
Quantum-Evolutionary Algorithms: A SW-HW approach

D. PORTO, A. MARTINEZ, S. SCIMONE, E. SCIAGURA
AST Automotive

STMicroelectronics S.r.l.
Contrada Blocco Torrazze, C.P. 421, 95121 Catania

ITALY

Abstract: - In this paper a HW/SW platform for the implementation of an optimizer based on a evolutionary
algorithm, called quantum-inspired evolutionary algorithm (QEA), is introduced. It is based on the concept
and principles of quantum computing, such as quantum bit and superposition of states, whose features are
briefly described. The hardware implementation of the QEA using a FPGA board is therefore described
together with the use of a customable software fitness in order to solve general purpose problems. HW-SW
connections are provided by a PCI interface. Final aim is to build a flexible object able to optimize the choices
of some sensible parameters in a dynamic system quickly, with particular attention on industrial and
automotive applications.

Key-Words: - QEA, Evolutionary Algorithms, Q-bit, Quantum computing, FPGA, Hardware Design.

1 Introduction
In the past decade, the solutions of some complex
optimization problems have been dealt by Genetic
Algorithms, a very effective and versatile
optimization strategy. They work by “evolving” a
set of potential solutions according to survival rules
that give advantages to the best individuals. Due to
this structure, it can be avoided the fall in local
maxima or minima [1][2]. The accuracy of these
methodologies is often paid with a high
computational time, especially in solving complex
problems. The recent coming of Quantum-Inspired
Evolutionary Algorithm (QEA [3][4]) seems to
overcome this limitation, denoting the same
reliability and robustness of Genetic Algorithms but
faster performances. Moreover, a hardware
implementation of QEA could provide a further
acceleration, giving us a tool able to perform online
optimization of parameters in any dynamic system,
such as combustion engines or industrial plants.
The object of this article is the realization of a
hardware to perform the several operations
composing a QEA and to maintain, however, a
certain flexibility to handle problems as various as
possible. At last the algorithm will be described
from a theoretical point of view and it will be shown
in the implemented details on the board.

2 QEA Overview
As Genetic Algorithms, QEA exploits the concepts
of individual, population, evaluation of fitness,

evolutions of the population, hence, the idea of
generation. Since Quantum Computing adopts the
notion of Q-bit and the principle of superposition of
states, QEA, instead of the classic binary
representation, use a Q-bit, defined as the smallest
unit of information, in which there is a coexistence
of the states 1 and 0, each one with its probability.
The sum of the squares of these probabilities is 1.
We assume a single individual (Q-individual) as a
sequence of Q-bits. In this context, a Q-individual
represents a linear superposition of the states 1 and
0, in the probabilistic search space. A new concept is
the Q-gate, a variation operator which drives the
evolution towards the best solution and towards a
unique state. In fact, at the beginning, the QEA
contains a population of one Q-individual that
represents the linear superposition of all possible
states with the same probability. As the probability
of each Q-bit approaches either 1 or 0 by the Q-gate,
the Q-individual converges to a single state and the
diversity property disappears gradually. Compared
to classical Genetic Algorithms, it has been seen that
the QEA have better performances, for that concern
processing time.
The results show that QEA performs very well even
with small populations, without premature
convergence as compared to the conventional
Genetic Algorithms. Finally, we tell that QEA is not
a Quantum Algorithm, but a novel Evolutionary
Algorithm for a classical computer [5], [6].

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 333

m

m

β
α

β
α

β
α

L

L

2

2

1

1

such that | αi |2 + | βi |2 =1, with i=1, 2, ……, m.
For example, if there is a Q-individual composed by
three Q-bits:

−

2
3

2
1

2
1

2
1

2
1
2

1

Figure 1: Simplified structure of QEA

 then, the states of the system can be represented as:
3 Encoding and operators in QEA 111

4
3110

4
1101

4
3100

4
1011

4
3010

4
1001

4
3000

4
1

−−++−−+

And now we give some useful definitions for
understanding the QEA. We already know that a
number of different representations can be used to
encode the solutions onto individuals in
Evolutionary Computation. The representations can
be classified broadly as: binary, numeric, and
symbolic [7].

