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Abstract: - The use of Grammatical Evolution for automating the intrusion detection rules is investigated in 
this paper. We apply this method to the KDD99 intrusion dataset and demonstrate its usefulness in this 
context. We achieve favorable results by evolving rules for classifying both normal and abnormal traffic. 
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1   Introduction 
An intrusion is defined as any set of actions that 
attempt to compromise the integrity, confidentiality 
or availability of a resource. Intrusion detection is 
the process of monitoring and analyzing events for 
signs of intrusion [1]. Intrusion Detection Systems 
(IDS) have become a standard component of 
network security infrastructures as they allow 
network administrators to detect policy violations. 
These violations can range from unauthorized users 
trying to gain access to misuse of resources in order 
to deny legitimate access. Detecting such violations 
is a necessary step in taking remedial action. 
     In order for an IDS to detect intrusions it needs 
some method of differentiating normal network use 
from abnormal use, in this paper Grammatical 
Evolution is used to derive classification rules using 
the set of 41 attributes of the KDD99 dataset. 
     Grammatical Evolution (GE) is a method of 
evolving syntactically correct programs in an 
arbitrary context free language. GE has been tested 
with successful results on a symbolic regression 
problem, a trigonometric identity problem and a 
symbolic integration problem. 
     GE makes use of Genetic Algorithms as its 
method of finding solutions. In Genetic Algorithms 
use is made of selection, mutation and 
recombination operators to evolve the fittest genome 
for creating the program. Genetic Algorithms are 
introduced in the next section, prior to a discussion 
of the Grammatical Evolution, and the GE 
techniques used in this investigation. Section 4 
explains the intrusion dataset used. Our approach 
and results are stated in section 5. We end with our 
conclusion and future direction.  
 
 

2   Genetic Algorithms 
Genetic Algorithms are forms of search procedures 
that use analogies of the genetic operations found in 
biology [2]. Darwin’s theory of natural selection 
explains the survival of the fittest organisms in a 
population. The result is that genes encoding traits 
that favor fitness will be passed down through the 
generations, until they become common. 
Furthermore, when two organisms mate and produce 
offspring, characteristics of each parent are 
combined in new ways; so it is possible that the 
offspring will inherit features from both parents and 
be better suited to the environment Also rare genetic 
mutation will result in some individuals possessing 
traits that were not present in the population before.  
     In genetics, the basic structures are lengths of 
DNA called chromosomes. These are made up of a 
number of genes, each of which encodes a particular 
trait such as eye color; the range of ‘values’ that the 
gene can take are called the alleles. The particular 
combination of alleles on a chromosome can be 
thought of as a blueprint for an individual and is 
referred to as a genotype. The resulting physical 
characteristics of an organism upon expression of 
the genotype are known as the phenotype. The 
structures manipulated by a Genetic Algorithm are 
simplified model of these chromosomes that are 
usually made up of binary strings. The aim of 
Genetic Algorithm is to develop an optimal 
genotype by applying the simple genetic operators 
of selection, crossover and mutation. Genetic 
Algorithm fitness is usually measured as a function 
of how each phenotype measures up to a particular 
standard. 
     Selection is the process of determining which 
individuals will become parents for the next 
generation. The probability of an individual going 
on to breed is made some way proportional to its 
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current fitness. This results in a ‘mating pool’ biased 
towards individuals of higher fitness. In order to 
simulate the genetic recombination that occurs 
naturally during sexual reproduction, some 
individuals will be used for ‘breeding’ via the 
crossover operator. A predefined crossover 
probability determines how often this operator is 
applied. In the single-point crossover used in this 
investigation, each parent string is divided into a 
‘head’ and ‘tail’ section, and the tails are swapped 
over. For the mutation operation, each position in 
the binary string has a very small probability 
(typically 0.001) of having its value randomly 
altered.  
 
 
3 Grammatical Evolution 
Grammatical Evolution (GE) [3,4,5] is a method of 
evolving syntactically correct programs in an 
arbitrary context free language. The language to be 
generated is specified using a Backus Naur Form 
(BNF) grammar, consisting of a series of production 
rules mapping a set of non-terminal symbols to the 
set of terminals that are defined in the language.  
Backus Naur Form (BNF) is a convention for 
expressing the grammar of a language in the form of 
production rules. The BNF grammar can be 
represented by a tuple, {N, T, P, S}, where N is the 
set of non-terminals, T is the set of terminals, P is 
the set of production rules that map the elements of 
N to T and S is the start symbol which is an element 
of N. 
     An example BNF grammar is displayed in. In the 
example BNF grammar, the symbol “::=” denotes 
that the non-terminal on the left of the production 
rule can be mapped into the symbol that appears on 
the right. The pipe symbol | is used to denote ‘or’. 
Definitions can be recursive as the first production 
rule in  shows.  
 
 
3.1 How Grammatical Evolution works 
A linear genome made up of a variable number of 
‘genes’ – each of which is represented by an 8-bit 
binary number – is used to control how the BNF 
grammar definition is mapped to an actual program. 
A Genetic Algorithm involving the use of selection, 
mutation and recombination is used to evolve the 
fittest genome for creating the program. The 
evolutionary aspect of GE is language independent, 
and can theoretically be used to generate functions 
of arbitrary complexity.  

