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Abstract: Fractional tumor development is considered in the framework of one dimensional continuous time ran-
dom walk (CTRW) in the presence of a periodic potential. Chemotherapy influence on the CTRW is studied by
observations of both stationary solutions due to proliferation and fractional evolution in time.
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1 Introduction

Mathematical modeling of tumor development is
mainly aimed at diagnostics and treatments of can-
cers, since it may lead to the reduction of expensive
experimentsin vivo. Recent reviews describe differ-
ent aspects of the modeling of growth patterns [1].
There are different stages of tumor development of
varying duration, starting from genetic changes on the
cell level and finishing with detachment of metasta-
sis and invasion. Tumor cell transport and their pro-
liferation are the main contributors to the malignant
neoplasm dissemination (seee.g. [2, 3]), and inter-
play between these two main processes leads to an es-
sential complication in the mathematical modeling of
tumor growth [2, 4]. This evolution, related to the col-
lective or macroscopic behavior of cells, is described
(in many cases) by kinetic cellular theory [5] (see also
e.g. [2, 3]).

The migration–proliferation dichotomy of can-
cer cells, proposed in [6], has been considered in
the framework of a continuous time random walk
(CTRW) by virtue of two time scales of tumor de-
velopment [7]. The collective behavior of cells was
studied, paying particular attention to the influence of
tumor cell fission on transport. This influence leads
to an essential decrease in cell motility during fis-
sion time or self–entrapping that is determined by the
interaction of cells with their environment. An im-
portant feature of the CTRW of cells is the essen-
tial enhancement of anomalous transport due to pro-
liferation. Moreover, it is a dominant process which
could be eliminated by chemotherapy. Chemotherapy
changes tumor development and leads to a decrease
in the number of tumor cells and, correspondingly,
eliminates tumor development. In reality, a cancer

cell is unstable and can mutate, developing a clone
which resists chemotherapeutical influence (seee.g.,
Ref. [3] and references therein). Therefore, mathe-
matical modeling of chemotherapy optimization is an
important component of cancer modeling [2, 3].

In this study we identified a condition when
chemotherapy negates cell proliferation and leads to
either fractional transport with the conservation of a
number of cells or a stationary solution which de-
scribes time independent localization of cancer de-
velopment. A specific feature of the analysis is cell
diffusion in a periodic potential. This can model,
e.g., metastasis cell transport along the spinal column,
where vertebrae form a periodic potential.

1.1 Fractional mechanism of tumor develop-
ment

A simplified scheme of migration–proliferation di-
chotomy, which is responsible for cell dissemination
through the vessel network, was considered by means
of the following two steps [7]. The first step is the bi-
ological process of cell fission. The duration of this
stage isTf . The second process is cell transport it-
self with durationTt. Therefore, the cell dissemi-
nation is approximately characterized by the fission
time Tf and the transport timeTt. During the time
scaleTf , the cells interact strongly and motility of
the cells is small, and we suppose that there is (al-
most) no transport. During the second timeTt, inter-
action between the cells is weak and motility of the
cells is determined by the velocityV , and a “jump”
lengthXt as the distance which a cell travels during
the timeTt Xt = V Tt . Hence, the contribution of cell
dissemination to the tumor development process con-
sists of the time consequencesTf (1)Tt(2)Tf (3) . . . .
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There are different realizations of this chain of times,
due to different durations ofTf (i) andTt(i), where
i = 1, 2, . . .. Therefore, transport is characterized
by random valuesT (i) which are waiting (or self–
entrapping) times between any two successive jumps
of random lengthX(i). This phenomenon is known
as a continuous time random walk (CTRW) [8, 9]. It
arises as a result of a sequence of independent iden-
tically distributed random waiting timesT (i), each
having the same PDFw(t), t > 0 with a mean charac-
teristic timeT and a sequence of independent identi-
cally distributed random jumps,x = X(i), each hav-
ing the same PDF with jump length varianceσ2. It is
worth mentioning that a cell carries its own trap, by
which it is set apart from transport. The crucial point
of the fractional transport is the power law behavior
of the waiting time PDF

w(t) = αT̄/(1 + t/T̄ )1+α (1)

where0 < α < 1 and T̄ is a characteristic time. In
this caseT = ∞.

1.2 Fractional integro–differentiation
A basic introduction to fractional calculus can be
found,e.g., in Ref. [10]. Fractional integration of the
order ofα is defined by the operator

Iα
a f(t) =

1
Γ(α)

∫ t

a
f(τ)(t− τ)α−1dτ, (α > 0) .

