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Abstract: - In this paper a HW/SW platform for the implementation of an optimizer based on a evolutionary 
algorithm, called quantum-inspired evolutionary algorithm (QEA), is introduced. It is based on the concept 
and principles of quantum computing, such as quantum bit and superposition of states, whose features are 
briefly described. The hardware implementation of the QEA using a FPGA board is therefore described 
together with the use of a customable software fitness in order to solve general purpose problems. HW-SW 
connections are provided by a PCI interface. Final aim is to build a flexible object able to optimize the choices 
of some sensible parameters in a dynamic system quickly, with particular attention on industrial and 
automotive applications. 
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1   Introduction 
In the past decade, the solutions of some complex 
optimization problems have been dealt by Genetic 
Algorithms, a very effective and versatile 
optimization strategy. They work by “evolving” a 
set of potential solutions according to survival rules 
that give advantages to the best individuals. Due to 
this structure, it can be avoided the fall in local 
maxima or minima [1][2]. The accuracy of these 
methodologies is often paid with a high 
computational time, especially in solving complex 
problems. The recent coming of Quantum-Inspired 
Evolutionary Algorithm (QEA [3][4]) seems to 
overcome this limitation, denoting the same 
reliability and robustness of Genetic Algorithms but 
faster performances. Moreover, a hardware 
implementation of QEA could provide a further 
acceleration, giving us a tool able to perform online 
optimization of  parameters in any dynamic system, 
such as combustion engines or industrial plants. 
The object of this article is the realization of a 
hardware to perform the several operations 
composing a QEA and to maintain, however, a 
certain flexibility to handle problems as various as 
possible. At last the algorithm will be described 
from a theoretical point of view and it will be shown 
in the implemented details on the board.  
 
 
2   QEA Overview 
As Genetic Algorithms, QEA exploits the concepts 
of individual, population, evaluation of fitness, 

evolutions of the population, hence, the idea of 
generation. Since Quantum Computing adopts the 
notion of Q-bit and the principle of superposition of 
states, QEA, instead of the classic binary 
representation, use a Q-bit, defined as the smallest 
unit of information, in which there is a coexistence 
of the states 1 and 0, each one with its probability. 
The sum of the squares of these probabilities is 1. 
We assume a single individual (Q-individual) as a 
sequence of Q-bits. In this context, a Q-individual 
represents a linear superposition of the states 1 and 
0, in the probabilistic search space. A new concept is 
the Q-gate, a variation operator which drives the 
evolution towards the best solution and towards a 
unique state. In fact, at the beginning, the QEA 
contains a population of one Q-individual that 
represents the linear superposition of all possible 
states with the same probability. As the probability 
of each Q-bit approaches either 1 or 0 by the Q-gate, 
the Q-individual converges to a single state and the 
diversity property disappears gradually. Compared 
to classical Genetic Algorithms, it has been seen that 
the QEA have better performances, for that concern 
processing time. 
The results show that QEA performs very well even 
with small populations, without premature 
convergence as compared to the conventional 
Genetic Algorithms. Finally, we tell that QEA is not 
a Quantum Algorithm, but a novel Evolutionary 
Algorithm for a classical computer [5], [6].  
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such that | αi |2  + | βi |2 =1, with  i=1, 2, ……, m. 
For example, if there is a Q-individual composed by 
three Q-bits: 
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Figure 1: Simplified structure of  QEA 

 
 then, the states of the system can be represented as: 
3   Encoding and operators in QEA 111
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And now we give some useful definitions for 
understanding the QEA. We already know that a 
number of different representations can be used to 
encode the solutions onto individuals in 
Evolutionary Computation. The representations can 
be classified broadly as: binary, numeric, and 
symbolic [7]. 

The above result means that the probabilities to 
represent the states 000 , 001 , 010 , 011 , 

100 , 101 , 110 , and 111  are 1/16, 3/16, 1/16, 
3/16, 1/16, 3/16, 1/16 and 3/16 respectively. By 
consequence, the Q-individual made by three-Q-bits 
contain the information of eight states. Evolutionary 
Computing using Q-bit has a better evidence of 
population diversity than other representations, 
because it can represents linear superposition of 
states in probabilistic way. So, only one Q- 
individual is enough to represent eight states, but in 
binary representation at least eight strings: (000), 
(001), (010), (011), (100), (101), (110) and (111) are 
needed. 

QEA uses a new representation, called “Q-bit”, for 
the probabilistic representation of the coexistence of 
the information 1 and 0. It is based on the physical 
concept of quantum bit. We also call “Q-individual” 
a string of Q-bits. 
 
