
A Grid Framework for Computational Mechanics Applications

MICHAEL M. RESCH, NATALIA CURRLE-LINDE, UWE KÜSTER
Höchstleistungsrechenzentrum Stuttgart (HLRS)

University of Stuttgart
Nobelstrasse 19, 70569 Stuttgart

GERMANY

BENEDETTO RISIO
RECOM Services

Nobelstrasse 15, 70569 Stuttgart
GERMANY

Abstract

Currently, numerical simulation using automated parameter studies is a key tool in discovering functional optima in
complex systems. In future, such studies of complex systems will be important for the purpose of steering simulations.
One example is the optimum design and steering of high power furnaces of power plants. Grid technology makes it
possible to carry out sophisticated simulations. However, the large scale of such studies requires organized support for
the submission, monitoring, and termination of jobs, as well as mechanisms for the collection of results, and the
dynamic generation of new parameter sets in order to intelligently approach an optimum. In this paper we present a
Grid framework consisting of GriCoL (Grid Concurrent Language), which we propose as a simple and efficient
language for the description of complex Grid applications, along with SEGL (Science Experimental Grid Laboratory),
the problem solving environment within which GriCoL works. We apply this framework to a computational mechanics
application with industrial applicability, the simulation of high power furnaces at a power plant.

Key Words: Grid, GriCoL, SEGL, numerical simulation, dynamic parameter studies, computational mechanics

1 Introduction
During the last 20 years the numerical simulation of
engineering problems has become a fundamental tool for
research and development. In the past, numerical
simulations were limited to a few specified parameter
settings because expensive computing time did not allow
for more. Today, enormous computer resources, which
can be provided by the Grid [1], enable the simulation of
complete ranges of multi-dimensional parameter spaces
in order to predict an operational optimum for a given
system. We have used parameterized simulations in
many disciplines. Examples are drug design by
molecular dynamics, statistical crash simulation of cars,
airfoil design by varying airfoil parameters, power plant
simulation by varying burners and fuel quality. The
mechanism proposed here offers a unified framework for
such large-scale optimization problems in design and
engineering. The framework levers the resources of the
Grid using GriCoL (Grid Concurrent Language), a
language for describing complex modeling experiments,
utilized within its problem solving environment SEGL
(Science Experimental Grid Laboratory).

1.1 Existing Tools for Parameter Investigation

Studies
There are some efforts in implementing such tools e.g.
Nimrod [2], Ilab [3] or SkyFlow [4]. These tools are
able to generate parameter sweeps and jobs, running
them in a distributed computer environment (Grid) and
collecting the data. ILab also allows the calculation of
multi-parametric models in independent separate tasks in
a complicated workflow for multiple stages. However,
none of these tools is able to perform the task
dynamically by generating new parameter sets by an
automated optimization strategy as is needed for
handling complex parameter problems. In addition to the
above mentioned environments, tools like Condor [5],
UNICORE [6] or AppLeS [7] (Application-Level
Scheduler) can be used to launch pre-existing parameter
studies using distributed resources. These, however, give
no special support for dynamic parameter studies.
 Complex parameter studies can be facilitated by
allowing the system to dynamically select parameter sets
on the basis of previous intermediate results. This
dynamic parameterization capability requires an
iterative, self-steering approach. Possible strategies for
the dynamic selection of parameter sets include genetic

Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22, 2006 360

algorithms, gradient-based searches in the parameter
space, and linear and nonlinear optimization techniques.
An effective tool requires support of the creation of
applications of any degree of complexity, including
unlimited levels of parameterization, iterative

processing, data archiving, logical branching, and the
synchronization of parallel branches and processes.

