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Abstract: - In this study, an improvement is introduced to solve the linear orthotropic plane problems using
boundary element method. This method gives a singular integral equation with complex kernels which will
be solved numerically. An artificial boundary is defined to eliminate the singularities and also an algorithm is
introduced to calculate multi-valued complex functions which belonged to the kernels of the integral equation.
The chosen sample problem is a plate, containing an elliptical hole, stretched by the forces parallel to one of the
principal directions of the material. Results are compatible with the solutions given by Lekhnitskii for an infinite
plane. Stress distributions have been calculated inside and on the boundary. There is no boundary layer effect.
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1 Introduction
Analytical solutions of some basic problems of or-
thotropic elasticity were comprehensively investi-
gated by Lekhnitskii [1-3]. The use of Somigliana’
s integral identity is an effective method for the
solutions of anisotropic elasticity problems. This
method gives an integral equation. In the absence
of the body forces this equation involves only sur-
face integrals. Boundary Element Method deals
with the numerical solution of this integral equa-
tion.

Mantic̆ & París [4] presented a complex for-
mulation of the fundamental displacements and
tractions following Lekhnitskii and Stroh theo-
ries. Raju et al. [5] presented a method for two-
dimensional orthotropic problems.

Some singularity problems arise in the solu-
tion of the integral equation mentioned above.
Besides, there are some difficulties in the calcu-
lation of the unknown stress component on the
boundary. This problem is named as boundary
layer effect. In this study, whole singularities are
eliminated and the unknown stress component
are calculated on the boundary. In the previ-
ous studies of Kadioglu and Ataoglu [6,7], these
two problems had been solved for isotropic and
orthotropic materials, respectively. Here, in ad-

dition, a new algorithm is also introduced to
calculate multi-valued complex functions. The
fundamental solution, given by Mantic̆ & París
[4], is partially used in this study. A specific prob-
lem is solved to check accuracy of the formulation.
The present results are seen to be obviously bet-
ter than those obtained by others, and, they are
compatible with Lekhnitskii’ s [1-3]. It is noted
that there are some mistakes in Lekhnitskii’ s
book [2] in the theoretical solution of the ellipti-
cal hole problem in an infinite plate.

2 Basic Formulations
The definition of a plane problem of orthotropic
elasticity is summarized below.

A region B with interior volume V and bound-
ary S is considered. The material filling V is or-
thotropic. The ordered pair S[u(x),T (x)] define
a problem in region B. u(x), T (x) denote the
displacement vector and the stress tensor, respec-
tively. x is the position vector of an arbitrary
point. For an orthotropic material, they satisfy
following relations.

Tkj,j + fk = 0 (1)

εkj =
1
2
(
∂uk

∂xj
+

∂uj

∂xk
) (k, j = 1, 2) (2)
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ε11 = β11T11 + β12T22

ε22 = β12T11 + β22T22

ε12 =
1
2
β66T12 (3)

where ε is the strain tensor, βkj represents the
elastic constants of the material. f denotes the
body force density. The expression of reciprocal
identity which is written between two different
problems, S(u,T ) and S∗(u∗,T ∗), for the same
body is ∫

S
t∗ · u dS +

∫
V

f∗ · u dV

=
∫

S
t · u∗ dS +

∫
V

f ·u∗ dV (4)

tk = Tkjnj , tk
∗ = Tkj

∗nj (5)

t and t∗ are surface traction vectors in two prob-
lems respectively, n is the outward normal of the
surface S. It will be considered that S(u,T )
represents a problem to be solved on the region
B of volume V bounded by surface S. In plane
problems, V is reduced to a simple or multiply
connected planar region. From now on, S(u,T )
is considered as the first boundary value prob-
lem [8]. But the solution method can be applied
to the second boundary value and mixed bound-
ary value problems as well. The second problem
S∗(u∗,T ∗) is named as a fundamental or singular
solution and it represents the displacement and
stress fields in an unbounded plane medium due
to a point load applied at a specific point y.