The above result means that the probabilities to
represent the states 000 , 001 , 010 , 011 ,

100 , 101 , 110 , and 111 are 1/16, 3/16, 1/16,
3/16, 1/16, 3/16, 1/16 and 3/16 respectively. By
consequence, the Q-individual made by three-Q-bits
contain the information of eight states. Evolutionary
Computing using Q-bit has a better evidence of
population diversity than other representations,
because it can represents linear superposition of
states in probabilistic way. So, only one Q-
individual is enough to represent eight states, but in
binary representation at least eight strings: (000),
(001), (010), (011), (100), (101), (110) and (111) are
needed.

QEA uses a new representation, called “Q-bit”, for
the probabilistic representation of the coexistence of
the information 1 and 0. It is based on the physical
concept of quantum bit. We also call “Q-individual”
a string of Q-bits.

3.1 Q-bit
A Q-bit is defined as the smallest unit of information
in QEA. Compared to bit, identified unambiguously
by one “0” or by one “1”, the Q-bit is defined with a
pair of numbers (α, β), disposed as column vector [α
β]T, where |α|2 + |β|2 = 1. |α|2 gives the probability
that the Q-bit will be found in the ‘0’ state and |β|2
gives the probability that the Q-bit will be found in
the ‘1’ state.

3.3 Q-gate
A Q-gate is defined as a variation operator of QEA,
whose functionality is to drive the individuals
towards better solutions. The updated Q-bits should
satisfy the normalization condition:

1
2'2' =+ βα As previously said, a Q-bit may be in the “1” state,

in the “0” state, or in a “hybrid” state, given from
the linear superposition of the two states, properly
“weighted” by factors α and β.

where α’ and β’ are the values of the updated Q-bit.
An example of Q-gate is the following rotation
gate:

Using the “ket-notation”, these three states can be
described as:

() ()
() ()

∆∆
∆−∆

=

i

i

ii

ii

i

i

β
α

θθ
θθ

β

α
cossin
sincos

'

'

 .;
1
0

1;
0
1

0

=

=

=

β
α

ϕ

This operator, which provides a rotation of ∆θi to
the Q-bit, is the core of the algorithm and will be
discussed in the next section.

In general, the algorithm processes Q-bit in the
hybrid state. It just converges to “certain” values ‘0’
or ’1’ at the end of the iterations.

4 Structure of algorithm 3.2 Q-bit individual
QEA works on one Q-individual,

{ }t
m

tt qqqtQ ,...,,)(21= at generation t.
Similarly to genetic one, where a generic individual
of the population is represented by a string of bit, a
Q-individual is represented by a string of Q-bit,
defined as:

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 334

The representation of i-th Q-bit qt
i, with i= 1, 2, …,

m, where m is the number of Q-bit of the Q-
individual, is defined as:

The rotation operator U(∆θi), applied at step vii), is
the following:

() () (
() ()

∆∆
∆−∆

=∆
ii

ii
iU

θθ
θθ

θ
cossin
sincos)

= t

i

t
it

iq
β
α

where ∆θi, with i = 1, 2, …, m is a rotation angle of
each Q-bit toward either 0 o 1 state depending on its
sign. It allows the evolution of Q-bits, according to
the polar plot depicted in figure 3.

From n observations of each Q-bit of the Q-
individual is built a population of bits, with size n.

The structure of the algorithm is described by the
following figure.

Figure 3: Polar plot of the rotation gate

5 Termination Criteria
To decide the appropriate termination of QEA, a
proper termination condition is necessary. Although
the maximum number of generations is a generally
used termination criterion in EAs, in QEA the
probability of the best solution can be employed as a
termination criterion thanks to the probability
representation. The termination condition is
designed by using the probability of the best
solution b as follows:

Figure 2: Overall structure of QEA

In the following, the algorithm QEA is shown in
pseudo-code, reporting the particular operations
performed on each step.

