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Abstract: In this research, fluid flow and heat transfer in a parallel plates channel, partially filled 
with porous material, have been considered. The Darcy-Brinkman model and the Navier-Stokes 
equations for flow solution have been employed in porous and free fluid domains respectively. The 
walls of the channel held at uniform temperature and the local thermal equilibrium assumption is also 
used in porous media. The important point in this study is implementation of interface boundary 
condition between free fluid and porous domain. Numerical finite volume code with SIMPLE 
algorithm has been developed and the influences of suitable non-dimensional parameters such as 
Darcy and Reynolds number on Nusselt number has been discussed thoroughly. The effect of porous 
layer thickness on flow pattern and heat transfer is also discussed. The outcomes of the numerical 
calculation show good agreement with the analytical results for fully developed flow case.
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1 Introduction
Analysis of fluid flow and heat transfer in 

porous medium has been a subject of 
continuous interest during the past decades, 
specifically forced convection heat transfer in 
a channel or duct fully or partially packed with 
a porous material is of considerable 
technological interest. This is due to the wide 
range of applications such as direct constant 
heat exchangers, electronic cooling, heat pipes, 
etc.  In many of aforementioned applications 
Darcy model is used to represent fluid flow in 
porous media. This simple equation relates the 
averaged velocity to pressure drop through 
porous medium, but in wall bounded porous 
media because of implementation of boundary 
condition, the Darcy model has no reality and 
another form of momentum equation should be 
used. In this work, fluid flow and heat transfer 
in a parallel plates channel involving free fluid 
domain and porous domain are treated while 
the flow within the porous region is modeled 
by the Brinkman-Forchheimer-extended Darcy 
formulation, and the flow in free region is 
described by the Navier-Stokes equations. 

Thermally developing forced convection in a 
porous medium with walls at constant 
temperature has been studied by Nield et al. 
[1].They assumed that the Peclet number was 
sufficiently large so that axial conduction 
could be neglected. In this study, presents two
definitions for Peclet number corresponding 
the two specified zones. Koh and Colony [2], 
performed a numerical analysis of the cooling 
effectiveness of a heat exchanger containing a 
conductive porous medium, while Koh and 
Stevens [3], conducted an experimental 
investigation for the same problem. It was 
shown that for the case of a fixed wall 
temperature the heat flux at the channel wall 
can be increased by over three times by using 
a porous material in the channel. Rohsenow 
and Hartnett [5] presented a constant Nusselt 
number for the fully developed region in a 
porous medium bounded by two parallel 
plates, based on the Darcy flow model. To 
consider the effect of a solid boundary, 
Kaviany [6], performed a numerical study of 
laminar flow through a porous channel 
bounded by isothermal plates based on the 
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generalized model developed in Vafai and 
Tien [7].
In this study, we concentrate on the case of a 
parallel plate channel partially filled with 
porous material, with walls at constant 
temperature. The Darcy-Brinkman model and 
the Navier-Stokes equations have been 
employed in porous domain and free fluid 
domain respectively. The effects of porosity, 
thickness of porous layer, conductivity of 
porous material, Darcy and Reynolds number 
on Nusselt number, pressure drop, 
temperature, convection coefficient and 
velocity in developing and developed sections 
of parallel plates channel are studied 
thoroughly. 

2 Governing Equations
This research is focused on the case of a 
parallel plate channel partially filled with 
porous material. The geometry of problem is 
shown in Fig.1. Upper and lower walls held on 
constant temperature and they are 
impermeable. The height of channel is 
considered H.

Fig. 1: Geometry of problem

Governing equations for the flow in the free 
and porous medium according to [8, 9, 10], are 
given by following equations; 
  Mass conservation, in both the free and 
porous domains is given by:
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where i and j are the Cartesian indexes (i, j = 
1, 2), and a repeated index in a product means 
summation over all the index range (repeated 
index convention), xi (i =1, 2) are the Cartesian 
co-ordinates, ui (i = 1, 2) are the respective 
Cartesian velocity components, and ρf is the 
fluid density.

Energy conservation, in both the free and 
porous domains is defined by:
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where, Cpf is specific heat of the fluid. Viscous 
dissipation effects are neglected in line with 
limiting in Reynolds number quantities. The 
quantity Ka named the apparent conductivity;
it is a result of conduction in the solid material 
and in the fluid. If a simple "parallel" path 
model is assumed, Ka will be given by:

Ka = ε Kf  + (1-ε) Ks                     (3)

where Kf and Ks are the conductivities of the 
fluid and solid material respectively and ε is 
the porosity of the porous medium. It is clear 
that in free medium Ka is changed to Kf
because of ε =1. 
  Momentum equations in the free fluid 
domain (Navier-Stokes equations):
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where P is the pressure, and µf is the dynamic 
viscosity.

Momentum equations in the porous domain
according to Brinkman-Forchheimer equations 
are:
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where µB is the Brinkman viscosity (the 
equivalent to the dynamic viscosity within the 
porous domain), κ is the permeability of the 
(isotropic) porous domain, and 

( )222
vuuV i +==  is the absolute value 

of the velocity and F is the Forchheimer 
coefficient, according to Vafai and Tien [11], 
this coefficient, which is used in expressing 
the inertial term in equation (5), depends on 
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the Reynolds number and microstructure of the 
porous medium. An empirically based 
correlation for this coefficient can be found in 
ref. [12]. In this work the fluid and the 
material of porous media properties are being 
assumed to be constant, then µB= µf .