3 Fundamental Solution
A body force in an orthotropic, infinite, planar
medium having the same elastic constants with
the problem to be solved is defined as

fk = δ(x− y)ek (6)

where x and y represent the position vectors of an
arbitrary point and a specific point of the medium
respectively. ek (k = 1, 2) indicates a base vector
in Cartesian coordinates. δ(x−y) is a generalized

function, which is known as Dirac delta function
satisfying the following property:∫

V
h(x)δ(x− y)dVx = h(y) for y ∈ V

= 0 for y ∈/V (7)

The solution of this problem can be represented as
Sk(uk,T k). This solution is given by Ref. [4] for
different types of orthotropic materials as below.

uk
l(x,y) = Re

{
(

1
iπ

)
2∑

λ=1

PlλPkλ(lnzλ/κ2
λ)

}
(8)

tkl(x,y) = − 1
πi

Re

{
2∑

λ=1

1
κ2

λ

PkλQlλ(1/zλ)(µλn1 − n2)

}
(9)

where i =
√
−1. The quantities in these two ex-

pressions are defined depending on two complex
constants µλ(λ = 1, 2), defined in terms of βij co-
efficients, as the two of the roots of the following
nonlinear equation [2,4].

β11µ
4 + (2β12 + β66)µ2 + β22 = 0 (10)

There are two cases for µλ values (λ = 1, 2) for

(2β12 + β66) > 2
√

β11β22

µ1 =
i√

2β11

√
2β12 + β66 +

√
(2β12 + β66)2 − 4β11β22

µ2 =
i√

2β11

√
2β12 + β66 +

√
(2β12 + β66)2 − 4β11β22 (11)
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for (2β12 + β66) < 2
√

β11β22

µ1 = c + id , µ2 = −c + id

where

c =
1√
2β11

√√
β11β22 − (β12 +

β66

2
)

d =
1√
2β11

√√
β11β22 + (β12 +

β66

2
) (12)

In terms of µλ values, Q, P and κ constant
matrices are defined as follows:

Q =
[
−µ1 −µ2

1 1

]

P =

 β11µ
2
1 + β12 β11µ

2
2 + β12

β12µ1 +
β22

µ1
β12µ2 +

β22

µ2

 (13)

κ = P T Q + QT P =
[
κ2

1 0
0 κ2

2

]

= 4i

√
β11β22 − (β12 +

β66

2
)2

[
−µ1 0
0 µ2

]
(14)

There are only two zλ(λ = 1, 2) variables in
Eqs. (8) and (9) defined as

zλ = (x1 − y1) + µλ(x2 − y2) (15)

For a first boundary value problem, S(u,T ), in
orthotropic plane elasticity the expression of the
reciprocal identity, equation (4), which is written
between S(u,T ) and S∗ = Sk(uk,T k), neglecting
body forces, is reduced to the following form:∫

S
t(x) · uk(x,y)dSx −

∫
S

u(x) · tk(x,y)dSx

= uk(y) for y ∈ V,y ∈/S (16)
= 0 for y ∈/V,y ∈/S

Using Eq. (16) and Eq. (2) the components of
the strain tensor become

εlj(y) =
1
2

∫
S

t(x) · (ulj(x,y) + ujl(x,y))dSx

− 1
2

∫
S

u(x) · (tlj(x,y) + tjl(x,y))dSx

for y ∈ V or y ∈ S (17)

where

ukj
l(x,y) =

∂uk
l(x,y)

∂yj
=

−Re

{
(

1
iπ

)
2∑

λ=1

PkλPlλ(1/κ2
λ)(1/zλ)

∂zλ

∂xj

}
(18)

tkj
l(x,y) =

∂tkl(x,y)
∂yj

= Re {(1/iπ)

2∑
λ=1

PkλQlλ(1/κ2
λ)(1/z2

λ)
∂zλ

∂xj
(µλn1 − n2)

}
(19)

For the first fundamental problem [8], the sur-
face traction vector t(x) is given on the boundary
S of the region V . The expressions (8), (9) and
(11) to (15) can be found in Ref. [4]. But the
right-side of Eq. (16) has been given as Cklul(y)
for y ∈ S,y /∈ V in their study. This term is
named as free term in literature and Ckl is kl
component of C matrix. The details have been
given in Ref. [4]. But their formulation involving
C matrix has not been used in this study.

