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Abstract: We consider the non-canonical Hamiltonian dynamics of a rigid body in the three body problem. By
means of geometric-mechanics methods we will study the approximate dynamics that arises when we develop the
potential in series of Legendre and truncate this in an arbitrary order. Working in the reduced problem, we will
study the existence of equilibria that we will denominate of Euler in analogy with classic results on the topic. In
this way, we generalize the classical results on equilibria of the three-body problem and many of those obtained by
other authors using more classic techniques for the case of rigid bodies.
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1 Introduction

In the study of configurations of relative equilibria
by differential geometry methods or by more classi-
cal ones; we will mention here the papers of Wang et
al. [7], about the problem of a rigid body in a central
Newtonian field; Maciejewski [2], about the problem
of two rigid bodies in mutual Newtonian attraction.

For the problem of three rigid bodies we would
like to mention that Vidiakin [6] and Duboshin [1]
proved the existence of Euler and Lagrange configu-
rations of equilibria when the bodies possess symme-
tries; Zhuravlev [8] made a review of the results up to
1990.

In Vera [3] and a series of recent papers of Vera
and Vigueras ([4],[5]) we study the non-canonical
Hamiltonian dynamics ofn + 1 bodies in Newto-
nian attraction, wheren of them are rigid bodies with
spherical distribution of mass or material points and
the other one is a triaxial rigid body.

In this paper, we taken = 2 and as a first ap-
proach to the qualitative study of this system, we will
describe the approximate dynamics that arises in a
natural way when we take the Legendre development
of the potential function and truncate this until an first
order. We will see global conditions on the existence
of relative equilibria and in analogy with classic re-
sults on the topic, we will study the existence of rela-
tive equilibria that we will denominate ofEuler in the
case in whichS1, S2 are spherical or punctual bod-
ies andS0 is a triaxial rigid body. We will obtain
necessary and sufficient conditions for their existence
and we will give explicit expressions of this relative

equilibria, useful for the later study of the stability of
the same ones. The analysis is done in vectorial form
avoiding the use of canonical variables and the tedious
expressions associated with them.

We should notice that the studied system, has po-
tential interest both in astrodynamics (dealing with
spacecrafts) as well as in the understanding of the evo-
lution of planetary systems recently found (and more
to appear), where some of the planets may be modeled
like a rigid body rather than a rigid body. In fact, the
equilibria reported might well be compared with the
ones taken for the ‘parking areas’ of the space mis-
sions (GENESIS, SOHO, DARWIN, etc) around the
Eulerian points of the Sun-Earth and the Earth-Moon
systems.

To finish this introduction, we will describe the
structure of the article. The paper is organized in
five sections, two appendixes and the bibliography.
In the five sections we study the equations of motion,
Casimir functions and integrals of the system, the rela-
tive equilibria and the existence of Eulerian equilibria
in an approximate dynamics, in particular the study
of the bifurcations of Eulerian relative equilibria in an
approximate dynamics of order zero and one.

2 Equations of motion

Following the line of Vera and Vigueras [5] letS0 be a
rigid body of massm0 andS1, S2 two spherical rigid
bodies of massesm1 andm2. We use the following
notation. Foru, v ∈ R3, u · v is the dot product,| u |
is the Euclidean norm of the vectoru andu× v is the
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cross product.IR3 is the identity matrix and0 is the
zero matrix of order three. We considerI = diag(Ii,
Ij , Ik), Ii 6= Ij 6= Ik, the diagonal tensor of inertia of
the rigid body with

I1 = A,B, C I2 = A,B, C I3 = A,B,C

beingA,B andC the principal inertia moments ofS0.
The vectorz = (Π, λ, p�, µ, pµ) ∈ R15 is

a generic element of the twice reduced problem ob-
tained using the symmetries of the system. We con-
siderΩ the angular velocity ofS0, Π = IΩ the to-
tal rotational angular momentum vector of the rigid
body in the body frameJ, which is attached to its rigid
part and whose axes have the direction of the principal
axes of inertia ofS0. The elementsλ, µ, p� andpµ

are respectively the barycentric coordinates and the
linear momenta expressed in the body frameJ.