 
Fig. 1: Example BNF production rules 
 
 

 
Fig. 2: Grammatical Evolution System and 
Biological System genotype to phenotype mapping 
[6] 
 
     Fig. 2 outlines the mapping process used in both 
GE and biological systems. In this implementation, 
the binary string is segmented into 8 bit sections 
called codons. The codons are transformed to their 
corresponding integer values and these values used 
to decide which expansion to carry out whenever 
there is a choice between two or more possible 
expansions. A rule is selected by using the following 
[6]:  
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(Integer Codon Value) Mod (Number of production 
rules for current non-terminal) 
 
Consider for example the following rule: 
<value> ::= a  (0) 
  |    b  (1) 
  |    c  (2) 
  |    d  (3) 
 
i.e. given the non-terminal “value” there are four 
production rules to select from. If we assume the 
integer corresponding to the codon being read is 29, 
then 29 MOD 4 = 1 resulting in the selection of “b” 
as the terminal. The system traverses the genome by 
reading a new codon each time a production rule has 
to be used. 
 
104, 68, 44, 216, 17, 61, 123, 230,217, 71,250, 19, 
62, 159, 122, 201, 123 
Fig. 3: Example codon sequence 
 
     Consider a chromosome with the codon sequence 
expressed in Fig. 3 (expressed in decimal). The 
mapping process starts from the start symbol 
<statement>; because there is more than one 
production for this symbol (i.e. 2), we use the stated 
formula to get 104 MOD 2 = 0, and choose the 
production labeled (0). <statement> is replaced 
with: 
 
IF <condition>  <statement> Else <statement> 
END; 
 
     The next step involves the replacement of the 
leftmost non-terminal “<condition>”  by 
“(<variable> > <value>)”. Because there was only 
one production for “<condition>”, a new codon 
value was not used.  The current expression 
becomes: 
 
IF (< variable> > <value>) 

<statement>  
Else  

<statement>  
END; 
 
Calculating 68 MOD 2 = 0, specifies the use of the 
production: 
<variable> ::=x.  
 
Full resolution of the codon sequence yields the 
program: 
 
IF(x>a) 

  IF(y>b) 
(f1), 

ELSE 
(f2), 

END;, 
ELSE 

IF(y>c) 
(f3), 

ELSE 
(f4), 

END;, 
END; 
  
     The mapping system can be seen as having  
transformed a binary string into a program that 
partitions a feature space into a decision tree. The 
fitness of the program (and its equivalent decision 
tree structure) is assessed by substituting feature 
values and measuring the difference between the 
calculated output and observed output of the process 
being identified. 
 
4 The KDD 99 intrusion datasets 
In 1999, recorded network traffic from the DARPA 
98 Lincoln Lab dataset[7] was summarized into the 
KDD 99 dataset with 41 atributes per record. We ran 
our experiments using the 10% KDD 99 intrusion 
dataset. These have been part of the de facto 
standard for training and testing intrusion detectors 
since they were published [8].  
 

     Table 1: Classification of attacks 

 
The training dataset contained about 5,000,000 
connection records, and the training 10% dataset 
consisted of 494,021 records among which there 
were 97,278 normal connections (i.e. 19.69%). The 
data set has 41 attributes for each connection record 

Attack 
Class 

Specific attack 

DoS back, land, neptune, pod, smurf, 
teardrop, apache2, mailbomb, 
processtable, snmpgetattack, 
udpstorm, 

Probe ipsweep, nmap, portsweep, satan, 
mscan, saint, 

R2L ftp_write, guess_passwd, imap, 
multihop, phf, spy, warezclient, 
warezmaster, httptunnel, named, 
snmpguess, worm, xlock, xsnoop, 
sendmail, 

U2R buffer_overflow, loadmodule, perl, 
rootkit, sqlattack, xterm, ps, 
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plus one class label as shown in Table 1. The 39 
different attack types present in the 10% datasets are 
given in table 1. The attack types can be classified 
into four main categories as shown in Table 1:  
 
     Denial of Service (DoS) is a class of attack where 
an attacker makes a computing or memory resource 
too busy or too full to handle legitimate requests, 
thus denying legitimate users access to a machine.  
       

Variable name Variable type 
 Duration  continuous 
 protocol type  discrete 
 service  discrete 
 flag  discrete 
 src bytes  continuous 
 dst bytes  continuous 
 land  discrete 
 wrong fragment  continuous 
 urgent  continuous 
 hot  continuous 
 num failed logins  continuous 
 logged in  discrete 
 num compromised  continuous 
 root shell  continuous 
 su attempted  continuous 
 num root  continuous 
 num file creations  continuous 
 num shells  continuous 
 num access files  continuous 
 num outbound cmds  continuous 
 is host login  discrete 
 is guest login  discrete 
 count  continuous 
 srv count  continuous 
 serror rate  continuous 
 srv serror rate  continuous 
 rerror rate  continuous 
 srv rerror rate  continuous 
 same srv rate  continuous 
 diff srv rate  continuous 
 srv diff host rate  continuous 
 dst host count  continuous 
 dst host srv count  continuous 
 dst host same srv rate  continuous 
 dst host diff srv rate  continuous 
 dst host same src port rate  continuous 
 dst host srv diff host rate  continuous 
 dst host serror rate  continuous 
 dst host srv serror rate  continuous 
 dst host rerror rate  continuous 
 dst host srv rerror rate  continuous 