For a multiply connected region, the boundary
S contains a finite number of disjoint curves and
an integral over S is equal to the summation of
the integrals over these disjoint curves. It is clear
that, for the first fundamental problem, the dis-
placement vector can be calculated from Eq. (16)
at any arbitrary point y of the region if the dis-
placement field is known on the boundary. Then
using Eqs. (17) and (3), the stress components
can be calculated at y. In that case, the solu-
tion of the problem is reduced to calculate the
displacement field u(x) on the boundary S by
solving integral equation given in Eq. (16). The
solution of this integral equation is explained be-
low:

Boundary S is idealized as a collection of line
segments. If the number of these line segments
is N , the number of the end points, named as
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nodal points is also N for a closed boundary. It is
assumed that the variation of any displacement
component on a line segment is linear. Then
the unknowns of the problem are reduced to the
values of the displacement components at nodal
points. 2N integral equations each one of them
corresponding to a singular loading at a nodal
point in one direction can be written. In these
integral equations, integrals over the boundary
are transformed to the summation of the integrals
over the line segments. In addition, an artificial
boundary including all of the line segments but
not the nodal point x(I), will be defined for a
singular loading on that nodal point (Fig. 1).
Around x(I) a small circular arc, Sε, which leaves
the point outside the region is added to complete
this artificial boundary.

tkj
l(x, y) =

∂tkl(x, y)

∂yj

= Re

{

(1/iπ)

2
∑

λ=1

PkλQlλ(1/κ2
λ)(1/z2

λ)
∂zλ

∂xj

(µλn1 − n2)

}

(19)

For the first fundamental problem (Sokolnikoff [17]) the surface traction vector t(x) is given on the
boundary S of the region V . The expressions (8), (9) and (11) to (15) can be found in the study of
Mantic̆ & París [13]. But the right-side of Eq. (16) has been given as Cklul(y) for y ∈ S,y ∈/V in
their study. This term is named as free term in literature and Ckl is kl component of C matrix. The
details have been given in Mantic̆ & París [13]. But the formulation involving C matrix has not been
used in this study.
For a multiply connected region, the boundary S contains a finite number of disjoint curves and an
integral over S is equal to the summation of the integrals over these disjoint curves. It is clear that,
for the first fundamental problem, the displacement vector can be calculated from Eq. (16) at any
arbitrary point y of the region if the displacement field is known on the boundary. Then using Eqs.
(17) and (3), the stress components can be calculated at y. In that case, the solution of the problem
is reduced to calculate the displacement field u(x) on the boundary S by solving integral equation
given in Eq. (16). The solution of this integral equation is explained below:
Boundary S is idealized as a collection of line segments. If the number of these line segments is N ,
the number of the end points, named as nodal points is also N for a closed boundary. It is assumed
that the variation of any displacement component on a line segment is linear. Then the unknowns of
the problem are reduced to the values of the displacement components at nodal points. 2N integral
equations each one of them corresponding to a singular loading at a nodal point in one direction can
be written. In these integral equations, integrals over the boundary are transformed to the summation
of the integrals over the line segments. In addition, an artificial boundary Sε including all of the line
segments but not the nodal point x(I), will be defined for a singular loading on that nodal point (Fig.
1). Around x(I) a small circular arc which leaves the point outside the region is added to complete
this artificial boundary.

Fig. 1. Representation of the artificial boundary
It is assumed that the displacement components are constant and the components of surface traction
vector are equal to zero on this circular arc Sε. As a consequence of the definition of the artificial
boundary if y is a nodal point x(I), right side of the Eq. (16) becomes zero because y is not a point
in the region bounded by this artificial boundary. After necessary calculations the radius ε of the
circular arc will be shrunk to the nodal point x(I). The first assumption on circular arc, Sε, means
that any displacement component at a nodal point is single-valued. The second assumption is that
there is not a singular force acting at that nodal point. The integrals of tkl(x, y) functions over the
circular arc coincide with Ckl (Mantic̆ & París [13]) for some special cases. After all these assumptions
Eq. (16) is reduced to a system of linear algebraic equations as below:

AU = K (20)

where A is a 2N by 2N matrix, and whose components defined as

AIJ = δIJ

∫

Sε

t11(x, x(J))ds +

∫ l(J)

0

{t11(x, x(I))[1 − s

l(J)
]}ds

+

∫ l(J−1)

0

{t11(x, x(I))[
s

l(J − 1)
]}ds

4

tkj
l(x, y) =

∂tkl(x, y)

∂yj

= Re

{

(1/iπ)

2
∑

λ=1

PkλQlλ(1/κ2
λ)(1/z2

λ)
∂zλ

∂xj

(µλn1 − n2)

}

(19)