∏
=

=
m

i
jipbob

1

)(Pr

with

=
,||
,||

2

2

ji

ji
jip

β
α

if
if

1
0

=
=

i

i

b
b

where bi is the i-th bit of the best solution b and (αi,
βi) is the i-th Q-bit of the Q-individual.
The termination condition is defined as Prob(b) > γ0
where 0 < γ0 < 1.
The probability Prob(b) represents the convergence
of the Q-individual to the best solution. However,
since the probability is sensitive to each Q-bit’s
probability, it is not easy to set the value γ0: a slight
difference of γ0 can increase the processing time for
a particular problem.

6 Hardware implementation
The quantum-evolutionary machine implementing
the algorithm is made by a HW/SW platform,
whose scheme is showed in figure 4.

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 335

Figure 4: Platform HW/SW

6.1 Core organization
The core of the Quantum Hardware is shown in the
scheme of figure 5. To describe the data population,
a Dual Port SRAM memory has been used, while, to
describe the Q-bits, a Single Port SRAM memory.
In the system is also present a FIFO to handle data
that must be send or receive from the PC. The core
contains inside a state finite machine to handle the
operations executed in hardware, Figure 6 shows a
scheme of this machine.

Figure 5: CORE Scheme

Figure 6: State Machine of the CORE

At every start of machine, all Q-bits in memory are
initialized to

 2
1,

2
1

 . From the PC it can be send

the Start and First Start signals; during the first
execution of program the First Start signal is send
and the machine begin whit the construction of first
population (Make_population) based on the
observation of the Q-bits inside the Q-individual at
the value of initialization. Then, data are stored in
the FIFO memory and the interrupt‘s pin is set to ‘1’
to indicate to the PC that data are ready to be used.

The PC attends to compute the population fitness
and the Best solution; then returns the data to the
Hardware machine, arranging the FIFO memory
consequently. So the PC set to ‘1’ the value of Start
and put it in Stand by for an interrupt. When Start is
set to ‘1’, the Core machine starts and handles the
operations. The population data are downloaded
from the FIFO and stored in the memory (Download
FIFO). Then Q-bits are updated by the evaluation of
the population fitness and the evaluation of the Best
(Update_Q). A new pseudo - random population is
built by the evaluation of the Q-bits updated in the
Q-individual (Make_population). Finally, data are
stored in FIFO (Load FIFO) and send to PC by the
interrupt, again.

6.2 Memory representation of Q-bits
The population data is represented from 256
elements; every element is made by four variables
(x, y, z, w). 31 bits have been used to represent each
variable for the data and one bit for the evaluation
(f(x, y, z, t) > b(x, y, z, w, t – 1)). So, to easily
represent the population data in hardware, it has
been used a memory of 256 words of 128 bits each
one. The data was stored as shown in figure 7a. A
similar strategy has been used for representing Q-
bits in hardware. Every Q-bit is defined as the
ordinate couple ()βα , so that 122 =+ βα and

. 1, 22 ≤βα
To perform efficiently the Q-bits operations, the
ordinate couple ()βα , is built by a couple of fixed-
point values of 16 bits. So, the Q-bits are stored in a
memory with 124 words, (in fact 124 bit are
necessary to represent a population data (x, y, z, w))
of 32 bits (31+1), as showed in figure 7b.

Figure 7a-7b: Data organization and Q-bits in memory

6.3 Update Q-bits
The updates of Q-bits are made by a state machine,
which scheme is shown in Figure 8. The state
machine also performs the computing operations
concerning ‘angle rotation’ and ‘rotation of Q-bit’.

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 336

Q-bits rotation is done by the Rotation module.
Here it is shown the formula to perform the rotation
of Q-bits.

()

 −
=

β
α

ϑϑ
ϑϑ

βα
)cos()sin(
)sin()cos(

, ''

In Figure 11 is described the circuit for the Rotation
module which was employed for the rotation of Q-
bits. Figure. 8: Update scheme of Q-bits

The state machine that handles the Q-bits update
performs a high number of operations. In fact for
each Q-bit (ex. Q(j)) it’s necessary:
1. to take the i-element from the population;
2. to extract the element p(i,j);
3. to update the angle rotation theta.
Only when the contribution of all elements of a
population was computed (i = 0, …,255), we can
update the Q-bit and to begin the evaluation of a
new Q-bit (ex. Q(j + 1)). Figure. 11: Rotation Module Once all Q-bits were updated, the End signal is set
to ‘1’, the machine goes to idle state and the
Quantum Evolutionary Algorithm goes to
Make_population phase. Figure 9 shows the scheme
of the state machine that handles the update of the
Q-bits.

