo,—1) in the caser). And it is
possible to obtain the following expressions

(VaV)e = fi(p)A% (VuV)e = fa(p)A°

€ =

)\e

where
Gmlmg
fl(p):W
Gm1m2< mo < 1+p p )
- +
M, \INP\[T+pF TpE)T ©
B ( l+p  p ))
(AP \IL+pP |pP
Gmgy (mi(l+p) map
f p)= e < + +
D =5E \ e, TToP
(10)
G, <m1(1—|—p)+m2p>
AP\ 1+pP  |pP

Remark 7 The parametefs; takes the following val-
ues

3(A+ B -2C 3(A+C—-2B
/81_ ( 92 )7 /81_ ( 2 )
3(B+C —2A

according to the orientation of the body frarje
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Restricting us to the casg we have

Gmim
fl(p) = ‘ Ael ‘32+

Gmlmg <

o ( ! ! >+ (11)
My \[XPB\[1+p[2 [p]?

e (o)
[A“PAN[T+p [t ol

. Gmo mq mo
o= (505 (e 1) *

(12)
GBq ( m mz)
(AP [1+plt [pf
Now, from the identities
A°(VaV)e =| A°|? fi(p)
1+ p)mi + pm .
pe - (), = AERmEpma) e )

My

we deduce the following equations

m1 + ma) fi(p)
mi1ms9

1o, =

(mo +m1 + ma) fa(p)
mo ((1 + p)m1 + pma)

| Q. |2:

Then for a relative equilibrium of Euler type
must be a positive real root of the following equation

mo(m1 +ma) (1 + p)m1 + pm2) f2(p)
mlmg(mo + mi + MQ)

= f1(p)

(13)
We summarize all these results in the following
proposition.

Proposition 8 If z. = (IL., A%, p§, u°,py,) is an
Eulerian relative equilibrium in the configuration
505251, the equation (13) has, at least, a positive real
root; where the functiong; (p) and f2(p) are given by
(11) and (12).

The modulus of the angular velocity of the rigid
body is
Gm1m2

Q, 2= 12

hi(p)

with

mo 1 1
hi(p) =1+ — )+
1(e) mi + me <(1 + p)? pQ)

Mo )

Remark 9 If a solution of relative equilibrium of Eu-
ler type exists, in an approximate dynamics of order
one, fixed A. |, the equation (13) has positive real
solutions. The number of real roots of the equation
(13) will depend, obviously, of the numerous parame-
ters that exist in our system. Similar results would be
obtained for the other two cases.

3.2 Sufficient condition of existence

The following proposition indicates how to find solu-
tions of the eq. (8).

Proposition 10 Fixed| A° |, let p be a solution of the
equation (13) where the functiorfg(p) and f2(p) are
given for the case) with the relationships (11) and
(12), thenz, = (I1., A°, p§, ue,pZ) given by

Ae = ()\67070)7 I’l’e = (Me7070)7
P = (0, £g1weA%,0), pj, = (0, £gaw,p®, 0),
Q. = (0,0, tw,) II. = (0,0, +Cw,)
(14)
or
Ae = ()\67070)7 I‘l’e = (M€7070)7
pe)\ == (07 07 :Fglwe)\e)a pfl, = (07 07 :FQQWE,Ufe);
Q. = (0, £we, 0) II, = (0,+Cw,,0)
(15)
where
(A + p)m1 + pma) ,  Gmimg
e _ ¢ — h
w Mo ) We | A ’3 1(p)

is a solution of relative equilibrium of Euler type, in
an approximate dynamics of ordere, in the config-
uration Sy52.51. The total angular momentum of the
system is given by

L =(0,0,£Cwe £ giweA® £ gowepu®)
or
L= (07 +Cwe F glwe)\e F gowept®, 0)

Let us see the existence and number of solutions
for the approximate dynamics of order zero and one
respectively. For superior order it is possible to use a
similar technical.
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4 Eulerian relative equilibria in an
approximate dynamics of order
zero and one

For the configuratiorby 5251, in an approximate dy-
namics of order zero, we have

_Gmlmg mo 1 1
M) = TR (1 M2(<1+p>2‘p2>)
_ Gmy m1 ma
20 =R <<1+p>2 UQ)

The equation (13) is equivalent to the following
polynomial equation

po(p) = (m1 +ma)p® + (3my + 2ms)p*+

(3m1 +ma)p® — (3mo + ma)p®— (16)

(3mg + 2ma)p — (mg +mg) =0

This equation has an unique positive real solution.
On the other hand, one has

G(m1+m2)
Q, 2= LT
0. p=

((Hlp)? N 012>

beingp the only one positive solution of the equation
(16).

The following proposition gathers the results
about relative equilibria of Euler type in an approxi-
mate dynamics of order zero in any of the cases pre-
viously mentioned:), b) or ¢).

ho(p)

with

ho(p) =1+ —°

mi + ms

Proposition 11 1. If pis the unique positive root of
the equation (16) with

G(m1 + Tng)

Q. |’=
’ 6’ ‘)\6‘3

ho(p)

mo 1 1
h. =1+ - =
olp) my + my ((1+P)2 ,02)
thenz, = (IL., A°, p§, p°, py,), given by (14) or
(15) is a relative equilibrium of Euler type in the
configurationSy.S,S1.