For the first fundamental problem (Sokolnikoff [17]) the surface traction vector t(x) is given on the
boundary S of the region V . The expressions (8), (9) and (11) to (15) can be found in the study of
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For a multiply connected region, the boundary S contains a finite number of disjoint curves and an
integral over S is equal to the summation of the integrals over these disjoint curves. It is clear that,
for the first fundamental problem, the displacement vector can be calculated from Eq. (16) at any
arbitrary point y of the region if the displacement field is known on the boundary. Then using Eqs.
(17) and (3), the stress components can be calculated at y. In that case, the solution of the problem
is reduced to calculate the displacement field u(x) on the boundary S by solving integral equation
given in Eq. (16). The solution of this integral equation is explained below:
Boundary S is idealized as a collection of line segments. If the number of these line segments is N ,
the number of the end points, named as nodal points is also N for a closed boundary. It is assumed
that the variation of any displacement component on a line segment is linear. Then the unknowns of
the problem are reduced to the values of the displacement components at nodal points. 2N integral
equations each one of them corresponding to a singular loading at a nodal point in one direction can
be written. In these integral equations, integrals over the boundary are transformed to the summation
of the integrals over the line segments. In addition, an artificial boundary Sε including all of the line
segments but not the nodal point x(I), will be defined for a singular loading on that nodal point (Fig.
1). Around x(I) a small circular arc which leaves the point outside the region is added to complete
this artificial boundary.
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It is assumed that the displacement components are constant and the components of surface traction
vector are equal to zero on this circular arc Sε. As a consequence of the definition of the artificial
boundary if y is a nodal point x(I), right side of the Eq. (16) becomes zero because y is not a point
in the region bounded by this artificial boundary. After necessary calculations the radius ε of the
circular arc will be shrunk to the nodal point x(I). The first assumption on circular arc, Sε, means
that any displacement component at a nodal point is single-valued. The second assumption is that
there is not a singular force acting at that nodal point. The integrals of tkl(x, y) functions over the
circular arc coincide with Ckl (Mantic̆ & París [13]) for some special cases. After all these assumptions
Eq. (16) is reduced to a system of linear algebraic equations as below:

AU = K (20)

where A is a 2N by 2N matrix, and whose components defined as

AIJ = δIJ

∫

Sε

t11(x, x(J))ds +

∫ l(J)

0

{t11(x, x(I))[1 − s

l(J)
]}ds

+

∫ l(J−1)

0

{t11(x, x(I))[
s

l(J − 1)
]}ds

4

Fig. 1.
Representation of the artificial boundary

It is assumed that the displacement compo-
nents are constant and the components of surface
traction vector are equal to zero on this circu-
lar arc Sε. As a consequence of the definition of
the artificial boundary if y is a nodal point x(I),
right side of the Eq. (16) becomes zero because y

is not a point in the region bounded by this arti-
ficial boundary. After necessary calculations the
radius ε of the circular arc will be shrunk to the
nodal point x(I). The first assumption on circular
arc Sε, is that any displacement component at a
nodal point is single-valued. The second assump-
tion is that there is not a singular force acting at
that nodal point. The integrals of tkl(x,y) func-
tions over the circular arc coincide with Ckl [4] for
some special cases. After all these assumptions,
Eq. (16) is reduced to a system of linear algebraic
equations as below:

AU = K (20)

where A is a 2N by 2N matrix, and whose com-
ponents defined as

AIJ = δIJ

∫
Sε

t11(x,x(J))ds

+
∫ l(J)

0
{t11(x,x(I))[1− s

l(J)
]}ds

+
∫ l(J−1)

0
{t11(x,x(I))[

s

l(J − 1)
]}ds

AI(J+N) = δIJ

∫
Sε

t12(x,x(J))ds+

∫ l(J)

0
{t12(x,x(I))[1− s

l(J)
]}ds

+
∫ l(J−1)

0
{t12(x,x(I))[

s

l(J − 1)
]}ds

A(I+N)J = δIJ

∫
Sε

t21(x,x(J))ds+

∫ l(J)

0
{t21(x,x(I))[1− s

l(J)
]}ds

+
∫ l(J−1)

0
{t21(x,x(I))[

s

l(J − 1)
]}ds

A(I+N)(J+N) = δIJ

∫
Sε

t22(x,x(J))ds+
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∫ l(J)

0
{t22(x,x(I))[1− s

l(J)
]}ds

+
∫ l(J−1)

0
{t22(x,x(I))[

s

l(J − 1)
]}ds

for I, J = 1, N (21)

where δIJ represents Kronecker’s delta and l(J)
is the length of the Jth linear segment. U and K
are matrices of order 2N by 1 defined as

UI = u1(x(I)) for I = 1, N

U(I+N) = u2(x(I)) for I = 1, N

KI =
N∑

J=1

∫ l(J)

0
[u1

1(x,x(I)) t1(x)

+ u1
2(x,x(I)) t2(x)]ds for I = 1, N

KI+N =
N∑

J=1

∫ l(J)

0
[u2

1(x,x(I)) t1(x)

+ u2
2(x,x(I)) t2(x)]ds for I = 1, N (22)

Before limit process (ε → 0) the integrals over
a circular arc Sε, see Fig. 2, about a nodal point
x(I) are reduced to the calculation of the integral
given below.