The twice reduced Hamiltonian of the system, ob-
tained by the action of the groupSE(3), has the fol-
lowing expression

H(z) =
| p� |2

2g1
+
| p� |2

2g2
+

1
2
ΠI−1Π + V (1)

being

M2 = m1 + m2, M1 = m1 + m2 + m0

g1 =
m1m2

M2
, g2 =

m0M2

M1

with V the potential function of the system. The po-
tential function is given by the formula

V(λ, µ) = −Gm1m2

| λ | −
∫

S0

Gm1dm(Q)
| Q + µ+m2

M2
λ |−

∫

S0

Gm2dm(Q)
| Q + µ−m1

M2
λ |

(2)
LetM = R15, and we consider the Poisson mani-

fold (M, { , },H), with Poisson brackets{ , } defined
by means of the Poisson tensor

B(z) =




Π̂ λ̂ p̂� µ̂ p̂µ

λ̂ 0 IR3 0 0
p̂� −IR3 0 0 0
µ̂ 0 0 0 IR3

p̂µ 0 0 −IR3 0




(3)

In B(z), v̂ is considered to be the image of the
vectorv ∈ R3 by the standard isomorphism between
the Lie AlgebrasR3 andso(3), i.e.

v̂ =




0 −v3 v2

v3 0 −v1

−v2 v1 0




The equations of the motion is given by the fol-
lowing expression

dz
dt

= {z,H(z)}(z) = B(z)∇zH(z) (4)

with ∇uV is the gradient ofV with respect to an arbi-
trary vectoru.

Developing{z,H(z)}, we obtain the following
group of vectorial equations of the motion

dΠ
dt

= Π × Ω + λ ×∇�V + µ ×∇�V

dλ

dt
=

p�
g1

+ λ × Ω,
dp�
dt

= p� × Ω−∇�V

dµ

dt
=

p�
g2

+ µ × Ω,
dp�
dt

= p� × Ω−∇�V
(5)

Important elements ofB(z) are the associate
Casimir functions. We consider the total angular mo-
mentumL given by

L = Π + λ × p� + µ × p� (6)

Then the following result is verified (see Vera and
Vigueras [5] for details).

Proposition 1 If ϕ is a real smooth function no con-

stant, thenϕ(
| L |2

2
) is a Casimir function of the Pois-

son tensorB(z). MoreoverKerB(z) =< ∇zϕ >.

Also, we have
dL
dt

= 0, that is to say the total angular

momentum vector remains constant.

Figure 1: Gyrostat in the three body problem
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2.1 Approximate Poisson dynamics

It is outstanding that the integrals of the potentialV,
except for some geometries of the rigid bodyS0, show
important difficulties for the calculation. It arises in a
natural way to consider the multipolar development
of these potentials, supposing that the involved bodies
are at much more mutual distances than the individ-
ual dimensions of the same ones. Under additional
hypothesis we will be able to develop the potential in
quickly convergent series. Considering the potentials
truncated until an first order, then we will be able to
study the approximated Poisson dynamics.

For a triaxial rigid body at great distance the fol-
lowing formula is verified with great accuracy

V = V1 + V2 (7)

where

V1 = −
(

Gm1m2

| λ | +
Gm1m0

| µ−m2
M2

λ | +
Gm2m0

| µ+m1
M2

λ |

)

V2 = −1
2

(
Gm1α

| µ−m2
M2

λ |3 +
Gm2α

| µ+m1
M2

λ |3
)

+

3
2

(
Gm1β1

| µ−m2
M2

λ |5 +
Gm2β2

| µ+m1
M2

λ |5
)

and

α = I1 + I2 + I3

β1(λ,µ) = µ · Iµ− 2m2

M2
λ · Iµ +

(
m2

M2

)2

λ · Iλ

β2(λ,µ) = µ · Iµ +
2m1

M2
λ · Iµ +

(
m1

M2

)2

λ · Iλ

with I1, I2 andI3 the principal moments of inertia of
S0 in the appropriate orientation of the body frameJ.

Definition 2 Let beM = R15 and the Poisson man-
ifold (M, { , },H0), with brackets{ , } defined by
means of the Poisson tensor (3). We callapproximate
dynamics of order zeroto the differential equations of
motion given by the following expression

dz
dt

= {z,H0(z)}(z) = B(z)∇zH0(z)

being

H0(z) =
| p� |2

2g1
+
| p� |2

2g2
+

1
2
ΠI−1Π + V1(λ, µ)

Similarly theapproximate dynamics of order one
is given by(M, { , },H1) withH1 = H0 + V2.

