
Using Grammatical Evolution for Evolving Intrusion Detection Rules

DOMINIC WILSON, DEVINDAR KAUR
Electrical Engineering and Computer Science

University of Toledo
Toledo, Ohio

USA

Abstract: - The use of Grammatical Evolution for automating the intrusion detection rules is investigated in
this paper. We apply this method to the KDD99 intrusion dataset and demonstrate its usefulness in this
context. We achieve favorable results by evolving rules for classifying both normal and abnormal traffic.

Key-Words: - Grammatical Evolution, Intrusion Detection, Rule-based inference.

1 Introduction
An intrusion is defined as any set of actions that
attempt to compromise the integrity, confidentiality
or availability of a resource. Intrusion detection is
the process of monitoring and analyzing events for
signs of intrusion [1]. Intrusion Detection Systems
(IDS) have become a standard component of
network security infrastructures as they allow
network administrators to detect policy violations.
These violations can range from unauthorized users
trying to gain access to misuse of resources in order
to deny legitimate access. Detecting such violations
is a necessary step in taking remedial action.
 In order for an IDS to detect intrusions it needs
some method of differentiating normal network use
from abnormal use, in this paper Grammatical
Evolution is used to derive classification rules using
the set of 41 attributes of the KDD99 dataset.
 Grammatical Evolution (GE) is a method of
evolving syntactically correct programs in an
arbitrary context free language. GE has been tested
with successful results on a symbolic regression
problem, a trigonometric identity problem and a
symbolic integration problem.
 GE makes use of Genetic Algorithms as its
method of finding solutions. In Genetic Algorithms
use is made of selection, mutation and
recombination operators to evolve the fittest genome
for creating the program. Genetic Algorithms are
introduced in the next section, prior to a discussion
of the Grammatical Evolution, and the GE
techniques used in this investigation. Section 4
explains the intrusion dataset used. Our approach
and results are stated in section 5. We end with our
conclusion and future direction.

2 Genetic Algorithms
Genetic Algorithms are forms of search procedures
that use analogies of the genetic operations found in
biology [2]. Darwin’s theory of natural selection
explains the survival of the fittest organisms in a
population. The result is that genes encoding traits
that favor fitness will be passed down through the
generations, until they become common.
Furthermore, when two organisms mate and produce
offspring, characteristics of each parent are
combined in new ways; so it is possible that the
offspring will inherit features from both parents and
be better suited to the environment Also rare genetic
mutation will result in some individuals possessing
traits that were not present in the population before.
 In genetics, the basic structures are lengths of
DNA called chromosomes. These are made up of a
number of genes, each of which encodes a particular
trait such as eye color; the range of ‘values’ that the
gene can take are called the alleles. The particular
combination of alleles on a chromosome can be
thought of as a blueprint for an individual and is
referred to as a genotype. The resulting physical
characteristics of an organism upon expression of
the genotype are known as the phenotype. The
structures manipulated by a Genetic Algorithm are
simplified model of these chromosomes that are
usually made up of binary strings. The aim of
Genetic Algorithm is to develop an optimal
genotype by applying the simple genetic operators
of selection, crossover and mutation. Genetic
Algorithm fitness is usually measured as a function
of how each phenotype measures up to a particular
standard.
 Selection is the process of determining which
individuals will become parents for the next
generation. The probability of an individual going
on to breed is made some way proportional to its

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 183

current fitness. This results in a ‘mating pool’ biased
towards individuals of higher fitness. In order to
simulate the genetic recombination that occurs
naturally during sexual reproduction, some
individuals will be used for ‘breeding’ via the
crossover operator. A predefined crossover
probability determines how often this operator is
applied. In the single-point crossover used in this
investigation, each parent string is divided into a
‘head’ and ‘tail’ section, and the tails are swapped
over. For the mutation operation, each position in
the binary string has a very small probability
(typically 0.001) of having its value randomly
altered.