3.1 Q-bit 
A Q-bit is defined as the smallest unit of information 
in QEA. Compared to bit, identified unambiguously 
by one “0” or by one “1”, the Q-bit is defined with a 
pair of numbers (α, β), disposed as column vector [α 
β]T,  where |α|2 + |β|2 = 1. |α|2  gives the probability 
that the Q-bit will be found in the ‘0’ state and |β|2   
gives the probability that the Q-bit will be found in 
the ‘1’ state. 

 
3.3 Q-gate 
A Q-gate is defined as a variation operator of QEA, 
whose functionality is to drive the individuals 
towards better solutions. The updated Q-bits should 
satisfy the normalization condition:  

1
2'2' =+ βα  As previously said, a Q-bit may be in the “1” state, 

in the “0” state, or in a “hybrid” state, given from 
the linear superposition of the two states, properly 
“weighted” by  factors α and β.  

where α’ and β’  are the values of the updated Q-bit. 
An example of Q-gate is the following rotation 
gate: 

Using the “ket-notation”, these three states can be 
described as: 
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This operator, which provides a rotation of  ∆θi to 
the Q-bit, is the core of the algorithm and will be 
discussed in the next section. 

 
In general, the algorithm processes Q-bit in the 
hybrid state. It just converges to “certain” values ‘0’ 
or ’1’ at the end of the iterations.  

  
4   Structure of algorithm 3.2 Q-bit individual 
QEA works on one Q-individual, 

{ }t
m

tt qqqtQ ,...,,)( 21= at generation t. 
Similarly to genetic one, where a generic individual 
of the population is represented by a string of bit, a 
Q-individual is represented by a string of Q-bit, 
defined as: 

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006  334



The representation of i-th Q-bit qt
i, with i= 1, 2, …, 

m, where m is the number of Q-bit of the Q-
individual, is defined as: 

The rotation operator U(∆θi), applied at step vii), is 
the following: 
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where ∆θi, with i = 1, 2, …, m is a rotation angle of 
each Q-bit toward either 0 o 1 state depending on its 
sign. It allows the evolution of Q-bits, according to 
the polar plot depicted in figure 3. 

From n observations of each Q-bit of the Q-
individual is built a population of bits, with size n.  
 

 

The structure of the algorithm is described by the 
following figure. 

 

Figure 3: Polar plot of the rotation gate 
 

 
5   Termination Criteria 
To decide the appropriate termination of QEA, a 
proper termination condition is necessary. Although 
the maximum number of generations is a generally 
used termination criterion in EAs, in QEA the 
probability of the best solution can be employed as a 
termination criterion thanks to the probability 
representation. The termination condition is 
designed by using the probability of the best 
solution b as follows:  

Figure 2: Overall structure of QEA 
 
In the following, the algorithm QEA is shown in 
pseudo-code, reporting the particular operations 
performed on each step.  
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where bi is the i-th bit of the best solution b and (αi, 
βi) is the i-th Q-bit of the Q-individual. 
The termination condition is defined as  Prob(b) > γ0  
where 0 < γ0 < 1. 
The probability Prob(b) represents the convergence 
of the Q-individual to the best solution. However, 
since the probability is sensitive to each Q-bit’s 
probability, it is not easy to set the value γ0: a slight 
difference of γ0 can increase the processing time for 
a particular problem.  
 

 

 
6 Hardware implementation 
The quantum-evolutionary machine implementing 
the  algorithm is made  by a HW/SW platform, 
whose scheme is showed in figure 4. 
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Figure 4: Platform HW/SW 

 
6.1 Core organization 
The core of the Quantum Hardware is shown in the 
scheme of figure 5. To describe the data population, 
a Dual Port SRAM memory has been used, while, to 
describe the Q-bits, a Single Port SRAM memory. 
In the system is also present a FIFO to handle data 
that must be send or receive from the PC. The core 
contains inside a state finite machine to handle the 
operations executed in hardware, Figure 6 shows a 
scheme of this machine. 

 
Figure 5: CORE  Scheme 

 

 
Figure 6: State Machine of the CORE 

 

At every start of machine, all Q-bits in memory are 
initialized to 
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 . From the PC it can be send 

the Start and First Start signals; during the first 
execution of program the First Start signal is send 
and the machine begin whit the construction of first 
population (Make_population)  based on the 
observation of the Q-bits inside the Q-individual at 
the value of initialization. Then, data are stored in 
the FIFO memory and the interrupt‘s pin is set to ‘1’ 
to indicate to the PC that data are ready to be used. 