On the other hand, it is easy to verify that

∇z(| Π |2))B(z)∇zH0(z) = 0

and similarly when the rigid body is of revolution

∇z(π3)B(z)∇zH0(z) = 0

whereπ3 is the third component of the rotational an-
gular momentum of the rigid body. It is verified the
following property.

Theorem 1 In the approximate dynamics of order
zero, | Π |2 is an integral of motion and also when
the gyrostat is of revolutionπ3 is another integral of
motion.

In what continuesH = H1.

2.2 Relative Equilibria

The relative equilibria are the equilibria of the twice
reduced problem whose Hamiltonian function is ob-
tained in Vera and Vigueras [5] for the casen = 2.
If we denote byze = (Πe, λ

e,pe
�,µe,pe

µ) a generic
relative equilibrium of an approximate dynamics of
order one, then this verifies the equations

Πe × Ωe+λe × (∇�V)e + µe × (∇�V)e = 0

pe
�

g1
+ λe × Ωe = 0, pe

� × Ωe = (∇�V)e

pe
�

g2
+ µe × Ωe = 0, pe

� × Ωe = (∇�V)e

(8)
Also by virtue of the relationships obtained in

Vera and Vigueras [5], we have the following result.

Lemma 3 If ze = (Πe,λ
e,pe

�, µe,pe
µ) is a relative

equilibrium of an approximate dynamics of order one
the following relationships are verified

| Ωe |2 | λe |2 − (λe ·Ωe)2 =
1
g1

(λe · (∇�V)e)

| Ωe |2 | µe |2 − (µe ·Ωe)2 =
1
g2

(µe · (∇�V)e)

The last two previous identities will be used to ob-
tain necessary conditions for the existence of relative
equilibria in this approximate dynamics.

We will study certain relative equilibria in the ap-
proximate dynamics supposing that the vectorsΩe,
λe, µe satisfy special geometric properties.
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Definition 4 We say thatze is a Eulerian equilibrium
in an approximate dynamics of order one when,λe,
µe are proportional andΩe is perpendicular to the
straight line that these generate.

From the equations of motion, after some easy
calculations withV, the following property is de-
duced.

Proposition 5 In a Eulerian equilibrium for any ap-
proximate dynamics, moments are not exercised on the
rigid body. The vectorλe is a eigenvector of the ten-
sor of inertiaI.

Next we obtain necessary and sufficient condi-
tions for the existence of Eulerian relative equilibria.

3 Eulerian relative equilibria

According to the relative position of the rigid bodyS0

with respect toS1 andS2 there are three possible equi-
librium configurations: a)S0S2S1, b) S2S0S1 and c)
S2S1S0.

Figure 2: Eulerian configurationS2S1S0

3.1 Necessary condition of existence

Lemma 6 If ze = (Πe, λ
e,pe

�,µe,pe
µ) is a relative

equilibrium of Euler type, then for the configuration
S0S2S1 we have

| µe+
m1

M2
λe | = | λe | + | µe−m2

M2
λe |

In a similar way, for the configurationS2S0S1 we
have

| λe | = | µe−m1

M2
λe | + | µe+

m2

M2
λe |

Finally, for the configurationS2S1S0 we have

| µe−m2

M2
λe | = | µe+

m1

M2
λe | + | λe |

Next we study necessary and sufficient conditions
for the existence of relative equilibria of Euler type for
the configurationS0S2S1; the other configurations are
studied in a similar way. Ifze is a relative equilibrium
of Euler type, in the configurationS0S2S1 in an ap-
proximate dynamics of order one, we have

g1 | Ωe |2 | λe |2= λe · (∇�V)e

g2 | Ωe |2 | µe |2= µe · (∇�V)e

and

µe−m1

M2
λe = ρλe, µe+

m2

M2
λe= (1 + ρ)λe,

µe =
((1 + ρ)m1 + ρm2)

M2
λe

whereρ ∈ (0, +∞) in the casea), ρ ∈ (−1, 0) in the
caseb) andρ ∈ (−∞,−1) in the casec). And it is
possible to obtain the following expressions

(∇�V)e = f1(ρ)λe, (∇�V)e = f2(ρ)λe

where

f1(ρ) =
Gm1m2

| λe |3 +

Gm1m2

M2

(
m0

| λe |3
(

1 + ρ

| 1 + ρ |3 −
ρ

| ρ |3
)