2. If p € (—1,0) is the unique root of the equation
po(p) = (m1 +ma)p® + (3mi + 2ma)p*+
(3m1 +ma)p® + (3mg + 2my 4+ ma)p®+
(3mo + 2ma)p + (mo +ma) =0
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with

G(mi1+m

|, p= St ), o)
| Ae |
mo 1 1
ho(p) =1+ ——— 5 —
ole) my +ma (PQ (1+p)2>

thenz, = (IL., A%, p§, p°, py,), given by (14) or

(15) is a relative equilibrium of Euler type in the
configurationS5.5y.5;.

3. If p € (—o0, —1) is the unique root of the equa-
tion

po(p) = (m1+m2)p° + (3m1 + 2mg)p*+
(2mo + 3my + mz)p3 + (3m0 + mQ)p2+
(3mg + 2ma)p + (mo +ma) =0

with
G(mi+m
2= S mR)y )
| Ae | ) ,
mo
h =14+———(5+—
olp) my + my <PQ (1+P)2>
thenz, = (II., A, p§, u°, py,), given by (14) or

(15) is a relative equilibrium of Euler type in the
configurationSsS1.5p.

G(m1 + ma)

. . [Ac P
and the equations that determine the Eulerian equi-
libria are the same ones of the Restricted Three Body
Problem.

Remark 12 If mg — 0then| Q. |? =

4.1 Bifurcation of Eulerian relative equilib-
ria in an approximate dynamics of order
one

For the approximate dynamics of order one, after car-
rying out the appropriate calculations, the equation
(13) corresponding to the configuratidiy.S.51, is
reduced to the study of the positive real roots of the
polynomial
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By virtue of these statements the following result
) 0 is obtained.
p1(p) = moa*(my +ma)p”+
2 8 2 7 Proposition 13 In the approximate dynamics of order
5 4 10 6 ;
moa”(m + 4mz)p +m9a (10m + 6mz)p'+ one, if3; < 0, we have:
3moa®(3mq + ma — mg)p®+
9 5 1. 8 < Ri(&), then relative equilibria of Euler
3moa”(my —ma — 3mo)p°— type don't exist.
2 2 2 4
(6momaa” + 10mga” + 1 (mi +ma + 5mo))p 2. B, = Ry(&;), then there exists an unique relative
(4momaa® + 5mga® + B1(10mo + 4my) ) p°— equilibrium of Euler type.

(momaa® + mia® + B (6ma + 10my))p*— 3. Ri(&) < B; < 0, then two 1-parametric fami-
lies of relative equilibria of Euler type exist.
B1(5mo + 4ma)p — By (mo + ms) ? P
17)
wherea =| A, | andg, = 3(A+ B —2C)/2,3(A+
C —2B)/20r3(B+C —2A)/2. o ' ' _
To study the positive real roots of this equation, Similarly for the configuratiort,.5,.51 we obtain

after a detailed analysis of the same one, it can be ex- the following resuilt.
pressed in the following way

If 3, > 0, then there exists an unique 1-
parametric family of relative equilibria of Euler type.

Proposition 14 In the approximate dynamics of or-
moa?p?(p + 1)%po(p) der one, ifm; # my and 3; > 0, then there exists
00(p) an unique 1-parametric family of relative equilibria

of Euler type; on the other hand,f;, < 0 we have:

B1 = Ri(p) =

beingp, the polynomial of grade five that determines _ _
the relative equilibria in the approximate dynamics of 1. 81 < Ri(&;), then there exists an unique 1-

order zero, that is given by the formula (16), and the parametric family of relative equilibria of Euler
polynomialgy comes determined by the following ex- type.
pression

2. B; = R1(&,), then there exists an unique relative
g0(p) = (m1 + ma + 5mo)p* + (4ms + 10me) p° equilibrium of Euler type.

+(6ms + 10mo)p? + (4ms + 5mo)p + (mo + ma) 3. Ri(&;) < By <0, then three 1-parametric fam-
ilies of relative equilibria of Euler type exist. If

my = mg andg; > 0, then relative equilibria of

The rational functionR;(p), for any value of Euler type don't exist; but if; < 0 we have:

mg, m1, ma, always presents a minimug) located
among0 and p,, being this last value the only one 4. Ri(-1/2) < 3, < 0, then two 1-parametric

positive zero of the polynomiak(p). families of relative equilibria of Euler type exist.
5. B, = Ri1(—1/2), then there exists an unique rel-
121 ative equilibrium of Euler type.
i 6. 5; < Ri1(—1/2), then relative equilibria of Eu-
Fi ler type don't exist.
0.8
06 The results for the configuratios,S;.5; are sim-

ilar to the configuratiorb;.52.5; .
0.44

02 5 Conclusions and future works

» The approximate dynamics of a rigid body in Newto-
nian interaction with two spherical or punctual rigid
bodies is considered. For order zero approximate dy-

Figure 3: Function; (p) namics and one a complete study of Eulerian rela-
tive equilibria is made. Diverse results, which had
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