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Abstract: - This paper deals with developing a computational approach to vibration analysis of
coupled fluid-structure systems i.e. liquid containers, a set of parallel /or radial plates used as
hydraulic turbine /or turbo-reactor blades subjected to fluid forces. A hybrid fluid-solid element
with taking into account simultaneously the membrane and bending effects of plate element is
developed. The structural mass and stiffness matrices are determined using exact analytical
integration of governing equations on basis of Sanders’ shell theory and finite element approach.
The Bernoulli equation and velocity potential function are used to describe the liquid pressure
applied on the solid-fluid element. Impermeability condition assures a permanent contact at the
fluid-structure interface. The applications of this model are presented for both parallel and radial
plates as well as the fluid filled cylindrical and rectangular reservoirs. The effect of physical and
geometrical parameters on the dynamic behavior of coupled fluid-structure system is investigated.

The results are in satisfactorily agreement with those of experiments and other theories.

Keywords: -Fluid, Structure, Vibrations, Added mass

1 Introduction

Shell structures have wide applications in
areas such as modemn construction
engineering, acrospace and aeronautical
industries, aircraft construction,
shipbuilding, rocket construction, and the
components of nuclear power plants to name
a few. In the most of industrial applications,
these structures are in contact with fluid
media. The forces generated by violent
fluid-structure contacts can be very high;
they are stochastic in nature and thus
difficult to describe. They do, however,
often constitute the design loading for the
structure. Hydrodynamic pressures are
generated by the vibrating structure, and
these pressures will modify the structural
deformation, which, in turn, will modify the
hydrodynamic pressures that caused them.
The problem is a tightly coupled elasto-
dynamic problem in which the structure and
the fluid form a single system. Solution of
these problems is obviously complex and

technically challenging. It is therefore very
important that the static and dynamic
behaviour of these structures when subjected
to different loading conditions be clearly
understood so that they may be safely used
in these industrial applications. Vibration
analysis of plates and shells has received
considerable attention and has been the
subject of numerous studies, many of which
are well documented by Leissa [1 and 2].
The integrity of the mathematical model is a
major factor in obtaining a satisfactory
modal definition for the structure. If the
model is of poor quality, mathematical rigor
in the solution of the equations of motion
will not improve results. The stiffness and
mass distribution as well as the boundary
conditions are basic parameters that should
be given careful consideration in the
synthesis of the mathematical model for
structural dynamic analysis. Neglecting any
of these parameters may result in a model
that is not dynamically similar to the actual



structure. It is therefore concluded that the
accuracy of solutions reached by the finite
element displacement formulation depends
on the assumed functions used to model the
deformation modes of structure. On the
. basis of aforementioned discussions, the
need for accurate and efficient methods for
static/and dynamic analysis of shell
structures, which are in contact with fluid
media, becomes apparent. To meet
requirements related to accuracy of the
solution, a new hybrid theory is developed
on basis of classical finite element method
and Sanders’ shell theory [3]. The structural
displacement functions are derived using the
equations of motion. Then, mass and
stiffness matrices required by the finite
element method are determined by precise
analytical integration. The velocity potential
and Bernoulli’s equation are adopted to
express the fluid pressure acting on the
structure. The product of the pressure
expression and the developed structural
shape function is integrated over the
structure-fluid interface to assess the virtual
added mass due to the fluid.

2 Structural Modelling

This theory is an extension of that
expounded by Lakis and Paidoussis [4, 5]. It
is a hybrid formulation, which has its basis
in the finite element method, but with
displacement functions over an element
determined by the exact solution of the
equations of static equilibrium of structure
instead of the usual and more arbitrary
interpolating polynomials. In doing so, the
accuracy of the formulation will be less
affected as the number of elements used is
decreased and as the dynamic characteristics
of the structure are required at higher modes,
a significant advantage over polynomial
interpolation. _

The geometry of structure reference surface
and the co-ordinate systems used for this
analysis are shown in Figure 1. Each
element consists of four node and twenty-
four degrees of freedom that represent the
in-plane and out-of-plane displacement
components and their spatial derivatives. To

develop the equilibrium equations of the
rectangular plates, the Sanders’ equations
for cylindrical shells are used assuming the
radius to be infinite, 8 =y and rd6=dy.