Iλ =
∫ θ2

θ1

(µλn1 − n2)
1
zλ

ds (23)

Substituting n1 = −cosθ, n2 = −sinθ,
zλ = ε cosθ + εµλ sinθ and ds = −εdθ

Iλ = ln
√

cos2θ + µλ
2sin2θ + 2µλcosθ sinθ

+i arctan(
Im(µλ sinθ)

cosθ + Re(µλ sinθ)
)
∣∣∣∣θ2

θ1

(24)

is obtained. In order to calculate the imaginary
part of this integral, the following algorithm is
developed:
for θ2 − π ≤ θ1 φ2 = θ2

for θ2 − π > θ1 φ2 = −(2π − θ2)

for θ1 − π < θ2 φ1 = θ1

for θ1 − π ≥ θ2 φ1 = −(2π − θ1)

β1 = arctan Im(µλ)sinφ1

cosφ1+Re(µλ)sinφ1

β2 = arctan Im(µλ)sinφ2

cosφ2+Re(µλ)sinφ2

for (β2 − β1) < 0 Im(Iλ) = β2 − β1

for (β2 − β1) ≥ 0 Im(Iλ) = β2 − β1 − 2π

AI(J+N) = δIJ

∫

Sε

t12(x, x(J))ds +

∫ l(J)

0

{t12(x, x(I))[1 − s

l(J)
]}ds

+

∫ l(J−1)

0

{t12(x, x(I))[
s

l(J − 1)
]}ds

A(I+N)J = δIJ

∫

Sε

t21(x, x(J))ds +

∫ l(J)

0

{t21(x, x(I))[1 − s

l(J)
]}ds

+

∫ l(J−1)

0

{t21(x, x(I))[
s

l(J − 1)
]}ds

A(I+N)(J+N) = δIJ

∫

Sε

t22(x, x(J))ds +

∫ l(J)

0

{t22(x, x(I))[1 − s

l(J)
]}ds

+

∫ l(J−1)

0

{t22(x, x(I))[
s

l(J − 1)
]}ds

for I, J = 1, N (21)

where δIJ represents Kronecker’s delta and l(J) is the length of the Jth linear segment. U and K

are matrices of order 2N by 1 defined as

UI = u1(x(I)) for I = 1, N

U(I+N) = u2(x(I)) for I = 1, N

KI =
N

∑

J=1

∫ l(J)

0

[u1
1(x, x(I)) t1(x) + u1

2(x, x(I)) t2(x)]ds for I = 1, N

KI+N =

N
∑

J=1

∫ l(J)

0

[u2
1(x, x(I)) t1(x) + u2

2(x, x(I)) t2(x)]ds for I = 1, N (22)

Before limit process (ε → 0) the integrals over a circular arc Sε, see Fig. 2, about a nodal point x(I)
are reduced to the calculation of the integral given below.

Iλ =

∫ θ2

θ1

(µλn1 − n2)
1

zλ

ds (23)

Fig. 2. Representation of the circular arc Sε

Substituting n1 = −cosθ, n2 = −sinθ, zλ = ε cosθ + εµλ sinθ and ds = −εdθ

Iλ = ln

√

cos2θ + µλ
2sin2θ + 2µλcosθ sinθ

+i arctan(
Im(µλ sinθ)

cosθ + Re(µλ sinθ)
)

∣

∣

∣

∣

θ2

θ1

(24)

5

Fig. 2.
Representation of the circular arc Sε

Other integrals over line segments (Fig. 3) in
Eqs. (21) can be reduced to the combination of
the following two integrals:

Rλ =
∫ l(J)

0

1
zλ

(µλn1 − n2)ds = | ln(zλ)|l(J)
s=0

Qλ =
∫ l(J)

0

1
zλ

(n1µλ − n2)
s

l(J)
ds =

∣∣∣∣lnzλ
s

l(J)
− zλ(lnzλ − 1)

l(J)(µλn1 − n2)