6.4 Make Population
The generation of the population is performed by a
machine that develops pseudo-random number,
starting from evaluation of Q-bits states (see
Procedure Make in section 4). In figure 12 is shown
a scheme of Make_population module. Figure 13
shows the scheme of state machine that handles the
operations.

 Figure 9: Update of Q-bits FSM

Figure 12: Make_population scheme
 The compute of theta is performed by the

Compute_theta module, during the phase of
Up_theta. To realize this computation, it was
designed a structure with a multiplexer and an
accumulator, as shown in figure 10.

 Figure 13: Make_population Finite State Machine
 Figure.10: Compute_theta

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 337

When the state machine starts, by the Start signal,
the Q-bit(0) is load from Q-bits memory. Evaluation
by the Q-bit(0) produces the element p(0,0), that
represents the first bit of the first element of
population P(0). Then the counter of Q-bits is
increased, it is red Q-bit(1), and is produced p(0,1)
that represents the second bit of the first population
element P(0). So the procedure goes on in this way
until to the generation of all bits in the first
population individual. When P(0) is generated, it is
written in the Population Memory, counter P is
increased and counter Q is reset. So it is performed
the generation of P(1), P(2) until P(255). When the
whole population is generated, the state machine
sets to ‘1’ the end signal and puts again itself in
waiting for the start signal.
The generation of the population is pseudo-random:
the Q-bit represents probability that the new element
p(i,j) generated is ‘1’ or ‘0’. In figure 14 is shown
the Compute_pop module, that performs the
generation of element p(i,j) from the evaluation of
Q-bit(j).

Figure. 14: Compute_pop scheme module

To generate a sequence of random numbers, it was
used a module that implements the algorithm:

xn+1 = P1(n,t)*xn + P2 (n,t)
where P1 and P2 represent pseudo-random values
produced by two particular counters that freely run
during all the algorithm execution.

References:
[1] D. E. Goldberg: “Genetic Algorithms in Search,

Optimization and Machine Learning”. Addison
Wesley, 1989. ISBN: 0-20115-767-5

[2] Lawrence Davis Editor “Handbook of Genetic
Algorithms” Van Nostrand Reinhold Computer
Library, 1991. ISBN: 1-85032-825-0

[3] Kuk-Hyun Han and Jong-Hwan Kim,
“Quantum-Inspired Evolutionary Algorithm for a
Class of Combinatorial Optimization” IEEE

transactions on evolutionary computation, vol. 6,
no. 6, December 2002

[4] Kuk-Hyun Han and Jong-Hwan Kim “Quantum-
Inspired Evolutionary Algorithms With a New
Termination Criterion, Hє Gate,and Two-Phase
Scheme” IEEE transactions on evolutionary
computation, vol. 8, no. 2, April 2004

[5] K.-H. Han and J.-H. Kim, “Genetic quantum
algorithm and its application to combinatorial
optimization problem,” in Proc. 2000 Congress
on Evolutionary Computation. Piscataway, NJ:
IEEE Press, July 2000, vol. 2, pp. 1354–1360.

[6] K.-H. Han, K.-H. Park, C.-H. Lee, and J.-H.
Kim, “Parallel quantum-inspired genetic
algorithm for combinatorial optimization
problem,” in Proc. 2001 Congress on
Evolutionary Computation. Piscataway, NJ:
IEEE Press, May 2001, vol. 2, pp. 1422–1429.

[7] R. Hinterding, “Representation, constraint
satisfaction and the knapsack problem,” in Proc.
1999 Congress on Evolutionary Computation.
Piscataway, NJ: IEEE Press, July 1999, vol. 2,
pp. 1286–1292.

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 338