Y=, v,

W, W, W

i i Ly?" 7 ixy

Figure 1: A typical finite element

2.1 Equilibrium equations
The implicit form of the equilibrium
equations of a rectangular plate as a function
of the displacement components and
structural material properties are given as:
LUV, W,P0)=0 (i=123 and p=gq=lto 6)(1)
Where L; (i=1 to 3) are three linear
differential operators whose forms are fully
given in [6], and the components of
elasticity matrix [P] are also given in [6].

2.2 Displacement field
The membrane and bending displacement
components are presented in terms of

bilinear polynomials and exponential
function, respectively.
X Y Xy
Ux,y,t)=C,+C,—+C,—+C,—
(x y ) 1 27 3 ‘4B (2)
x Y xy
t)=C,+Cy—+C,—+Cy—
V(xay’) s+ 6A+ 7B+ * 4B
2 ,,,(;ul] )
W(x,y,t)=3 C,e ‘" 2™
=9

Where U, V and W are the in-plane and out-
of-plane displacement components, and A,
B are the plate dimensions in X and Y
directions, respectively. The transversal
displacement component of the reference
surface can be expressed in terms of the
Taylor’s series as:
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The displacement vector at each node is
expressed as:

=felo o)) =ldde} @

The {C} is the unknown constant vector.
Multiplying the equation (4) by [A]" and
then substituting in equation (2) results in
the following relations that express the
displacement components as a function of
the nodal displacement vector:

U
H={R1{c}=[R][Ar’{s}wv]{a} )

w

Where, [N] expresses the displacement
functions, the inverse of matrix [A] and

matrix [R] are given in [6]. The unknown -

constants can be defined as a function of
twenty-four degrees of freedom of chosen
element.

2.3 Deformation vector

Introducing the displacement components
into the deformation-displacement
relationships given in [6], yields to the
following equation that describes the
deformation vector as a function of nodal
displacements.

{e}=lol4l s} ©
For an isotropic material, the stress
resultants may be expressed as follows:

{o}=[Pe} @)
Using the procedure of the classical finite
element, one obtains the mass and stiffness
matrices of a typical element in its local co-
ordinates:

b - T T teliohes ®)

by

[l = psh[[A]'l}r(f xf [T [R]rbrdYJ[A]'l

Where p; is the structural density, x, and y.
are the element dimensions in X, and Y
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directions, respectively (see Figure 1). These
integrals are analytically calculated to
determine the mass and stiffness matrices of
each element.

3 Fluid Modelling

Linear potential flow is applied to describe
the fluid effect that leads to the fluid
dynamic forces. The mathematical model is
based on the following assumptions: i) the
fluid flow is potential, ii) the fluid is
assumed to be non-viscous, incompressible
and  irrotational. @~ Based on  the
aforementioned hypothesis the potential
function, which satisfies the Laplace
equation, is expressed in the Cartesian
coordinate system as:

2 2 2
V2¢=af+af+af=0 9)
ox® Oy~ 0Oz
The Bernouilli equation for the case of

stationary fluid when the fluid velocity is
null, is expressed as:

_a_¢_+.£_ =0 (10)
ot Pl

Equation (10) results in the following
expression for pressure:

o¢
Pz=0 =_pf5

(11)

The following separate variable relation is
assumed for the velocity function:

#(x.y,2,6)=Fz)S(x,7.,)  (12)
Where F(z) and S (x, y, t) are two separate
functions to be  determined. The
impermeability condition of the structure
surface requires that the out-of-plane
velocity component of the fluid on the plate
surface should match the instantaneous rate
of change of the plate displacement in the
transversal direction. This condition implies
a permanent contact between the plate
surface and the peripheral fluid layer, which
should be:

o _9W (13)
oz|,., Ot
The following expression may be defined by

introducing equation (13) into equation (12)

z=0
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Then, substituting equation (14) into relation

(12) results in the following expression for

the potential function:

¢(x,y,2,f)=ﬂa—w (15)

dF(0)/dz ot
Fluid boundary conditions are introduced
separately for each element, which allows us
to study partially or totally submerged
plates, i.e. vertical plates or inclined plates
as well as floating plates. Substituting
equation (15) into relation (9) leads to the
following differential equation of second
order:

d*F(z
—dZT()—,uZF(z) =0 (16)
Where;
1
H=T ?‘F? (17)

The general solution of equation (16) is
given as:

Fzy=Ae” +A,e™™ (18)
Substituting equation (18) into (15), one gets
the following expression for the potential

function:
z —Hz
¢(x’y,z,t)=(Ale +A,e) oW 19)
dF (0)/dZ Ot

The potential function ‘¢’ must be verified
for given boundary conditions at the fluid-
structure interface and the fluid extremity
surfaces as well. This function is developed
for various cases i.e. submerged and floating
structure; structure-fluid model with null-
pressure applied at the free surface and are
given in [6].