3 Grammatical Evolution
Grammatical Evolution (GE) [3,4,5] is a method of
evolving syntactically correct programs in an
arbitrary context free language. The language to be
generated is specified using a Backus Naur Form
(BNF) grammar, consisting of a series of production
rules mapping a set of non-terminal symbols to the
set of terminals that are defined in the language.
Backus Naur Form (BNF) is a convention for
expressing the grammar of a language in the form of
production rules. The BNF grammar can be
represented by a tuple, {N, T, P, S}, where N is the
set of non-terminals, T is the set of terminals, P is
the set of production rules that map the elements of
N to T and S is the start symbol which is an element
of N.
 An example BNF grammar is displayed in. In the
example BNF grammar, the symbol “::=” denotes
that the non-terminal on the left of the production
rule can be mapped into the symbol that appears on
the right. The pipe symbol | is used to denote ‘or’.
Definitions can be recursive as the first production
rule in shows.

3.1 How Grammatical Evolution works
A linear genome made up of a variable number of
‘genes’ – each of which is represented by an 8-bit
binary number – is used to control how the BNF
grammar definition is mapped to an actual program.
A Genetic Algorithm involving the use of selection,
mutation and recombination is used to evolve the
fittest genome for creating the program. The
evolutionary aspect of GE is language independent,
and can theoretically be used to generate functions
of arbitrary complexity.

Fig. 1: Example BNF production rules

Fig. 2: Grammatical Evolution System and
Biological System genotype to phenotype mapping
[6]

 Fig. 2 outlines the mapping process used in both
GE and biological systems. In this implementation,
the binary string is segmented into 8 bit sections
called codons. The codons are transformed to their
corresponding integer values and these values used
to decide which expansion to carry out whenever
there is a choice between two or more possible
expansions. A rule is selected by using the following
[6]:

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 184

(Integer Codon Value) Mod (Number of production
rules for current non-terminal)

Consider for example the following rule:
<value> ::= a (0)
 | b (1)
 | c (2)
 | d (3)

i.e. given the non-terminal “value” there are four
production rules to select from. If we assume the
integer corresponding to the codon being read is 29,
then 29 MOD 4 = 1 resulting in the selection of “b”
as the terminal. The system traverses the genome by
reading a new codon each time a production rule has
to be used.

104, 68, 44, 216, 17, 61, 123, 230,217, 71,250, 19,
62, 159, 122, 201, 123
Fig. 3: Example codon sequence

 Consider a chromosome with the codon sequence
expressed in Fig. 3 (expressed in decimal). The
mapping process starts from the start symbol
<statement>; because there is more than one
production for this symbol (i.e. 2), we use the stated
formula to get 104 MOD 2 = 0, and choose the
production labeled (0). <statement> is replaced
with:

IF <condition> <statement> Else <statement>
END;

 The next step involves the replacement of the
leftmost non-terminal “<condition>” by
“(<variable> > <value>)”. Because there was only
one production for “<condition>”, a new codon
value was not used. The current expression
becomes:

IF (< variable> > <value>)

<statement>
Else

<statement>
END;

Calculating 68 MOD 2 = 0, specifies the use of the
production:
<variable> ::=x.

Full resolution of the codon sequence yields the
program:

IF(x>a)

 IF(y>b)
(f1),

ELSE
(f2),

END;,
ELSE

IF(y>c)
(f3),

ELSE
(f4),

END;,
END;

 The mapping system can be seen as having
transformed a binary string into a program that
partitions a feature space into a decision tree. The
fitness of the program (and its equivalent decision
tree structure) is assessed by substituting feature
values and measuring the difference between the
calculated output and observed output of the process
being identified.

4 The KDD 99 intrusion datasets
In 1999, recorded network traffic from the DARPA
98 Lincoln Lab dataset[7] was summarized into the
KDD 99 dataset with 41 atributes per record. We ran
our experiments using the 10% KDD 99 intrusion
dataset. These have been part of the de facto
standard for training and testing intrusion detectors
since they were published [8].