1.2 Workflow
Realistic application scenarios become increasingly
complex due to the necessary support for multiphysics
applications, preprocessing steps, postprocessing filters,
visualization, and the iterative search in the parameter
space for optimum solutions. Attempting to support this
complexity has led to the development of many
workflow management systems, such as Kepler [8],
Triana [8], Pegasus [8]. A fundamental difference
between approaches is the workflow structure. Many
systems, such as Pegasus and GridFlow [8], represent
their workflows as a Directed Acyclic Graph (DAG)
which allows a workflow structure of sequence,
parallelism and choice. But they are limited with respect
to the power of the model; iteration is not part of the
DAG structure. Workflow-based systems such as GSFL
[9], and BPEL4WS [9] have solved these problems but
are too complicated to be mastered by an average user.
With these tools, even for experienced users, it is
difficult to describe non-trivial workflow processes
involving data and computing resources. Another
fundamental difference is the use of either the data flow
or control flow programming paradigm. Most existing
workflow systems, including Kepler and Triana, use the
data flow paradigm. This means that control flow such
as iteration is difficult to design and maintain and such
systems cannot carry out dynamic, self-steering
iterations as in an application such as a parameter study.
 The description and execution of complex
experiments is not a trivial task and demands
considerable effort from the creator of the experiment
because existing workflow systems do not offer a
sufficiently high organizational level to specify and
execute complex modeling experiments. The reason for
this can be explained as follows:
• Existing instruments for the description and execution
of complex experiments work with specific modules
tailored to a corresponding application domain and not
with standard adjustable mathematical modules.
Therefore, experiment-specific programs must be
designed every time a new experiment is created.
• An important characteristic of a language for the
description of complex experiments, which requires
improvement, is the possibility to generate an executable
program of maximum efficiency. This implies that the
language must be organized in such a way as to ensure
maximal parallelization of all processing, both between

and within language elements. In other words, the
system must at the inter-element layer provide
possibilities of parallel execution on all branches of the
experiment as well as pipelined processing of data in the
nodes of the experiment program which are connected in
sequence.
• A program for a complex experiment requires the
description not only of the logic of the experiment but
also of the control of complex data flows during the
process of its execution. Practically all existing work-
flow systems have only primitive mechanisms of data
flow control which take little account of the dynamic
structure of the Grid.
• Existing systems commonly do not use any universal
instruments which provide a centralized information
space (a database) for the experiment. This means these
systems have problems when describing the interaction
between different nodes of the experiment.
• Although workflow systems generally have graphical
tools for the description of modeling experiments, these
are not sophisticated enough to provide the level of
precision or intuitive clarity that the user needs for the
description of complex experiments.
 Grid Concurrent Language (GriCoL) aims to
overcome the above limitations of existing systems.
GriCoL was conceived on the principle of a two-level
description of an experiment program. This enables
simple descriptions of the logic of execution as well as
of the data flow of highly complex experiments
(consisting of several hundred components).
Consequently, GriCoL was envisaged to offer scientists
and engineers the possibility to use all types of
parallelism in an experiment program. A more detailed
description of these and other important features of
GriCoL is given in the second section. The third section
presents the architecture of SEGL [10], the system
within which GriCoL is utilized for designing and
executing complex modeling experiments. The fourth
section presents the realization of a Computational
mechanics application, a power plant simulation by
varying burners and fuel quality.

2 GriCoL (Grid Concurrent Language)
The GriCoL (Grid Concurrent Language) is a system for
designing and executing complex modeling experiment
programs in the Grid. GriCoL enables the automated
creation, start and monitoring of complex experiment
programs and supports its effective execution on the
Grid.
 The philosophy of GriCoL is based on a known fact:
despite the wide variety of complex application tasks
across different fields of science and technology, the set
of components (e.g. gradient searches, genetic
algorithms) within these tasks is very limited. These
components, once they have been created in standard

Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22, 2006 361

form, can be repeatedly reused for modeling complex
systems. If one of the desired components is not
available, it is much simpler to implement this
component and add it to the language than to generate a
new complex application. Also, existing languages for
Grid computing suffer from an insufficiently high
abstraction level which makes the programming of
complex experiments a difficult and painstaking job.
Therefore, this paper proposes the following solution: a
component-based language for describing complex
modeling experiments with a sufficient level of
abstraction so that the scientist does not require
knowledge of the Grid or of parallel programming.

2.1 Common Properties
GriCoL is a universal language for programming
complex computer- and data-intensive tasks without
being tied to a specific application domain.
 GriCoL is a graphical-based language with mixed
type and is based on a component-structure model. The
main elements of this language are blocks and modules,
which have a defined internal structure and interact with
each other through a defined set of interfaces. In
addition, language elements can have structured dialog
windows through which additional operators can be
written into these elements. The language is of an
entirely parallel nature. It can implement parallel
processing of many data sets at all levels, i.e. inside
simple language elements (modules); at the level of
more complex language structures (blocks) and for the
entire experiment.
 In general, the possibility of parallel execution of
operations in all nodes of the experiment program is
unlimited. (It is limited only by the logic of the
experiment’s execution.)
 In order to utilize the capacities of supercomputer
applications and to enable interaction with other
language elements and structures, we make use of the
principle of wrapping of functionality in components.
Practically all GriCoL language elements have been
designed on this principle.
 An additional property of the language is its
extensibility through the use of components. With the
help of the dialog program Units Library Assistant, it is
possible to add new functional modules to the language
library. Program codes, which may be generated in any
language, for parallel machines (all types of an
architecture and operation systems) are wrapped in the
standard language capsule. This wrapping principle
allows GriCoL to incorporate legacy code.
 Another important property of the language is that it
is multi-tiered. The multilayer principle (the sub-division
into control flow and data flow) as well as the graphical
context of the language makes it much easier than with a