+

β1

| λe |5
(

1 + ρ

| 1 + ρ |5 −
ρ

| ρ |5
))

(9)

f2(ρ) =
Gm0

| λe |3
(

m1(1 + ρ)
| 1 + ρ |3 +

m2ρ

| ρ |3
)

+

Gβ1

| λe |5
(

m1(1 + ρ)
| 1 + ρ |5 +

m2ρ

| ρ |5
) (10)

Remark 7 The parameterβ1 takes the following val-
ues

β1 =
3(A + B − 2C)

2
, β1 =

3(A + C − 2B)
2

β1 =
3(B + C − 2A)

2
according to the orientation of the body frameJ.
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Restricting us to the casea) we have

f1(ρ) =
Gm1m2

| λe |3 +

Gm1m2

M2

(
m0

| λe |3
(

1
| 1 + ρ |2 −

1
| ρ |2

)
+

β1

| λe |5
(

1
| 1 + ρ |4 −

1
| ρ |4

))

(11)

f2(ρ) =
Gm0

| λe |3
(

m1

| 1 + ρ |2 +
m2

| ρ |2
)

+

Gβ1

| λe |5
(

m1

| 1 + ρ |4 +
m2

| ρ |4
) (12)

Now, from the identities

λe · (∇�V)e =| λe |2 f1(ρ)

µe · (∇�V)e =
((1 + ρ)m1 + ρm2)

M2
| λe |2 f2(ρ)

we deduce the following equations

| Ωe |2= (m1 + m2)f1(ρ)
m1m2

| Ωe |2= (m0 + m1 + m2)f2(ρ)
m0 ((1 + ρ)m1 + ρm2)

Then for a relative equilibrium of Euler typeρ
must be a positive real root of the following equation

m0(m1 + m2) ((1 + ρ)m1 + ρm2) f2(ρ)
m1m2(m0 + m1 + m2)

= f1(ρ)

(13)
We summarize all these results in the following

proposition.

Proposition 8 If ze = (Πe, λ
e,pe

�, µe,pe
µ) is an

Eulerian relative equilibrium in the configuration
S0S2S1, the equation (13) has, at least, a positive real
root; where the functionsf1(ρ) andf2(ρ) are given by
(11) and (12).

The modulus of the angular velocity of the rigid
body is

| Ωe |2= Gm1m2

| λe |3 h1(ρ)

with

h1(ρ) = 1 +
m0

m1 + m2

(
1

(1 + ρ)2
− 1

ρ2

)
+

β1

(
1

(1 + ρ)2
− 1

ρ2

)

Remark 9 If a solution of relative equilibrium of Eu-
ler type exists, in an approximate dynamics of order
one, fixed| λe |, the equation (13) has positive real
solutions. The number of real roots of the equation
(13) will depend, obviously, of the numerous parame-
ters that exist in our system. Similar results would be
obtained for the other two cases.

3.2 Sufficient condition of existence

The following proposition indicates how to find solu-
tions of the eq. (8).

Proposition 10 Fixed| λe |, let ρ be a solution of the
equation (13) where the functionsf1(ρ) andf2(ρ) are
given for the casea) with the relationships (11) and
(12), thenze = (Πe, λ

e,pe
�, µe,pe

µ) given by

λe = (λe, 0, 0), µe = (µe, 0, 0),
pe
� = (0,±g1ωeλ

e, 0), pe
� = (0,±g2ωeµ

e, 0),
Ωe = (0, 0,±ωe) Πe = (0, 0,±Cωe)

(14)
or

λe = (λe, 0, 0), µe = (µe, 0, 0),
pe
� = (0, 0,∓g1ωeλ

e), pe
� = (0, 0,∓g2ωeµ

e),
Ωe = (0,±ωe, 0) Πe = (0,±Cωe, 0)

(15)
where

µe =
((1 + ρ)m1 + ρm2)

M2
λe, ω2

e =
Gm1m2

| λe |3 h1(ρ)

is a solution of relative equilibrium of Euler type, in
an approximate dynamics of orderone, in the config-
uration S0S2S1. The total angular momentum of the
system is given by