 Table 1: Classification of attacks

The training dataset contained about 5,000,000
connection records, and the training 10% dataset
consisted of 494,021 records among which there
were 97,278 normal connections (i.e. 19.69%). The
data set has 41 attributes for each connection record

Attack
Class

Specific attack

DoS back, land, neptune, pod, smurf,
teardrop, apache2, mailbomb,
processtable, snmpgetattack,
udpstorm,

Probe ipsweep, nmap, portsweep, satan,
mscan, saint,

R2L ftp_write, guess_passwd, imap,
multihop, phf, spy, warezclient,
warezmaster, httptunnel, named,
snmpguess, worm, xlock, xsnoop,
sendmail,

U2R buffer_overflow, loadmodule, perl,
rootkit, sqlattack, xterm, ps,

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 185

plus one class label as shown in Table 1. The 39
different attack types present in the 10% datasets are
given in table 1. The attack types can be classified
into four main categories as shown in Table 1:

 Denial of Service (DoS) is a class of attack where
an attacker makes a computing or memory resource
too busy or too full to handle legitimate requests,
thus denying legitimate users access to a machine.

Variable name Variable type
 Duration continuous
 protocol type discrete
 service discrete
 flag discrete
 src bytes continuous
 dst bytes continuous
 land discrete
 wrong fragment continuous
 urgent continuous
 hot continuous
 num failed logins continuous
 logged in discrete
 num compromised continuous
 root shell continuous
 su attempted continuous
 num root continuous
 num file creations continuous
 num shells continuous
 num access files continuous
 num outbound cmds continuous
 is host login discrete
 is guest login discrete
 count continuous
 srv count continuous
 serror rate continuous
 srv serror rate continuous
 rerror rate continuous
 srv rerror rate continuous
 same srv rate continuous
 diff srv rate continuous
 srv diff host rate continuous
 dst host count continuous
 dst host srv count continuous
 dst host same srv rate continuous
 dst host diff srv rate continuous
 dst host same src port rate continuous
 dst host srv diff host rate continuous
 dst host serror rate continuous
 dst host srv serror rate continuous
 dst host rerror rate continuous
 dst host srv rerror rate continuous

Table 2: Variables for intrusion detection data set

 A remote to user (R2L) attack is a class of attack
where an attacker sends packets to a machine over a
network, then exploits the machine's vulnerability to
illegally gain local access as a user.
 User to root (U2R) exploits are a class of attacks
where an attacker starts out with access to a normal
user account on the system and is able to exploit
vulnerability to gain root access to the system.
 Probing is a class of attack where an attacker
scans a network to gather information on known
vulnerabilities. An attacker with a map of machines
and services that are available on a network can use
the information to look for exploits.

5 The use of GE on KDD 99 dataset
The GE based classifier design involves:
1) Designing a grammar (in BNF form) that dictates
the syntax of the partitioning and rule structure.
2) Determining a fitness function for using GE to
optimize the classifier, and
3) Evolving the candidate structures until some
predetermined stopping criteria is reached.

Non_terminals = {<statement>,<termlist> , <c_operator>,
<d_operator>, c_value,d_value }

Terminals = {variables = (Duration , Src_byte,…, dst host
srv rerror rate), <>,=.>,<}

S = <statement>

P=
<statement> ::= SELECT Count(*) FROM kdd_data
WHERE (<termlist> AND <termlist>) AND (Class =
DOS)

<termlist> ::= (<termlist> AND <termlist>)
 |<c_variable> <c_operator> <c_value>
 |<d_variable> <d_operator> <d_value>
 | Duration <c_operator> <c_value>
 |Src_byte <c_operator> <c_value>
 | protocol type <d_operator> <d_value>
 | service <d_operator> <d_value>
 .
 .
 .
 | dst host srv rerror rate <c_operator> <c_value>

<d_operator> ::= ‘<>’
 | ‘=’
<c_operator> ::= ‘<’
 | ‘>’
Fig. 4: BNF used

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 186

 The design objective is to efficiently search for
compact classifiers that are highly interpretability
have high classification accuracy.
 The BNF of the GE grammar was designed to
produce relational statements that were used to
obtain data from the 10% KDD dataset which was
stored in a relational database. The general form of
the BNF is shown Fig 4.
 c_operator and d_operator refer to continious and
discrete operators respectively. For continious
variables, the continuous operators ‘>’ and ‘< are
used, and for discrete variables the operators ‘=’ and
‘<>’ were used. C_value’s are values that equally
divide the domain of each artribute into four and
d_values correspond to the actual discrete values
relevant to each discrete variable.