3 Boundary Conditions and 
Normalization
Assuming high thermal conductivity at the 
boundary, the temperature and velocity at wall 
interface is:

T(x,H/2)=Tw    ,u(x,H/2)=0 (6) 

The symmetry condition at the center line will 
be:

0)0,( =
Υ∂
∂ xT ( ) 00, =

Υ
x

d
du

(7)

At the inlet of channel we have:

T(0,y)=Tin (8) 

By defining the following non-dimensional 
parameters:
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Where H is the height of the channel, U is the 
inlet velocity; T w and Tin are the wall and the 
inlet temperature respectively.
Eqs. ( 1) to (5) in non-dimensional form is as:
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The dimensionless forms of boundary 
conditions are:

( ) 1,0 * =Υθ , ( ) 01,* =Χθ          (14)
( ) 01,** =Χu , ( ) 1,0 ** =Υu (15)
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(16)

Free/porous domain interface boundary 
conditions according to [8] can be evaluated as
described blew: 
The local 'natural' conditions at the interface 
are, in their vector form:

 Mass conservation
(ρV.n)f=(ρV.n)p (17)

Where subscripts f and p refer to free fluid and 
porous domains, respectively, and n is the unit 
vector normal to the interface,

 Normal stress continuity
(n.n.σ)f=(t.n.σ)p (18)

Where t is the unit vector tangent to the 
interface, and 
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is the total stress tensor, and δij the δ 
Kronecker's function.
The local 'essential' conditions at the interface 
are :

Velocity continuity
(V)f=(V)p          (20)

Pressure continuity
(P)f=(P)p (21)

Eqs. (17) and (18) implicitly state that the 
normal and tangential stresses are fully 
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supported by the fluid , i.e. it is assumed the 
porous medium itself does not participate in 
this balance. This simplification, although 
convenient, somehow lacks rigor. 

4 Numerical modeling
In this study, two-dimensional laminar version
of the control volume based finite volume 
method [13], is used. The numerical code is
developed and the influence of aforementioned 
non-dimensional parameters on Nusselt 
number was discussed. Numerical method 
involved staggered discrete grid for solving 
momentum, energy, mass equations.
The UPWIND scheme has been used in 
numerical method and the precision of main 
parameters is controlled each iteration. The 
flow filed is obtained using SIMPLE algorithm 
on collocated grids [13]. 
The dependency of numerical results on the 
number of grids was also studied and the final 
results were independent of them.
The Nusselt number is defined as:

( ) 1
*

'

* =Υ∂
∂

=
−

==
ymwaa TTK

Hq
K
hhNu θ

(22)  

Where Tm and q" are bulk   temperature and 
heat flux respectively.
In what concerns the interface boundary 
conditions, the computational grid is 
constructed in such a way that the free/porous 
domain interface is located along a row of 
nodes. In this way, a control volume 
associated with a node at the interface is 
composed by two components, namely: one is 
part of the free fluid domain, and the other one 
is part of the porous domain. For a finite 
volume over the free domain, the pressure 
coefficient is conditioned by its free domain 
nodal values, while for the porous medium the 
pressure coefficient is obtained as the 
arithmetic average of its porous medium nodal 
values.

5 Results and Discussion
In this research there are a large number of 
parameters to study. We have calculated the 
temperature, pressure and velocity distribution 
and also Nusselt number and convection 

coefficient values. The local Nusselt number 
calculated from Eq. (22). The effects of Darcy 
and Reynolds number, porosity, thickness of 
porous layer and conductivity of porous 
material on mentioned parameters are reported 
in Figures 2 to 10. Figures 2 to 4 show the 
comparison of  local Nusselt number, 
developed temperature and velocity  plots 
along the channel with and without porous 
part, in this case Re=50, Da=0.05, ε=0.5 are 
considered. Figures 5 to 7 show the effects of 
Darcy number, Figures 8 to 10 show the 
effects of porosity on local Nusselt number 
along the channel and fully developed 
temperature and velocity profiles. The 
outcome of the numerical calculation show 
good agreement with analytical results for 
fully developed flow case reported by Nield et 
al. [14], and Jiang [15].  

6 Conclusions
In this study numerical method is applied to 
investigate fluid flow and heat transfer in 
parallel plates channel partial filled with 
porous material. The Brinkman model and 
local thermal equilibrium assumption 
employed in porous medium. Numerical finite 
volume code is developed and the effects of 
Darcy number and porosity, on local Nusselt 
number, thermal and velocity fully developed 
profiles (all characters are dimensionless) are 
also considered. The numerical analysis 
indicates that the presence of porous layer may 
increase Nusselt number in entrance of the 
channel, because of increasing the longitude of 
 developing (velocity and temperature) region, 
also in fully developed zone in porous medium 
Nusselt number has a very little decrease (as it 
was showed in [14, 15]), in comparison with 
channel without porous media, but because of 
axial conduction the heat transfer will be 

increased.
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Fig. 2 Plots of Nusselt number versus 
dimensionless coordinate.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.02 0.04 0.06 0.08 0.10
T*

Y*

Channel without porous part

Channel with porous part

Fig. 3 Dimensionless form variation of 
temperature profiles in fully developed region.
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Fig. 4 Dimensionless form variation of 
velocity profiles in fully developed region.
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Fig. 5 Plots of Nusselt number versus 
dimensionless coordinate for various values of 
Darcy number.
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Fig. 6 Dimensionless form variation of 
temperature profiles in fully developed region
for various of Darcy number.
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Fig. 7 Dimensionless form variation of 
velocity profiles in fully developed region for 
various of Darcy number.
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Fig. 8 Plots of Nusselt number versus 
dimensionless coordinate for various values of 
porosity.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.02 0.04 0.06 0.08
T*

Y*

ε =0.005
ε =0.5
ε =0.9

Fig. 9 Dimensionless form variation of 
temperature profiles in fully developed region
for various of porosity.
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Fig. 10 Dimensionless form variation of 
velocity profiles in fully developed region for 
various of porosity.
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