∣∣∣∣l(J)

s=0

(25)

where

zλ = −n2s + x1(J)− x1(I)

+ µλ(n1s + x2(J)− x2(I))

dzλ = (µλn1 − n2)ds (26)

Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22, 2006      347



It is seen from Eqs. (25) that another difficulty
arises in the calculation of the end values of multi-
valued function ln(zλ). To calculate their imagi-
nary parts, an archive function program has been
written to calculate all of the values of the arctan
function on the interval [0, 2π]. This makes pos-
sible to achieve a single value for arctan function
in this interval.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
                                  
 
 
 
 
 
 
 
 
                           

x(I) x1-x1(I) 

x(J) 

x(J+1) 

x2-x2(I) 

n 
l(J) 

s 
x 

θ1 
θ2 

Fig. 3.
The boundary element of the number J

Then, the following algorithm is introduced:

Im(ln(zλ)) = φ2 − φ1 (27)

where β1 = arctan( sinθ1Imµλ
cosθ1+sinθ1Reµλ

) ,

β2 = arctan( sinθ2Imµλ
cosθ2+sinθ2Reµλ

)

for β1 > β2 φ2 = β2

for β1 ≥ β2 + π ⇒ φ1 = −(2π − β1)
for β1 < β2 + π ⇒ φ1 = β1

for β1 = β2 ⇒ φ2 = β2

φ1 = β1

for β1 < β2 φ1 = β1

for β2 ≤ β1 + π ⇒ φ2 = β2

for β2 > β1 + π ⇒ φ2 = −(2π − β2)

Since zλ is a single-valued function using the
same way the imaginary part of Qλ can also be
calculated. A third difficulty arises in the calcu-
lation of the real part of Rλ. This term involves a
singularity on each of the two line segments join-
ing at a nodal point on which a singular loading
exists in any direction. But the coefficient of any
displacement component at this nodal point, in
the linear algebraic equation which corresponds

to the loading at the same point, does not involve
any singularity because the singular terms arising
in adjacent elements eliminate each other. Fol-
lowing this algorithm all integrals over the line
segments can be calculated analytically. After
determination of the matrices, A and K, the un-
known matrix U is calculated by solving Eq. (20).
For calculation of any strain component at any y
point, to use the calculated nodal values of the
displacement components in Eq. (17) is enough.
New integrals, arising in this process, can be re-
duced to the same integrals mentioned above by
partial integration. There are some other inte-
grals, but they are single-valued.
If the loading point y is on the boundary, this
corresponds to the case of θ1 = θ2± π which con-
sidered before, (see, Fig. 3), during calculation of
Im(Rλ). Here, there is only one restriction that it
is not possible to calculate the stress components
at the nodal points. If it is needed to calculate
the stress components at a point, this point must
not be selected as a nodal point. And if there is a
singular force applied at a point on the boundary,
this point cannot be selected as a nodal point ei-
ther because of our second assumption on circular
arc, Sε.

4 Sample Problem
The sample problem is a square orthotropic plate,
having an elliptical hole, stretched by forces par-
allel to x2 axis (Fig. 4) and material constants
are given in Table 1. The sample problem was
selected to compare the present method with the
other theoretical [1-3] and numerical study [5].

The region of the problem is multiply con-
nected. 4N nodal points are selected on the
boundary and the whole boundary is considered.
It seems that the number of the nodal points is
more than that employed in each of the other
studies, but by taking advantage of the existing
quarter symmetry the number of equations to be
solved is reduced from 8N to 2N . It must be em-
phasized that there is not any nodal point inside
the region.

The equation of an elliptical contour in the
parametric form is x = acosϑ , y = bsinϑ,
where a and b are the lengths of the principal
semi-axes of the ellipse, and ϑ is the parameter
which assumes all values from zero to 2π for a
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complete circuit of the contour. The theoretical
solution of this problem for an infinite plate was
also solved by Lekhnitskii [1-3]. If the semi-axes
a and b of the ellipse are relatively small in com-
parison to l, the value of stress component Tϑϑ/po

at point A must approach from above to the the-
oretical result given by Lekhnitskii for an infinite
plate. To verify this, Tϑϑ(A)/po and Tϑϑ(B)/po

values were calculated for different ratios of a/b
for material I and l = 100 cm, b = 0.5 cm (Ta-
ble 2). It is interesting that Tϑϑ(B)/po remains
nearly constant for different a values. Lekhnit-
skii’ s result for Tϑϑ(B)/po has also been found
out to be independent from a/b ratio for an infi-
nite plate and for material I being equal 1.4142.
The variation of Tϑϑ(θ)/po was also calculated on
the boundary of the elliptical cavity by choosing
l = 100 cm, a = 0.7 cm and b = 0.5 cm (Fig. 5).
It must be emphasized that θ indicates the polar
angle.