Grid workflow system for the user to understand and
describe the experiment

Fig. 1. Structure of GriCoL

Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22, 2006 362

2.2 Structure and Components
GriCoL combines the component model of programming
with the methodology of parallel programming. The
language represents a multi-tiered model of organization.
This enables the user when describing the experiment to
concentrate primarily on the logic of the experiment
program and subsequently on the description of the
individual parts of the program. Now we describe the
internal organization of this language. The elements of
GriCoL are shown in Figure 1.
 GriCoL has a two-layer model for the description of
the scientific experiment and an additional sub-layer
(Repository) for the description of the database required
for the creation of the experiment. The top level of the
experiment program is the control flow level, which
describes the logical sequence of execution. The main
elements of this level are blocks: control blocks and
solver blocks. A solver block is the program object
which performs some complete operation. The standard
example of a solver block can be a simple parameter
sweep. The control block is the program object which
allows the changing of the sequence of the execution
according to a specified criterion. The lower level, the
data flow level, provides a detailed description of
components at the top level, the control flow level. The
main elements of the data flow level are program
modules and database sections.
 The sublayer provides a common description of the
database and a section for making additions to the
database if necessary.
 The elements of the language have graphical notation
and are represented by icons (for modules and blocks) or
as connection lines.

Fig. 2. Experiment Program at the Control Flow Level

2.2.1 Control Flow Level
Figure 2 illustrates the above mentioned for an
experiment at the control flow level. As can be seen from
this figure the language components make it possible to
generate multilayer dynamic-control experiment
programs with branches. GriCoL offers the user a
complete range of control mechanisms on experiment
processes: parallelization, testing of conditions and
branching, synchronization and fusion, as well as
exchange of messages and signals.
 Solver blocks represent the nodes of data processing.
Control blocks are either nodes of data analysis or nodes
for the synchronization of data computation processes.
They evaluate results and then choose a path for further
experiment development. Another important language
element on the control flow level is the connection line.
Connection lines indicate the sequence of execution of
blocks in the experiment and, together with control
blocks, describe the logic of execution of the experiment
program. There are two mechanisms of interaction
between blocks which are described with the help of
connection lines (either red-solid or blue-dashed). If the
connection line is blue in colour, the procedure is as
follows: each time the computation of an individual data
set has been finished, i.e. after completion of a program
run within a block, control is transferred to the next
block. This process is repeated until all program runs in
the block have been completed. That means a pipelined
operation on the set of runs. If the connection line is red
in colour, control is not passed to the next block before
all runs in the previous block have been finished. That
means a barrier on the set of runs.
 Experiment operations always begin with the start
block and finish with the end block. In the example (see
Figure 2), the start block begins a parallel operation in
solver blocks (notated as “sim” blocks in the figure)
B.01 and B.02. After execution of B.02, processes begin
in solver blocks B.03 and B.04. Each data set which has
been computed in B.04 is evaluated in control block
B.05. The data sets meeting the criterion are selected for
further computation. These operations are repeated until
all data sets from the output of B.04 have been
evaluated. The data sets selected in this way (in our
example these of the input of B.06) are synchronized by
a merge/synchronize block with the corresponding data
sets of the other inputs of B.06. The final computation
takes place in solver block B.07.

2.2.2 Data Flow Level

A detail of programming on the data flow level is
represented on Figure 3. A typical example of a solver
block program is a modeling program (or a program
fragment) which cyclically computes a large number of
input data sets. At this level, the user can describe the
manipulation of data in a very fine grained way. The
solver block consists of computation (C), replacement

Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22, 2006 363

(R), parameterization (P) modules and a database
(Exp.DB). These are connected to each other with
connection lines showing the data transfer between
modules and the sequence of execution during the
computation process.