3.1 Calculation of Fluid-Induced Force
Fluid forces are replaced by the added mass,
representing inertia force, when the flow
velocity is null. The following relation
expresses the fluid-induced force vector:

{7 = [INT {plaa o

Where [N] is the shape function matrix of
the finite element defined in equation (5)
and {P} is a vector expressing the pressure
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applied by the fluid on the plate, which are
given in [6]. Substituting the transversal
displacement (given in equation (5)) into the
appropriate pressure expressions, which
depend on the fluid-structure contact model
as well as the boundary conditions, one
obtains the fluid pressure that is applied on
the plate. The dynamic pressure is then
defined as:

(P}=2,[r, ][] 5} (2D
The coefficients Z; (i= 1 to 6), which depend
on the fluid-structure contact model, are
given in [6]. The matrix [Rg and ([A])
terms are also given in [6]. Introducing
equation (21), and displacement functions
(5) into relation (20) leads to the vector of
fluid forces as:

F¥=2z,] [ TIRT [&, [4T" a6} 22)

where dA is the fluid-structure interface
area.

4 ~ Dynamic Behaviour of
Fluid-Structure

Interaction

The dynamic responses of a plate are
affected by the presence of a fluid media.
Generally, the fluid pressure acting upon the
structure is expressed as a function of
displacement and its derivatives i.e. velocity
and acceleration. These three terms
represent, respectively, the stiffness,
Coriolis and inertia effects of the fluid
forces. The fluid force matrices are
superimposed onto the structural matrices to
form the dynamic equations of a coupled
fluid-structure system. The global equations
for motion of a structure interacting with a
fluid can be represented as follows:

(0, 1-In, 1 )46,3- e, o 3+ (k. )- [, D €6, 3= £} 2)

Where subscripts ‘s’ and ‘f” refer to the shell
in vacuo and fluid filled respectively. [M,]
and /K are the global mass and stiffness
matrices of the plate in vacuo. They have
been previously defined by equation (8) for
an element. /My, [C] and [K{], represents
respectively the inertial, Coriolis and
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A
centrifugal force of the fluid; {67} is the (
displacement vector, and {F} represents the . 2
external forces. It is note{d }thaf in case of Rigid Wall 2y
stationary fluid (V¢= 0), the terms C;and K¢ G
would be null. After applying the boundary
conditions, these matrices are reduced to \ | 2h,
square matrices of order 6*(N)-NC, where N \\
and NC are the number of elements and the ¥
restrictions imposed. N
_ Elastic
» X Plates

5 Results and Discussions
The first examples examines the dynamic
responses of a fluid-filled rectangular
reservoir whose dimensions are given in
Figure 2 and the plate thickness is h = 2mm.
The mechanical properties used in this
example are:

E = 69GPa, p, = 2700 kg/m’®, v = 0.3, p; = 1000 kg/m’

-7 0.32m
VA
A 0.2

Top Elastic

Figure 3: A set of parallel plates

Figure 3 shows a part of a structural system
composed of a set of thin plates having each
two parallel sides fixed to the lateral rigid
walls. All plates have the same properties
and they are distributed uniformly. Guo and
Paidoussis [8] studied an identical system
submitted to a flowing fluid in a channel
formed by rectangular plates. Here, it is
assumed that the fluid velocity is null and
only the inertia force due to the fluid is
taken into account. Omne arranges a

dimensionless frequency parameter defined

by the following expression:

Wall 0.04m

1 K _
Rigid &m\?‘z\\\ e o= -b—z ook @ , M: Vibration frequency in rad/sec.
2 S s"p
W’ﬂ& :‘ ””””” d The parameter ‘hp’, ‘b’, and ‘I’ are
! represented in Figure 3. The parameters n,

\,Inferior > X

Elastic Wall
Figure 2: A fluid-filled rectangular reservoir

The results are presented in Table 1 that
shows a good agreement between the
present theory and that of Jeong et al. [7].
The natural frequencies of the two parallel
plates coupled with an incompressible fluid
and vibrating in out-of-phase mode (0,1) are
listed in Table 2. Only the frequency
corresponding to the mode (0,1) is presented
since it reserves the mass conservation that
was also met by Jeong et al. [7] in the
analysis of two circular plates coupled with
fluid.