Table 1. Material Constants (1/MPa)

β11 1/12000
β22 1/6000
β12 -0.071/12000
β66 1/700

Fig. 4.
Sample problem

Table 7. Variations of Dimensionless Stress Components, Tϑϑ(A)/po and
Tϑϑ(B)/po, with the Ratio of a/b for the Elliptical Cavity, b=0.5 cm and l=100 cm and Material I

Present Solution Lekhnitskii
a/b Tϑϑ(A)/po Tϑϑ(B)/po Tϑϑ(A)/po

1.2 5.0413 -1.4541 4.78
1.4 5.6954 -1.4591 5.4104
1.6 6.3283 -1.4596 6.040
1.8 6.9381 -1.4579 6.6706
2 7.5239 -1.455 7.307

2.2 8.085 -1.4515 7.9307
2.4 8.622 -1.4476 8.5608
2.6 9.7087 -1.4376 9.1909
2.8 10.3601 -1.4357 9.821
3 11.0025 -1.434 10.451

3.2 11.6351 -1.4324 11.0811
3.4 12.2575 -1.431 11.7111
3.6 12.8693 -1.4296 12.3412
3.8 13.4704 -1.4284 12.9713
4 14.0605 -1.4273 13.6013

50 100 150 200 250 300 350
θ

-1

1

2

3

4

5

Tϑϑ � po

Computed

Lekhnitskii

Fig. 11. Variation of dimensionless stress component, Tϑϑ(θ)/po, versus θ, on the elliptical cavity for
material I, a=0.7 cm, b=0.5 cm and l=100 cm
The same problem has been solved by Raju et al. [15] with a/b = 4 and l = 20a and the same material.
They have given the variation of the stress component T22/po along both a vertical and an horizontal
lines. In their study, the starting points of these two lines are very close to each other but not T22/po

values on them. It should be noted that the material constants have been given in psi in their study.
In order to compare the presented results with those obtained Raju et al. [15], the variations of
dimensionless stress component T22/po were calculated along these specific lines by choosing a = 5
cm with the same a/b and a/l ratios for material I and shown in Figs. 12 and 13 and Tables 8 and 9.

14

Fig. 5.
Variation of dimensionless stress component,
Tϑϑ(θ)/po, versus θ, on the elliptical cavity,

a=0.7 cm, b=0.5 cm and l=100 cm

Table 2.
Variations of Dimensionless Stress

Components, Tϑϑ(A)/po and Tϑϑ(B)/po,
with the Ratio of a/b for the Elliptical

Cavity, b=0.5 cm and l=100 cm

Present Solution Lekhnitskii
a/b Tϑϑ(A)/po Tϑϑ(B)/po Tϑϑ(A)/po

1.2 5.0413 -1.4541 4.78
1.4 5.6954 -1.4591 5.4104
1.6 6.3283 -1.4596 6.040
1.8 6.9381 -1.4579 6.6706
2 7.5239 -1.455 7.307

2.2 8.085 -1.4515 7.9307
2.4 8.622 -1.4476 8.5608
2.6 9.7087 -1.4376 9.1909
2.8 10.3601 -1.4357 9.821
3 11.0025 -1.434 10.451

3.2 11.6351 -1.4324 11.0811
3.4 12.2575 -1.431 11.7111
3.6 12.8693 -1.4296 12.3412
3.8 13.4704 -1.4284 12.9713
4 14.0605 -1.4273 13.6013

The same problem has been solved by Ref. [5]
with a/b = 4 and l = 20a and the same material.
They have given the variation of the stress com-
ponent T22/po along both a vertical and an hor-
izontal lines. In their study, the starting points
of these two lines are very close to each other but
not T22/po values on them. It should be noted
that the material constants have been given in
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psi in their study. In order to compare the pre-
sented results with those obtained by Ref. [5],
the variations of dimensionless stress component
T22/po were calculated along these specific lines
by choosing a = 5 cm with the same a/b and a/l
ratios and shown in Figs. 6 and 7 and Tables 3
and 4.
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Variation of dimensionless stress component,
T22/po, along the line AE
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Table 3.