Fig. 3. Experiment Program at the Data Flow Level

Each module is a Java object, which has a standard
structure and consists of several sections. For example:
each computation module (C) consists of four sections.
The first section organizes the preparation of input data.
The second generates the job and controls its execution.
The third initializes and controls the record of the result
in the experiment database. The fourth section controls
the execution of module operation. It also informs the
main program of the block about the manipulation of
certain sets of data and when execution within a block is
complete.
 After a block is started, the parameterization module
(P) and replacement module (R) wait for the request
from the corresponding inputs of the computation
module (C). After that, they generate a set of input data
according to rules specified by the user, either as
mathematical formulae or a list of parameter values. In
this example three variants of parameterization are
represented:
(a) Direct transmission of the parameter values with the
job. In this case, parameterization module (P3) transfers
the generated parameter value to the computation
module (C) upon its request. The computation module
generates the job, including converting parameter values
into corresponding job parameters. This method can be
used if the parameterized value is a number, symbol or
combination of both.
(b) Parameterized objects are large arrays of information
(DB.02-P4 in Figure 3) which are kept in the experiment
database. These parameters are copied directly from the

experiment database to the corresponding file server and
then written with the same array name with the index of
the number of the stage. In this case, attributes of the job
are sent to the file server as references (an array of data).
(c) If it is important, then the preparation of the data is
moved outside of the main program. This allows the
creation of a more universal computation module.
Furthermore, it allows scaling, i.e. avoiding limitations
in the size, position, type and number of the
parameterized objects used in a module. In these cases
the replacement module is used.
 During the preparation of the next set of input data,
new parameter values P1 und P2 are generated. The
generated parameter set is linked with replacement
processes and then delivered to the corresponding file
server, where the replacement process is executed.
A typical control block program carries out an iterative
analysis of the data sets from previous steps of the
experiment program and selects either the direction for
the further development of the experiment or examines
whether the input data sets are ready for further
computation, and subsequently synchronizes their
further processing. An example of such a program can
be seen in Figure 4.

Fig. 4. Example Control Block Program (Condition
Block) at the Data Flow Level

The condition block shown in this figure consists of two
selection modules, a filtering, testing, decision and
updating module, as well as a database. A testing
module is a functional program which analyses input
data sets on the basis of certain criteria. A decision
module redirects data for further computation depending
on the results obtained by the testing module. The
selection and update modules are for the interaction
between modules (computation, testing, etc.) and the
database.

Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22, 2006 364

 As we can see, the main elements are modules. In
principle all simple control blocks can be mono-
programs, which consist of units rather than modules, as
for example the synchronization block in Figure 2. Using
a small number of modules, it is possible to create a
large number of different program blocks for
experiments in different fields of science and
engineering.
 For the creation of a block program it is necessary to
indicate all nodes (modules) of computation data and to
show the data transfer between modules. Data transfer is
indicated with the help of connection lines which
connect inputs and outputs of modules. Interaction
between modules of a block is based on the request and
reply principle. The block contains a module which takes
the role of request module (in our cases this is
computation module M.02.05 in Figure 3 and decision
module M.05.05 in Figure 4). The other modules of the
block make replies. Requests go from bottom to top (i.e.
from the generating/request module to the reply
module), and replies go from top to bottom (i.e. from the
reply module to the request module). In each reply
module processing continues until the list of parameter
inputs is exhausted.

3 SEGL (Science Experimental Grid

Laboratory)
SEGL is a problem solving environment enabling the
automated creation, start and monitoring of complex
experiments and supports its effective execution on the
Grid. SEGL is the environment within which the
GriCoL language is utilized. Figure 5 shows the system
architecture of SEGL. It consists of three main
components: the User Workstation (Client), the
ExpApplicationServer (Server) and the ExpDBServer
(OODB). The system operates according to a Client-
Server-Model in which the ApplicationServer interacts
with remote target computers using a Grid Middleware
Service such as UNICORE and SSH. The
implementation is based on the Java 2 Platform
Enterprise Edition (J2EE) specification and JBOSS
Application Server. The database used is an Object
Oriented Database (OODB) with a library tailored to
the application domain of the experiment.
 The two key parts of SEGL are: Experiment
Designer (ExpDesigner), used for the design of
experiments by working with elements of GriCoL, and
the runtime system (ExpEngine). From the user’s
perspective, complex experiment scenarios are realized
in Experiment Designer using GriCoL to represent the
experiment. The technical mapping from this user
perspective to the underlying infrastructure is carried
out via the use of control flow and data flow. The
control flow level is used for the description of the

logical schema of the experiment. On this level the user
makes a logical connection between blocks: direction,
condition, and sequence of the execution of blocks.
Each block can be represented as a simple parameter
study. The data flow level is used for the local
description of interblock computation processes. The
description of processes for each block is displayed in a
new window.