The assembled parallel plates are often used
in different sector of industry i.e. tubes
support plates in steam generator.

€, and y are dimensionless parameters
defined by the following relations:

n=psbl psh=1; ¢ =1/b=0.5;
v =h,/b=0.05

Table 3 lists the natural frequencies of fluid-
structure model along with corresponding
results of Reference [8]. In out-of-phase
mode, the applied pressure on the middle
plate is the sum of the calculated pressure
acting on the top and bottom plates. The
applied pressure on the top and bottom
plates is the same. It is for this reason that
the analysis of a set of plates comes back to
study only one plate subject to the calculated
pressure at out-of-phase vibration mode of
side walls.
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Figure 4: A cylindrical reservoir

Kim and Lee [9] studied the hydro-elastic
behaviour of an open rectangular reservoir,
(0.5m x 0.7m x 0.4 m), completely filled
with water. The material properties are:

E =200 GPa, v = 0.3, p; = 7970 kg/m®, h =
5mm, pg = 1000 kg/m’

Referring to Kim and Lee’s results (Table
4), it is noted that the frequency for in-phase
modes is more precise than the frequency of
out-of-phase mode. One says that our
solution is more exact since when the ratio
between the height of the fluid and reservoir
dimensions passes at certain value, there is
no difference between frequencies of in-
phase and out-of-phase modes.

Free Surface of

Fluid v

61 cm

]
[/

cm

[
a

<= Rigid Bottom
Scm of Reservoir

Figure 5: A submerged bird-structure

The dynamic behaviour of a cylindrical shell
fixed at its two ends (Figure 4) is
investigated in this example. The effect of
geometrical parameter on the natural
frequency of this structure is also verified.
The results are listed in Table 5 along with
those of [10] that shows a good agreement
between two models.
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E = 206 GPa, v = 0.3, p, = 7680 kg/m®, p; = 1000
kg/m3 )

The dynamic characteristics of a simplified
two-wing structure shown in Figure 5 are
calculated in this example. The structure
(bird) is composed of two plates in
aluminium welded to a solid box made of
same material whose mechanical properties
are:

E =72 GPa, v =03, p, = 2720 kg/m’, h =
3.2mm

This structure made the object of an
experimental work [10] in which the tests
firstly were performed in air and with the
free-free conditions, a suspension system
was conceived to assure these limit
conditions. This structure is also studied to
the laboratory of the IREQ (Institute of
research of hydro Quebec). An experiment
is carried out for this structure submerged in
an open rectangular reservoir with free
surface on top and a rigid wall at the base of
vessel. The fluid height was 37.5 cm. The
numerical and experimental results are listed
in Table 6. It is important to note that at out
of this fluid height the structural frequencies
do not change when one increases the level
of fluid on the plate [10]. We calculated the
vibration frequencies of the same structure
completely submerged in water while
satisfying the same boundary conditions
imposed during the experimental tests. The
applied water pressure on the walls is the
sum of the pressure applied by the fluid on
the upper and lower surfaces of structure.
The results are presented in Table 6 that
shows they are in good agreement with the

experimental results.
0.19m
0.19
3
Plate 3 jd 0{076 m
R R TR R ETT
\ 0076 m
Plafe 2 \‘
| R TR NI
\\\\‘
E Platgs
Plate 1

Figure 6: A set of parallel plates fixed at one
side
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There are some complex structures
composed of a set of identical parallel /or
radial plates that are in interaction with the
fluid i.e. turbine blades. If the height of fluid
between plates is low, the fluid transports
the kinetic energy from one plate to another.
Therefore, one studies the case of three
parallel plates fixed to a rigid wall as shown
in Figure 6. The material properties are
given as:

E =69 GPa, v = 0.3, p, = 2700 kg/m’, h =
2mm .