L = (0, 0,±Cωe ± g1ωeλ
e ± g2ωeµ

e)

or

L = (0,±Cωe ∓ g1ωeλ
e ∓ g2ωeµ

e, 0)

Let us see the existence and number of solutions
for the approximate dynamics of order zero and one
respectively. For superior order it is possible to use a
similar technical.
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4 Eulerian relative equilibria in an
approximate dynamics of order
zero and one

For the configurationS0S2S1, in an approximate dy-
namics of order zero, we have

f1(ρ) =
Gm1m2

| λe |3
(

1 +
m0

M2

(
1

(1 + ρ)2
− 1

ρ2

))

f2(ρ) =
Gm0

| λe |3
(

m1

(1 + ρ)2
+

m2

ρ2

)

The equation (13) is equivalent to the following
polynomial equation

p0(ρ) = (m1 + m2)ρ5 + (3m1 + 2m2)ρ4+

(3m1 + m2)ρ3 − (3m0 + m2)ρ2−
(3m0 + 2m2)ρ− (m0 + m2) = 0

(16)

This equation has an unique positive real solution.
On the other hand, one has

| Ωe |2= G(m1 + m2)
| λe |3 h0(ρ)

with

h0(ρ) = 1 +
m0

m1 + m2

(
1

(1 + ρ)2
− 1

ρ2

)

beingρ the only one positive solution of the equation
(16).

The following proposition gathers the results
about relative equilibria of Euler type in an approxi-
mate dynamics of order zero in any of the cases pre-
viously mentioneda), b) or c).

Proposition 11 1. If ρ is the unique positive root of
the equation (16) with

| Ωe |2= G(m1 + m2)
| λe |3 h0(ρ)

h0(ρ) = 1 +
m0

m1 + m2

(
1

(1 + ρ)2
− 1

ρ2

)

thenze = (Πe,λ
e,pe

�, µe,pe
µ), given by (14) or

(15) is a relative equilibrium of Euler type in the
configurationS0S2S1.

2. If ρ ∈ (−1, 0) is the unique root of the equation

p0(ρ) = (m1 + m2)ρ5 + (3m1 + 2m2)ρ4+

(3m1 + m2)ρ3 + (3m0 + 2m1 + m2)ρ2+

(3m0 + 2m2)ρ + (m0 + m2) = 0

with

| Ωe |2= G(m1 + m2)
| λe |3 h0(ρ)

h0(ρ) = 1 +
m0

m1 + m2

(
1
ρ2
− 1

(1 + ρ)2

)

thenze = (Πe, λ
e,pe

�, µe,pe
µ), given by (14) or

(15) is a relative equilibrium of Euler type in the
configurationS2S0S1.

3. If ρ ∈ (−∞,−1) is the unique root of the equa-
tion

p0(ρ) = (m1 + m2)ρ5 + (3m1 + 2m2)ρ4+

(2m0 + 3m1 + m2)ρ3 + (3m0 + m2)ρ2+

(3m0 + 2m2)ρ + (m0 + m2) = 0

with

| Ωe |2= G(m1 + m2)
| λe |3 h0(ρ)

h0(ρ) = 1 +
m0

m1 + m2

(
1
ρ2

+
1

(1 + ρ)2

)

thenze = (Πe, λ
e,pe

�, µe,pe
µ), given by (14) or

(15) is a relative equilibrium of Euler type in the
configurationS2S1S0.

Remark 12 If m0 → 0 then| Ωe |2 =
G(m1 + m2)
| λe |3

and the equations that determine the Eulerian equi-
libria are the same ones of the Restricted Three Body
Problem.

4.1 Bifurcation of Eulerian relative equilib-
ria in an approximate dynamics of order
one

For the approximate dynamics of order one, after car-
rying out the appropriate calculations, the equation
(13) corresponding to the configurationS0S2S1, is
reduced to the study of the positive real roots of the
polynomial
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p1(ρ) = m0a
2(m1 + m2)ρ9+

m0a
2(5m1 + 4m2)ρ8 + m0a

2(10m1 + 6m2)ρ7+

3m0a
2(3m1 + m2 −m0)ρ6+

3m0a
2(m1 −m2 − 3m0)ρ5−

(6m0m2a
2 + 10m2

0a
2 + β1(m1 + m2 + 5m0))ρ4−

(4m0m2a
2 + 5m2

0a
2 + β1(10m0 + 4m2))ρ3−

(m0m2a
2 + m2

0a
2 + β1(6m2 + 10m0))ρ2−

β1(5m0 + 4m2)ρ− β1(m0 + m2)
(17)

wherea =| λe | andβ1 = 3(A + B − 2C)/2, 3(A +

C − 2B)/2 or 3(B + C − 2A)/2.
To study the positive real roots of this equation,

after a detailed analysis of the same one, it can be ex-
pressed in the following way