Fig. 5. Architecture of SEGL

 After completion of the design of the program at the
graphical icon-level, it is “compiled”. During the
“compiling” the following is created:
(a) The program objects (modules), which belong to the
block are incorporated in Block Containers.
(b) Block Containers are incorporated in the Task
Container
 In addition, the Task Container also includes the
Connection @ Activity Table. This table describes the
sequence of execution of experiment program blocks. At
the control flow level, when a new connection is made
between the output of a block and the input of the next
block, a new element is created in the Block Connection
@ Activity Table to describe the connection.
 Parallel to this, the experiment’s database aggregates
the data base icon objects from all blocks/windows at the

Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22, 2006 365

data flow level and generates QL-descriptions of the
experiment’s database. The container application of the
experiment is transferred to the Application Server and
the QL-descriptions are transferred to the server
database. Here, the meta data repository is created.
 The runtime system of SEGL (ExpEngine) chooses
the necessary computer resources, organizes and controls
the sequence of execution according to the task flow and
the condition of the experiment program, monitors and
steers the experiment, informing the user of the current
status. This is described in more detail below.
 ExpApplication Server consists of the ExpEngine,
Task, the ExpMonitorSupervisor and the
ResourceMonitor. The Task is the container application.
The ResourceMonitor holds information about the
available resources in the Grid environment. The
MonitorSupervisor controls the work of the runtime
system and informs the Client about the current status of
the jobs and the individual processes. The ExpEngine is
the controlling subsystem of the SEGL (runtime
subsystem). It consists of three subsystems: the
TaskManager, the JobManager and the DataManager.
The TaskManager is the central dispatcher of the
ExpEngine. It coordinates the work of the DataManager
and the JobManager.

1. It organizes and controls the sequence of execution
of the program blocks. It starts the execution of the
program blocks according to the task flow and the
condition of experiment program.

2. It activates a particular block according to the task
flow, chooses the necessary computer resources for the
execution of the program and deactivates the block when
this section of the program has been executed.

3. It informs the MonitorSupervisor about the current
status of the program.
 The DataManager organizes data exchange between
the ApplicationServer and the FileServer and between
the FileServer and the ExpDBServer. Furthermore, it
controls all parameterization processes of input data.
The JobManager generates jobs, places them in the
corresponding SubServer of the target machines. It
controls the placing of jobs in the queue and observes
their execution. The SubServer informs the JobManager
about the status of the execution of the jobs.
 The final component of the SEGL is the database
server (ExpDBServer). All data which occurred during
the experiment, initial and generated, are kept in the
ExpDBServer. The ExpDBServer also hosts a library
tailored to the application domain of the experiment. For
the realization of the data base we choose an object-
oriented database because its functional capabilities meet
the requirements of an information repository for
scientific experiments. The interaction between

ApplicationServer and the Grid resources is done
through a Grid adaptor. Currently, e.g. Globus and
UNICORE offer these services.

4 Use Case: Power Plant Simulation by

Varying Burners and Fuel Quality
The liberalization of the energy markets puts more and
more pressure on the competitiveness of power
companies all over the world. In order to maintain their
competitive power it is necessary to optimize the
operation of existing power plants towards minimum
operation costs. Potential optimization targets can be
minimization of excess air (increasing efficiency) or
NOx-emission (reducing DeNOx operation costs). Pure
experimental optimizations without computer-aided
techniques are time-consuming and require a significant
higher manpower effort. Furthermore, in the case of
necessary design changes the technical risks involved
with the investment decision can only be assessed with
computer-aided techniques. Computer-aided methods are
well accepted in the power industry.
 The optimization procedure applied by the SEGL for
the present problem is based on an evolutionary
algorithm. In evolutionary algorithms the mechanisms of
the natural evolution are applied to build an optimization
algorithm. Four mainstreams of evolutionary algorithms
are distinguished in literature: genetic algorithms,
genetic programming, evolutionary strategies and
evolutionary programming [11], [12]. In the present
work a genetic algorithm (GA) is used as the core of the
optimization environment, because the coding properties
of GA’s are ideally suited for limited parameter ranges,
like those appearing in boiler optimization problems.