The PC attends to compute the population fitness 
and the Best solution; then returns the data to the 
Hardware machine, arranging the FIFO memory 
consequently. So the PC set to ‘1’ the value of Start 
and put it in Stand by for an interrupt. When Start is 
set to ‘1’, the Core machine starts and handles the 
operations. The population data are downloaded 
from the FIFO and stored in the memory (Download 
FIFO). Then Q-bits are updated by the evaluation of 
the population fitness and the evaluation of the Best 
(Update_Q). A new pseudo - random population is 
built by the evaluation of the Q-bits updated in the 
Q-individual (Make_population). Finally, data are 
stored in FIFO (Load FIFO) and send to PC by the 
interrupt, again. 
 
6.2 Memory representation of Q-bits 
The population data is represented from 256 
elements; every element is made by four variables 
(x, y, z, w). 31 bits have been used to represent each 
variable for the data and one bit for the evaluation    
(f(x, y, z, t) > b(x, y, z, w, t – 1)). So, to easily 
represent the population data in hardware, it has 
been used a memory of 256 words of 128 bits each 
one. The data was stored as shown in figure 7a. A 
similar strategy has been used for representing Q-
bits in hardware. Every Q-bit is defined as the 
ordinate couple ( )βα ,  so that  122 =+ βα  and 

. 1, 22 ≤βα
To perform efficiently the Q-bits operations, the 
ordinate couple ( )βα ,  is built by a couple of fixed-
point values of 16 bits. So, the Q-bits are stored in a 
memory with 124 words, (in fact 124 bit are 
necessary to represent a population data (x, y, z, w )) 
of 32 bits (31+1), as showed in figure 7b. 
 

 

          
Figure 7a-7b: Data organization and Q-bits  in memory 

 
6.3 Update Q-bits 
The updates of Q-bits are made by a state machine, 
which scheme is shown in Figure 8. The state 
machine also performs the computing operations 
concerning ‘angle rotation’ and ‘rotation of Q-bit’.   
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Q-bits rotation is done by the Rotation module.  
Here it is shown the formula to perform the rotation 
of Q-bits. 
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In Figure 11 is described the circuit for the Rotation 
module which was employed for the rotation of Q-
bits. Figure. 8:  Update scheme of  Q-bits 

 

 

The state machine that handles the Q-bits update 
performs a high number of operations. In fact for 
each Q-bit (ex. Q(j)) it’s necessary: 
1.  to take the i-element from the population; 
2. to extract the element  p(i,j); 
3. to update the angle rotation theta. 
Only when the contribution of all elements of a 
population was computed ( i = 0, …,255 ), we can 
update the Q-bit and to begin  the evaluation of a 
new Q-bit ( ex. Q( j + 1) ). Figure. 11: Rotation Module Once all Q-bits were updated, the End signal is set 
to ‘1’, the machine goes to idle state and the 
Quantum Evolutionary Algorithm goes to 
Make_population phase. Figure 9 shows the scheme 
of the state machine that handles the update of the 
Q-bits. 

 
6.4 Make Population 
The generation of the population is performed by a 
machine that develops pseudo-random number, 
starting from evaluation of Q-bits states (see 
Procedure Make in section 4). In figure 12 is shown 
a scheme of Make_population module. Figure 13 
shows the scheme of state machine that handles the 
operations. 

 
 Figure 9: Update of Q-bits FSM 

Figure 12: Make_population scheme  
 The compute of theta is performed by the 

Compute_theta module, during the phase of 
Up_theta. To realize this computation, it was 
designed a structure with a multiplexer and an 
accumulator, as shown in figure 10.  

 

 Figure 13: Make_population Finite State Machine 
 Figure.10: Compute_theta 
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When the state machine starts, by the Start signal, 
the Q-bit(0) is load from Q-bits memory. Evaluation 
by the Q-bit(0) produces the element p(0,0), that 
represents the first bit of the first element of 
population P(0). Then the counter of Q-bits is 
increased, it is red Q-bit(1), and is produced p(0,1) 
that represents the second bit of the first population 
element P(0). So the procedure goes on in this way 
until to the generation of all bits in the first 
population individual. When P(0) is generated, it is 
written in the Population Memory, counter P is 
increased  and counter Q is reset. So it is performed 
the generation of P(1), P(2) until P(255). When the 
whole population is generated, the state machine 
sets to ‘1’ the end signal and puts again itself in 
waiting for the start signal. 
The generation of the population is pseudo-random:  
the Q-bit represents probability that the new element 
p(i,j) generated is ‘1’ or ‘0’. In figure 14 is shown 
the Compute_pop module, that performs the 
generation of element p(i,j) from the evaluation of 
Q-bit(j).  
 

 
Figure. 14: Compute_pop scheme module 

 
To generate a sequence of random numbers, it was 
used a module that implements the algorithm:  

xn+1 = P1( n,t )*xn + P2 (n,t ) 
where P1 and P2 represent pseudo-random values 
produced by two particular counters that freely run 
during all the algorithm execution. 
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