Table 2: Variables for intrusion detection data set 

 
      A remote to user (R2L) attack is a class of attack 
where an attacker sends packets to a machine over a 
network, then exploits the machine's vulnerability to 
illegally gain local access as a user.  
     User to root (U2R) exploits are a class of attacks 
where an attacker starts out with access to a normal 
user account on the system and is able to exploit 
vulnerability to gain root access to the system.  
      Probing is a class of attack where an attacker 
scans a network to gather information on known 
vulnerabilities. An attacker with a map of machines 
and services that are available on a network can use 
the information to look for exploits. 
 
 
5   The use of GE on KDD 99 dataset 
The GE based classifier design involves:  
1) Designing a grammar (in BNF form) that dictates 
the syntax of the partitioning and rule structure.  
2) Determining a fitness function for using GE to 
optimize the classifier, and  
3) Evolving the candidate structures until some 
predetermined stopping criteria is reached.  
 
Non_terminals = {<statement>,<termlist> , <c_operator>, 
<d_operator>, c_value,d_value } 
 
Terminals = {variables = (Duration , Src_byte,…, dst host 
srv rerror rate), <>,=.>,<} 
 
S = <statement> 
 
P= 
<statement> ::= SELECT Count(*) FROM kdd_data 
WHERE (<termlist> AND <termlist>) AND (Class = 
DOS) 
 
<termlist>  ::= (<termlist> AND <termlist>) 
   |<c_variable> <c_operator> <c_value> 
   |<d_variable> <d_operator> <d_value> 
   | Duration <c_operator> <c_value> 
   |Src_byte <c_operator> <c_value> 
   | protocol type <d_operator> <d_value> 
   | service <d_operator> <d_value> 
   . 
   . 
   . 
  | dst host srv rerror rate <c_operator> <c_value> 
 
<d_operator> ::= ‘<>’ 
   |     ‘=’ 
<c_operator> ::= ‘<’ 
   |     ‘>’ 
Fig. 4: BNF used  
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     The design objective is to efficiently search for 
compact classifiers that are highly interpretability 
have high classification accuracy. 
     The BNF of the GE grammar was designed to 
produce relational statements that were used to 
obtain data from the 10% KDD dataset which was 
stored in a relational database. The general form of 
the BNF is shown Fig 4. 
     c_operator and d_operator refer to continious and 
discrete operators respectively. For continious 
variables, the continuous operators ‘>’ and ‘< are 
used, and for discrete variables the operators ‘=’ and 
‘<>’ were used. C_value’s are values that equally 
divide the domain of each artribute into four and 
d_values correspond to the actual discrete values 
relevant to each discrete variable. 
 
     An example SQL Select statement that can be 
produced by this BNF is: 
 

SELECT Count(*) FROM kdd_data  
WHERE (((protocol_type <> 'udp')  
AND (serror_rate < 0.75))  
AND ((Class = Normal)); 
 

In this example protocol type is a discrete attribute  
and udp is a specific protocol type; serror_rate is a 
continuous variable and 0.75 is ¾ of the range of 
serror_rate which spans 0 to 1. 
     Assessing the fitness of each SQL Select 
statement was done by: 
 

BA
BAfitness

∪
∩

=         (1) 

 
Where A is the join of the attributes and B is a 
specific output class. Using our example SQL 
statement, 
 

 ( ) ({ 75.0_| <∧<>∈
=

rateserrorudpprototypexx
A

)}
 

( ){ }normalclassxxB =∈= | . 
 
Selections were made based on the rank of the 
fitness. The population size was set at 300 
individuals; mutation was set at 1% and the single 
point crossover rate at 80%.  The classification 
accuracy obtained for different attack types are 
shown in Table 3. 
  
6   Conclusion 
The potential for developing intrusion system rules 
using Grammatical Evolution is demonstrated. The 

GE method is a form of symbolic regression and can 
work with both continuous and discrete input 
attributes without any assumption that the discrete 
values form a continuum. The accuracy is higher 
among the Denial of Service and Normal classes 
which form a large proportion of the training dataset 
(79.2% and 19.7% respectively). As with many 
other results reported eg [9] the attacks involving 
content (ie U2R and R2L), show low detection rates. 
The current work is limited to finding the single 
hypercube of attribute properties which best infers a 
class. We are looking at extending this work into a 
union of hypercubes such that non-linear separation 
into classes can be better achieved. Further work 
will also include the development of hierarchical 
rulebased intrusion detection systems using GE. 
 

Class Training  
Data 
Accuracy (%) 

Testing  
Data 
 Accuracy (%) 

Normal 87.6 54.6 
Dos 96.2 96 
Probe 59.1 49.4 
U2R 45.6 31 
R2L 23.6 1.4 

Table 3: Classification accuracy obtained 
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