4.1 General Arrangement of the Workflow
In order to work on boiler optimization problems with
the GriCoL the parameters that have to be optimized are
coded in binary form and assembled to a chromosome.
The chromosome carries the properties of the so called
individuals. A certain number of these artificial
individuals are generated initially, the so called
population, and the GA of the GriCoL imitates the
natural evolution process. The imitation is done by
applying the genetic mechanisms selection,
recombination, and mutation.. The basic workflow can
be described with the following pseudo code:

1. Binary coding of optimization parameters and
chromosome assembly.

2. Generation of an initial population.
3. Decoding of the chromosome information for

each individual.

Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22, 2006 366

4. Simulation of the decoded set of optimization
parameters with the 3D-furnace simulation code
RECOM-AIOLOS for each individual.

5. Filtering the 3D-results of the furnace simulation
to derive the derive the target values for each
individual.

6. Evaluation of the performance level for each
individual (Terminate the optimization process if
desired optimization level is reached).

7. Selection of suitable individuals for reproduction
and recombination/mutation of the chromosome
information for the selected individuals to
generate new individuals.

8. Return to point 3. for new individuals.

4.2 Industrial Applicability
An experimental operation optimization exercise
performed in 1991 at a power station in Italy is used to
demonstrate the capabilities of the SEGL. The unit under
consideration is ENEL’s coal-fired Fusina #2. The
underlying firing system is a corner-fired, tangential
arrangement with a windbox. In a windbox the amount
of air flowing through a nozzle is controlled by the
damper setting of the nozzle. A damper setting of 100%
means that the flow passage of the nozzle is fully open.
Reducing the damper setting of a single nozzle allows to
reduce the air mass flow through the nozzle, but at the
same time the air mass flows for all other nozzles in the
windbox are increased. The combustion chamber has a
cross section of 8 x 10 m and a height of 35 m.

Fig. 6. Diagram of the Main Combustion Zone

 In 1991 separate overfire air nozzles (separate OFA)
were installed above the main combustion zone (see
Figure 6) to minimize NOx-emissions. A new operation
mode was required after the successful installation of the
separate overfire air to maintain the lowest possible
NOx-emission together with a minimum unburned
carbon loss. In 1991 this optimization exercise was

solved experimentally. In a series of 15 tests over a
duration of approximately ten days, a number of 15
operation modes were tested with varying amounts of
close coupled overfire air (CCOFA), separate OFA, and
tilting angle of the separate OFA (±30°).
 The following operation experience was recorded to
identify an optimized operation:
a)For a horizontal orientation of the separate OFA the
maximum NOx-reduction is reached with dampers 100%
open.
b) A tilting of the separate OFA to –30° has a minor
effect on the NOx-emission but improves the burnout
(reduced unburned carbon loss).
c) A tilting of the separate OFA to +30° leads to a NOx-
reduction but increases the unburned carbon loss
significantly.
d) Closing the CCOFA completely at 100% open
separate OFA has only a minor effect on the NOx-
emission.
 In order to work on this combustion optimization
problem in virtual reality, a high-resolution boiler model
with 1 Mio. grid points was generated.

Table 1. Measured and Calculated (High-Resolution)
NOx-Emission and C in Ash

As shown in Table 1, an accuracy of approximately
±10% between simulation and reality can be reached on
the high-resolution boiler model. The optimization
parameters “OFA damper setting”, “CCOFA damper
setting”, and “Tilting Angle” were coded with 4 bit on
the chromosomes. NOx-emission and C in Ash values
achieved in the model were combined to a target
function for the evaluation of the individuals. The
underlying combined evaluation target functions are
shown in Figure 7.

Target Function = Evaluation[NOx] + Evaluation [C in Ash]

 NOx-emission [mg/m3
n, 6

% O2]

C in Ash [%]

Setting measured calculated measured calculated

No OFA

No CCOFA

950 - 966 954 6.41 –

7.50

5.66

No OFA

CCOFA: 100 %

847 - 858 794 7.47 –

7.61

6.58

OFA: 100 %

CCOFA: 100 %

410 - 413 457 10.43 –

11.48

10.28

Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22, 2006 367

Fig. 7. Combined Evaluation Target Functions

The GA required approximately 11 generations with 10
individuals per population to identify an optimized
parameter set. During the course of the automatic
optimization, approximately 51 of the entire 4096 (24 ·
24 · 24) coded combinations of parameter settings were
evaluated with respect to the target functions.