(2)
There is no constraint on the limita. In our considera-
tion, a = 0 since this is a natural limit for the time. A
fractional derivative is defined as an inverse operator
to Iα ≡ Iα

0 as dα

dtα = I−α = Dα, Iα = d−α

dt−α =
D−α. Its explicit form is convolution

Dα =
1

Γ(−α)

∫ t

0

f(τ)
(t− τ)α+1

dτ . (3)

For arbitraryα > 0 this integral is, in general, diver-
gent. As a regularization of the divergent integral, the
following two alternative definitions forDα exist

Dα
RLf(t) =

1
Γ(n− α)

dn

dtn

∫ t

0

f(τ)
(t− τ)α+1−n

dτ ,

(4)

Dα
Cf(t) =

1
Γ(n− α)

∫ t

0

f (n)(τ)
(t− τ)α+1−n

dτ , (5)

wheren − 1 < α < n, n = 1, 2, . . .. Eq. (4)
is the Riemann–Liouville derivative, while Eq. (5) is
the fractional derivative in the Caputo form [10]. Per-
forming integration by part in Eq. (4) and then apply-
ing Leibniz’s rule for the derivative of an integral and

repeating this proceduren times, we obtain

Dα
RLf(t) = Dα

Cf(t) +
n−1∑
k=0

f (k)(0+)
tk−α

Γ(k − α+ 1)
.

(6)
The Laplace transform can be obtained for Eq. (5). If
L̂f(t) = f̃(s), then

L̂[Dα
Cf(t)] = sαf̃(s)−

n−1∑
k=0

f (k)(0+)sα−1−k . (7)

We also note thatDα
RL[1] = t−α

Γ(1−α) , Dα
C [1] = 0 .

whereβ > −1 andα > 0. The fractional derivative
from an exponential function can be simply calculated
as well by virtue of the Mittag–Leffler function (see
e.g., [10]):

Eγ,δ(z) =
∞∑

k=0

zk

Γ(γk + δ)
. (8)

Therefore, we have the following expression

Dα
RLe

λt = tαE1,1−α(λt) . (9)

2 Fractional Fokker–Planck equa-
tion with proliferation

Fractional transport of cells, namely, subdiffusion,
with proliferation can be described by the fractional
Fokker–Planck equation (FFPE) obtained in Ref.
[11]. A random walk of cancer cells described by
the distribution functionP = P (x, t) and exponen-
tial proliferationCP with a proliferation rateC corre-
sponds to the FFPE with proliferation

α−1Dα
CPe

−Ct + L̂FPPe
−Ct = −CPe−Ct , (10)

whereDα
C is the fractional derivative in the Caputo

form and the Fokker–Planck operator isLFP =
−∂xD(x)∂x with the diffusion coefficientD(x).

For the present purpose we modify Eq. (10) in the
form

α−1eCtDα
Ce

−CtP+L̂FPP = −C(P )−G(P ) , (11)

where proliferation is a logistic law, such thatC(P ) =
CP (1 − P ), andG(P ) is an action of chemotherapy.
The Fokker–Planck operator is chosen in the follow-
ing, standard, form

LFP = −∂x [(∂xU) + d∂x] , (12)

that corresponds to the Langevin equationẋ =
−∂xU + η(t) with η(t) being a Gaussian white noise
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with mean value〈η(t)〉 = 0 and a correlation func-
tion 〈η(t)η(t′)〉 = 2dδ(t − t′). Expression (11) is
the main equation in question. We present it without
inferring, which is not a simple task and deserved a
separate consideration [13]. It is worth mentioning
that this equation reflects migration–proliferation di-
chotomy, where cell fission is the source of the frac-
tional time derivatives. This process is modeled by
the power law of the self–entrapping time PDFw(t)
in Eq. (1). Whenα = 1, Eq. (11) reduces to an exam-
ple of brain tumor modeling [3] withw(t) being the
exponential function with the finite time scaleT .

In the rest of the paper we study the influence of
chemotherapy on possible solutions of Eq. (11). The
following two possible scenarios related to stationary
solutions and the fractional dynamics are considered.

2.1 Stationary solution due to chemotherapy
Let the chemotherapy influence lead to the compensa-
tion of tumor development including cell fission due
to the following condition

eCtDα
Ce

−CtP = −αG(P ) . (13)

Thus, Eqs. (11) and (13) describe a stationary process,
wherePst = Pst(x) is a time independent function

eCtDα
Ce

−CtPst = −αg1(t)Pst , (14)

whereeCtDα
Ce

−Ct = −g1(t). We can also change the
convection term by the following chemotherapeutical
procedureU ′∂xPst = (U ′)2Pst + g2(x)Pst . There-
fore,

G(P ) = g1(t)Pst(x) + g2(x)Pst(x) . (15)

One should bear in mind thatG(P ) is a function of
the external control which can always be adjusted to
these forms. Taking this into account, we obtain the
following equation for the stationary distributionP =
Pst

−d∂2
xP + U ′′P + (U ′)2P = −CP (1− P ) . (16)