 An example SQL Select statement that can be
produced by this BNF is:

SELECT Count(*) FROM kdd_data
WHERE (((protocol_type <> 'udp')
AND (serror_rate < 0.75))
AND ((Class = Normal));

In this example protocol type is a discrete attribute
and udp is a specific protocol type; serror_rate is a
continuous variable and 0.75 is ¾ of the range of
serror_rate which spans 0 to 1.
 Assessing the fitness of each SQL Select
statement was done by:

BA
BAfitness

∪
∩

= (1)

Where A is the join of the attributes and B is a
specific output class. Using our example SQL
statement,

 () ({ 75.0_| <∧<>∈
=

rateserrorudpprototypexx
A

)}

(){ }normalclassxxB =∈= | .

Selections were made based on the rank of the
fitness. The population size was set at 300
individuals; mutation was set at 1% and the single
point crossover rate at 80%. The classification
accuracy obtained for different attack types are
shown in Table 3.

6 Conclusion
The potential for developing intrusion system rules
using Grammatical Evolution is demonstrated. The

GE method is a form of symbolic regression and can
work with both continuous and discrete input
attributes without any assumption that the discrete
values form a continuum. The accuracy is higher
among the Denial of Service and Normal classes
which form a large proportion of the training dataset
(79.2% and 19.7% respectively). As with many
other results reported eg [9] the attacks involving
content (ie U2R and R2L), show low detection rates.
The current work is limited to finding the single
hypercube of attribute properties which best infers a
class. We are looking at extending this work into a
union of hypercubes such that non-linear separation
into classes can be better achieved. Further work
will also include the development of hierarchical
rulebased intrusion detection systems using GE.

Class Training
Data
Accuracy (%)

Testing
Data
 Accuracy (%)

Normal 87.6 54.6
Dos 96.2 96
Probe 59.1 49.4
U2R 45.6 31
R2L 23.6 1.4

Table 3: Classification accuracy obtained

References:

[1] Abraham A., Jain R., Soft Computing in

Knowledge Discovery: Methods and
Applications, Saman Halgamuge and Lipo Wang
(Eds.), Studies in Fuzziness and Soft Computing,
Springer Verlag Germany, Chapter 16, 20 pages,
2004.

[2] Goldberg, D.E. Genetic Algorithms in Search,
Optimization and Machine Learning, pp. 1-14.
Reading, MA: Addison Wesley, 1989.

[3] Ryan, C., Collins, J.J., Micheal O'Neill, .
Grammatical Evolution: Evolving Programs for
an Arbitrary Language. Lecture Notes in
Computer Science: Proceedings of the First
European Workshop on Genetic Programming,
pp. 83-95, 1998.

[4] Ryan, C., Micheal O'Neill, Collins, J.J.
Grammatical Evolution: Solving Trigonometric
Identities. Proceedings of Mendel 1998: 4th
International Mendel Conference on Genetic
Algorithms, Optimisation Problems, Fuzzy
Logic, Neural Networks, Rough Sets, pp. 111-
119, 1998.

[5] Ryan, C., Micheal O'Neill,.Grammatical
Evolution: A Steady State Approach.
Proceedings of the Second International

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 187

Workshop on Frontiers in Evolutionary
Algorithms, pp. 419-423, 1998.

[6] Michael O'Neill, Conor Ryan, Grammatical
evolution : evolutionary automatic programming
in an arbitrary language, Kluwer Academic
Publishers, 2003.

[7] The 1998 intrusion detection off-line evaluation
plan. MIT Lincoln Lab.
http://www.ll.mit.edu/IST/ideval/

[8] Knowledge discovery in databases DARPA
archive,http://www.kdd.ics.uci.edu/databases/kd
dcup99/task.html.

[9] Sabhnani M., Serpen G., “Why Machine
Learning Algorithms Fail in Misuse Detection on
KDD Intrusion Detection Data Set”, In Journal
of Intelligent Data Analysis, 2004.

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 188