Table 2. Development of Best Individuals in each
Generation during Automatic Optimization

 Table 2 shows the development of the best
individuals in each generation in the course of the
automatic optimization. The results demonstrate that
SEGL is able to identify the same positive measures that
were found in the experimental optimization. The final
run on the high-resolution boiler model led to an Nox-
emission of 476mg/m3 at 6% O2 and a C in Ash value of
8.42%. Both values are in the range of the emission and
C in Ash values that were observed in the field after the
optimization exercise. The total duration of the
automated optimization was only 3.5 days on a high-
performance vector computer.

4 Conclusion
This paper presented a Grid framework composed of
GriCoL, a language for describing complex modeling
experiments, and the problem solving environment,
SEGL, within which it is utilized to leverage the
resources of the Grid. The framework can implement
complex parameter studies that offer an efficient way to
execute scientific experiments.

References

[1] Foster, I., Kesselman, C., The Grid: Blueprint for a

Future Computing Infrastructure, Morgan Kaufmann
Publishers, USA, 1999.

[2] Abramson, D., Giddy, J., Kotler, L., High
Performance Parametric Modeling with Nimrod/G:
Killer Application for the Global Grid?, International
Parallel and Distributed Processing Symposium
(IPDPS), pp. 520-528, Cancun, Mexico, May 2000.

[3] Yarrow, M., McCann, K., Biswas, R., van der
Wijngaart, R.: An Advanced User Interface
Approach for Complex Parameter Study Process
Specification on the Information Power Grid,
Proceedings of the 1st Workshop on Grid Computing
(GRID 2002), Bangalore,India, December 2000.

[4] McCann, K. M., Yarrow, M., deVivo, A., Mehrotra
P.: SkyFlow: An Environment for the Visual
Specification and Execution of Scientific Workflows,
GGF10 Workshop on Workflow in Grid Systems,
Berlin, 2004.

[5] Thain, D., Tannenbaum, T., and Livny, M., Condor
and the Grid; in Fran Berman, Anthony J.G. Hey,
Geoffrey Fox, editors, Grid Computing: Making The

Global Infrastructure a Reality, John Wiley, 2003.
[6] Erwin, D. (Ed.): Joint Project Report for the BMBF

Project UNICORE Plus, Grant Number: 01 IR 001
A-D, Duration: January 2000 - December 2002.

[7] Casanova, H., Obertelli, G., Berman, F., Wolski, R.,
The AppLeS Parameter Sweep Template: User-Level
Middleware for the Grid, Proceedings of the Super
Computing (SC 2002) Conference, Dallas, USA,
2002.

[8] Yu, J., Buyya, R.: A Taxonomy of Workflow
Management Systems for Grid Computing, Journal

of Grid Computing, Volume 3, Numbers 3-4, pp.
171-200, September 2005.

[9] Tony, A., Curbera, F., Dholakia, H., Goland, Y.,
Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D.,
Thatte, S., Trickovic, I., Weerawarana, S.:
Specification: Business Process Execution Language
for Web Services Version 1.1, May 05, 2003.

[10] Currle-Linde, N., Küster, U., Resch, M., Risio, B.:
Science Experimental Grid Laboratory (SEGL)
Dynamical Parameter Study in Distributed Systems,
ParCo 2005, Malaga, Spain, 2005.

[11] Bäck, T., Evolutionary Algorithms in Theory and

Practice: Evolution Strategies, Evolutionary

Programming, Genetic Algorithms, Oxford Univ.
Press, 1996.

[12] Koza, J.R., Genetic Programming: On the

Programming of Computers by Means of Natural

Selection, MIT Press, 1992.

Generation Target-

Value

OFA

[%]

CCOFA

[%]

Tilting

Angle

[°]

NOx

[mg/m3
n]

C in

Ash

[%]

Basis 12,070 0 0 0 805 3.39

1 10,061 100 100 -30 479 10.84

5 9,600 93 93 -30 473 10.42

10 9,177 93 20 -30 458 10.26

Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22, 2006 368

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