β1 = R1(ρ) =
m0a

2ρ2(ρ + 1)2p0(ρ)
q0(ρ)

beingp0 the polynomial of grade five that determines
the relative equilibria in the approximate dynamics of
order zero, that is given by the formula (16), and the
polynomialq0 comes determined by the following ex-
pression

q0(ρ) = (m1 + m2 + 5m0)ρ4 + (4m2 + 10m0)ρ3

+(6m2 + 10m0)ρ2 + (4m2 + 5m0)ρ + (m0 + m2)

The rational functionR1(ρ), for any value of
m0,m1,m2, always presents a minimumξ1 located
among0 and ρ0, being this last value the only one
positive zero of the polynomialp0(ρ).

Figure 3: FunctionR1(ρ)

By virtue of these statements the following result
is obtained.

Proposition 13 In the approximate dynamics of order
one, ifβ1 < 0, we have:

1. β1 < R1(ξ1), then relative equilibria of Euler
type don’t exist.

2. β1 = R1(ξ1), then there exists an unique relative
equilibrium of Euler type.

3. R1(ξ1) < β1 < 0, then two 1-parametric fami-
lies of relative equilibria of Euler type exist.

If β1 > 0, then there exists an unique 1-
parametric family of relative equilibria of Euler type.

Similarly for the configurationS2S0S1 we obtain
the following result.

Proposition 14 In the approximate dynamics of or-
der one, ifm1 6= m2 and β1 > 0, then there exists
an unique 1-parametric family of relative equilibria
of Euler type; on the other hand, ifβ1 < 0 we have:

1. β1 < R1(ξ1), then there exists an unique 1-
parametric family of relative equilibria of Euler
type.

2. β1 = R1(ξ1), then there exists an unique relative
equilibrium of Euler type.

3. R1(ξ1) < β1 < 0, then three 1-parametric fam-
ilies of relative equilibria of Euler type exist. If
m1 = m2 andβ1 > 0, then relative equilibria of
Euler type don’t exist; but ifβ1 < 0 we have:

4. R1(−1/2) < β1 < 0, then two 1-parametric
families of relative equilibria of Euler type exist.

5. β1 = R1(−1/2), then there exists an unique rel-
ative equilibrium of Euler type.

6. β1 < R1(−1/2), then relative equilibria of Eu-
ler type don’t exist.

The results for the configurationS2S1S0 are sim-
ilar to the configurationS0S2S1.

5 Conclusions and future works

The approximate dynamics of a rigid body in Newto-
nian interaction with two spherical or punctual rigid
bodies is considered. For order zero approximate dy-
namics and one a complete study of Eulerian rela-
tive equilibria is made. Diverse results, which had
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been obtained by means of classic methods in previ-
ous works, have been obtained and generalized in a
different way. And other results, not previously con-
sidered, have been studied. The bifurcations of the
Eulerian relative equilibria is completely determined
for an approximate dynamics of order one.

The methods employed in this work are suscep-
tible of being used in similar problems. Numerous
problems are open, and among them it is necessary to
consider the study of the ”inclined” relative equilibria,
in which Ωe form an angleα 6= 0 andπ/2 with the
vectorλe.

A The function R1(ρ) in approxi-
mate dynamics of order one for
the configuration S2S0S1

Figure 4: FunctionR1(ρ) for m1 6= m2

Figure 5: FunctionR1(ρ) for m1 = m2
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MC/3/00074/FS/02).

References

[1] G. N. Duboshin, The problem of three rigid bod-
ies,Celest. Mech.& Dyn. Astron.33, 1981, pp. 31-
47.

[2] A. Maciejewski, Reduction, relative equilibria
and potential in the two rigid bodies problem,Ce-
lest. Mech.& Dyn. Astron.63, 1995, pp. 1-28.

[3] J. A. Vera,Reducciones, equilibrios y estabilidad
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