Let U ′ = − tan
(√

dx
)

be a periodic convection.
Thus, Eq. (16) corresponds to a nonlinear system with
a HamiltonianH(u, v) = u2/2 + V (v) (which is the
first integral of equations,e.g., for v > 0)

v′ = u = ∂uH , u′ = −qv + rv2 = −∂vV , (17)

where q = (C − d)/d and r = C/d. A solution
can be expressed in terms of the elliptic functions.
One should bear in mind thatP is a positive func-
tion. Therefore, the cubic potentialV (P ) = V (|v|)

is symmetrical inv and possesses two maxima for
|vm| = q/r. An important property of this dynam-
ical system is a separatrix which separates confined
motion with |v| < |vm| from extended one, where
|v| ≥ |vm|. The first kind of the solution corresponds
to a solid tumor, while the second one corresponds
to metastasis. The size of the solid tumor is deter-
mined by the period of the confined solution which is
the complete elliptic integral of the first kind [12]

∆x =
∮
dv

4u
= K(H) , (18)

where the energyH plays a role of the modulus of
the elliptic functions. WhenH = q3/6r2, the size
of the solid tumor approaches to infinity∆x = ∞
on the separatrix. Therefore, when the cell concentra-
tion reaches the critical pointP = |vm| = (C − d)/C
a transition from the solid tumor to metastasis takes
place. Whend ≥ C (in the dimensional units) the
condition for the confined solution is violated, and dy-
namics corresponds to a so–called diffusive cancer..
In this case the chemotherapy scenario is not effec-
tive for the cancer treatment. In the opposite case, the
chemotherapy leads to the cancer localization with a
well defined finite size.

3 Fractional dynamics
Taking into account thatDα

C can be expressed by
the Riemann–Liouville fractional derivativesDα

RL as
Dα

C = Dα−1
RL D1

RL andD1−α
RL Dα−1

RL = 1, we rewrite
FFPE with proliferation, and chemotherapy (11) in the
form

∂tF + αD1−α
RL L̂FPF = αD1−α

RL [C(F )−G(F )] ,
(19)

whereF = e−CtP . Let chemotherapy compensates
proliferation. Therefore, one obtains from Eq. (19

∂tF + αD1−α
RL L̂FPF = 0 . (20)

Using the variable separation analogously to [14], one
has the following expression for the solution

F (x, t) =
∑
n

Fn =
∑
n

Tn(t)ψn(x) , (21)

wherepsin(x) is a solution of the eigenvalue problem

LFPψ = λψ . (22)

The temporal eigenfunctionTn(t) is governed by the
fractional equation

Ṫn(t) + αλnD
1−α
RL Tn(t) = 0 . (23)
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The solution is described by the Mittag–Leffler func-
tion [14]Tn(t) = En [αλnt

α] , whereTn(0) = 1, and
Eα(z) has the initial stretched exponent behavior

Tn(t) ∼ exp [−αλnt
α/Γ(1 + α)] (24)

which turns over to the power law long–time asymp-
totics

Tn(t) ∼ [Γ(1− α)αλnt
α]−1 . (25)

Now we return to the eigenvalue problem of Eq.
(22), taking into account the explicit form the Fokker–
Planck operator and carrying out the following trans-
formation ψ(x) = exp [−U(x)/2d] Ψ(x), one ob-
tains the eigenvalue problem in the Hamiltonian form

ĤΨn = λnΨn , (26)

Ĥ = −d
[
∂2

x +W (x)−W ′(x)
]
, (27)

whereW (x) = U ′(x)/2d is a so called superpotential
[15]. For simplicity, we take the periodic potential in
the following formW (x) = tan(x). This choice im-
mediately yields a solution of the eigenvalue equation
(26)

Ψk = A exp(kx), (28)

with the eigenvaluesλk = d(k2−1). Since additional
constraints, such as normalization, are absent, we take
the constantA to be independent ofk. For k < 1,
the spectrum corresponds to a bounded system. For
k > 1, the spectrum is unbounded (continuous). Sub-
stitution of Eqs. (28) and (24) in Eq. (21) yields for
the short time asymptotic solution

P (x, t ∼

√
πΓ(α+ 1)

αtα
| cos(x)|

× exp

[
Ct+

αtα

Γ(1 + α)
− x2Γ(1 + α

4tα

]
. (29)

Therefore, the initial rate of the cell spreading isẋ ≈
C(1 + α)tα−1/2/Γ(1 + α).

4 Conclusion
A toy model of fractional transport of tumor cells
in a periodic potential is considered. Influence of
chemotherapy leads to a variety of possible scenar-
ios of tumor development. The main characteristics
studied here are conditions of tumor localization and
rate of invasion of cells. We considered two scenar-
ios, namely the stationary solution due to chemother-
apy in the presence of a periodic forcing and frac-
tional dynamics of cancer development. The main
result obtained for the first scenario is a transition

from a solid tumor to metastasis due the concentra-
tion density of cancer cells. The second scenario cor-
responds to a fractional development of a solid tumor
in the initial stage. We obtained that forα < 0.5
chemotherapy can be an effective treatment of the
initial stage of solid tumor development only. For
the long–time asymptotics the solution corresponds to
metastasis and should be considered in the framework
of another chemotherapy scenario.
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