Variation of Dimensionless Stress Component,
T22/po, along the Horizontal Symmetry Axis

x1/a T22/po

1 14.33708
1.005 9.507749
1.01 7.456024
1.015 6.321028
1.02 5.578929
1.025 5.046719
1.03 4.641871
1.035 4.321044
1.04 4.059035
1.045 3.840065
1.05 3.653693
1.055 3.492701
1.06 3.351916
1.065 3.227528
1.07 3.116655
1.075 3.017076
1.08 2.927048
1.085 2.845178
1.09 2.770342
1.095 2.70162
1.1 2.638251

1.105 2.579599
1.11 2.525129
1.115 2.474385
1.12 2.426979
1.125 2.382575
1.13 2.340885
1.135 2.301654
1.14 2.264662
1.145 2.229714
1.15 2.196637
1.155 2.165281
1.16 2.135507
1.165 2.107196
1.17 2.080237
1.175 2.054533
1.18 2.029994
1.185 2.006542
1.19 1.984102
1.195 1.96261
1.2 1.942003

Table 4.
Variation of Dimensionless Stress Component,

T22/po, along AE Line

T22/po

Raju et. al
x2/a Present 1 2 3

0 14.33708
0.001 13.21895 8.696 8.692 8.697
0.01 11.37188 8.134 8.134 8.137
0.02 8.422955 6.934 6.935 6.934
0.03 6.603969 5.775 5.776 5.780
0.04 5.566324 4.891 4.891 4.896
0.05 4.876935 4.257 4.258 4.262
0.06 4.383839 3.797 3.798 3.803
0.07 4.011685 3.454 3.455 3.460
0.08 3.719406 3.189 3.190 3.195
0.09 3.482877 2.978 2.979 2.985
0.1 3.286951 2.806 2.807 2.813
0.11 3.121589
0.12 2.979847
0.13 2.856755
0.14 2.748655
0.15 2.652792
0.16 2.567049
0.17 2.489771
0.18 2.419648
0.19 2.355631
0.2 2.296869

5 Conclusions and Discussions
A few improvements are introduced to the so-
lutions of plane problems of linear orthotropic
elasticity by boundary element method. This
theorem gives an integral equation for a first
boundary-value problem. Unknowns of this in-
tegral equation are the boundary values of the
displacement components. This integral equation
can be solved using boundary elements. The aim
of this study is to eliminate all of the singularities
which occur during the reduction of this integral
equation to a system of linear algebraic equations.
To eliminate the singularities, at first, an artificial
boundary for each nodal point is defined. This
boundary involves boundary elements and a small
arc centered at a nodal point, but, the location of
this nodal point must remain outside of the artifi-
cial boundary during this process. This artificial
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boundary eliminates C matrix in classical bound-
ary element formulation. Here, the integrals, over
boundary elements and the added small arc, have
been determined analytically. This small arc was
shrunk to the nodal point after the calculation
of the required integrals over it. It is assumed
that the displacement components are constant,
but no stress on this small arc. The singulari-
ties arising during calculation of the integrals over
adjacent elements at the nodal point are mutu-
ally eliminated. In this study, the number of
nodal points has been selected to keep the ele-
ment length constant for different examples. This
constant length is determined by trying a differ-
ent number of boundary elements for each prob-
lem. The required element length is achieved if
the results remain nearly constant for a further
increment in the number of boundary elements.
Kernels of the integral equation mentioned above
are complex. An algorithm is introduced for the
calculation of the multi-valued complex integrals
over the boundary elements and the small arc
mentioned above. After finding the displacement
components on the boundary, the unknown stress
or any displacement component can be calculated
on any point inside or on the boundary without
any singularity problem. But, in this case, the
term corresponding C matrix will be taken to be
equal to unity instead of zero. There is a diffi-
culty to calculate the unknown stress component
on the boundary in classical formulation, which
is named as boundary layer effect [9]. There is
no boundary layer effect in this study. There are
two restrictions in this method. Stresses cannot
be calculated at a nodal point. And, if a singu-
lar load exists at any point on the boundary, this
point must not be selected as a nodal point ei-
ther because of second assumption on circular arc
about a nodal point. A specific problem is se-
lected to check the accuracy of the presented for-

mulation and for comparison with other studies.
Analytical solutions of these problems have been
given by Lekhnitskii for an infinite plate. Results
are compatible with those of Lekhnitskii. More-
over, the present results seem better than that of
the other cited. Their results were also indicated
for comparison.
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