When the system is submerged into a big
reservoir, every plate undergoes a different
pressure at its two sides caused by the fluid
being, respectively, on top and bottom of the
plate. In addition, the plates vibrate between
them according to in-phase /or out-of-phase
modes. Among several possible
combinations, one distinguishes three modes
of vibration of the system. The remainder
cases are only repetitions of one of the three
modes. Table 7 presents the vibrational
frequencies according to the three distinct
modes of plate. According to results, we
note that the dynamic behaviour of this
system can be studied while considering
only one plate that vibrates in out-of-phase
mode in relation to the two others since this
mode provides the lowest frequency.

The dynamic behaviour of a system
composed of several radial plates having one
side of each plate welded to a rigid axis as
shown in Figure 7. The angle between every
two plates is 45 degrees. All plates have the

same  geometrical  dimensions  and
mechanical properties.
A
5
4 —
c
3
2 —
1 X

Figure 7: A set of radial plates

L = 0.655m, W = 0.2016m, h = 9.36mm,
E=207GPa, p,= 7850kg/m’ and v = 0.3
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Figure 8: A vertical cantilever plate
partially submerged in fluid

In this structural model, the fluid level on
top and bottom of plates vary from one to
another. Considering the axial symmetry of
the system and the uniform distribution of
plates in the circumferential direction
indicates that the dynamic analysis of such
system comes back to study only one plate
that vibrates according to three different
modes in relations with neighbouring plates.
Natural frequencies of this structure without
/and with fluid (when totally submerged in a
water reservoir) effects according to the
three distinct modes are enumerated in Table
8. It is important to note that the dynamic
analysis of a set of parallel /or radial plates
can be reduced to the dynamic analysis of
only one plate when all plates have the same
dimensions and the same mechanical
properties. In addition, the fluid height has
to be even between every two plates and the
axis or the wall that attaches all plates
together be rigid.

The dynamic behaviour of a vertical plate
submerged in fluid reservoir is investigated,
Figure 8. Natural frequencies are calculated
for a plate vibrating in both air and water
and different boundary conditions. In each
case, the vibration analysis is carried out for
four level of fluid (25%, 50%, 75%, and
100%). The fluid pressure applied on the
submerged part of plate is equal to twice of
the pressure. To validate this model, the
results are compared with those of

Y
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experiment [11]. The parameters used for
this case are:

E =206 GPa, v = 0.3, p; = 7830 kg/m’, p; =
1000 kg/m’, A = 0.2032m, B = 1.016m and
h =4mm

30 —o—CFFH
—=—CFCH
25 —4— SFSF]
-&—SFFF|
iZO
Z ]
>1 5 \
(3] N
510}—\‘\;\‘—.
=
C 54 3
E \
T . . .
0% 25% 50% 75% 100%
Fluid/length ratio MODE 1

Figure 9: Frequencies of a cantilever plate
as a function of fluid height

The obtained frequencies are listed in Table
9. It is noted that results are in good
agreement with those of Lindholm [11]. It is
underlined that the natural frequency of a
cantilever submerged plate significantly
decreases when the submerged part is less
than of plate’s half-length.

To investigate the boundary condition
effects on the dynamic behaviour of the
vertical submerged plates, the same plate as
forgoing example is considered by changing
the boundary conditions and calculated
results are presented in Figure 9 at the first
mode. The plate is supported on two sides
(SFSF and CFCF) and undergoes to a
significant change in natural frequencies of
the first mode when the level of immersion
is situated between 25% and 75%. Below
25% the influence of fluid is insignificant.
On the other hand for plates supported on
only at one side (CFFF and SFFF), the fluid
presence has a very important influence on
frequencies even at a level of immersion
below 25%.

6 Conclusions
A hybrid element is developed to dynamic
analysis of a coupled fluid-structure system
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i.e. ‘n’ parallel /or radial plates, cylindrical
and rectangular reservoirs. The structure
may be empty, partially or completely filled
with fluid or submerged in a liquid. The
structural mass and stiffness matrices are
determined by exact analytical integration.
The fluid pressure applied on structure is
expressed according to the acceleration of
the transverse displacement of the structure
and the density of the fluid. The major
importance in this work is to verify the
applicability of this element to represent the
hydro-elastic  behaviowr of  different
structures. The results are compared with
those of other theory and experiments and
commercial finite element computer codes
i.e. ANSYS. The satisfactory agreement is
found. This element can be applied to
vibration analysis of non-uniform structures
supported by any combinations of various
boundary conditions without changing the
displacement field.
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Table 1: In-phase vibrational
frequencies (Hz) of a fluid-filled reservoir
Mode # Jeong et al. Present
(n, m) [7] Theory
0,0 1133 112.9
0,1) 192.5 188.7
(1,0 272.4 265.6
(0,2) 326.5 314.0
(1,1) 348.4 3329
(1,2) 479.6 4477
0,3) 516.1 485.6

Table 2: Out-of-phase vibrational frequencies
(Hz) of a fluid-filled reservoir
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Table 4: Vibrational frequencies (Hz) of a fluid-
filled reservoir

Theory In-Phase Out-of-
Phase
Kim et Lee [9] 49.8 422
Present Theory 50.7 49.9

Table 5: Vibration frequencies of a fluid-filled
clamped-clamped cylindrical shell

Mode Case 1 Case 2

# PT [11] | PT [11]

137.9 138.6 | 135.0 135.9

146.2 152.8 | 149.9 138.8

178.0 201.9 | 195.6 177.7

1
2
3 165.9 1583 | 154.6 166.9
4
5

2244 205.3 | 2129 2233

6 2343 256.9 | 228.3 245.7

Case 1: L=0.664m, R=0.175m, h=1mm
Case 2: L=0.9m, R=0.25m, h=2mm
PT: Present Theory
Table 6: Vibrational
simplified wing model (bird structure)

frequencies (Hz) a

Tn Air In Fluid
Mode#| [10] | PT | [10] PT
1 380 | 380 | 169 | 183
2 | 1060 | 1189 | 420 | 482
3 | 1370 | 1413 | N.A. | 529
4 | N.A 1573 | 790 | 821
5 | 2180 | 2243 | 950 | 981
6 | 317.0 | 349.8 | 151.0 | 159.5
7 | N.A. | 4639 | N.A. | 1643
8 | 393.0 | 4719 | 2060 | 207.8
9 | N.A. | 618.1 | 265.0 | 248.0

Mode Jeong et al. Present
number (n, m) [7] Theory
©,1) 61.2 66.5
Table 3: Non-dimensional out-of-phase
vibration frequencies
Present C.Q. Guo
Mode Theory and M.
number Paidoussis [8]
1 16.3 16.6
2 26.5 325
3 45.0 48.5

N. A. Not Avaialable

PT : Present Theory
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Table 7: Vibrational frequencies (Hz) of a set of

three plates
Mode# | Casel | Case2 | Case3
1 12.3 9.7 10.5
2 12.3 10.5 11.1
3 134 15.7 12.3
4 30.1 23.8 25.7
5 30.1 257 273
6 32.8 38.5 30.1
7 75.9 60.0 64.6
8 75.9 64.6 68.7
9 82.7 75.7 75.9
10 95.7 81.5 81.5

Case 1: Three submerged plates vibrating in-phase

Case 2: Plate (2) is out-of-phase with plate (1) and (3)
Case 3: Plate (2) is out-of-phase with plate (3)
and is in-phase with plate (1)

Table 8: Vibrational frequencies (Hz) of three N

radial plates
In fluid

Mode# | Inair | Case1 | Case?2 Case 3
Vo] 199 | 140 | 116 127
2 243 | 171 142 154
3 362 | 255 | 2m 230
4 558 | 304 | 324 353
> 852 | 603 | 492 538
6 | 1044 | 885 | 683 773
T |51 018 | e | 781
8 1312 ] 958 | 1732 815
® | 1441 | 1058 | 785 889
10 1 1679 | 1234 | o11 | 1034

Case 1: Three plates vibrating in-phase

Case 2: Plate (2) is out-of-phase with plates (1) and

©)

Case 3: Plate (2) is out-of-phase with plate (3) and is

in-phase with plate (1)

Table 9:Natural frequencies (Hz) of a vertical
cantilever plate gradually submerged in a fluid

Ieservoir
Submerged height Ratio (S/B)
Mode 25% 50% 75% 100%
# PT |[11]| PT |[11]| PT |[11]| PT |[[11]
1 2 (222 2 | 2 2 2
2 21 |21 |15 (16 | 12 | 12 | 12 | 12
3 25 130 |20 (26 19|24 | 19 | 24
4 56 | 57 |49 | 52 | 36 | 38 | 33 | 34

10

PT: Present Theory
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