
Deploying the Trusted Platform Module (TPM) to Increased Fairness and
Trust in P2P File Sharing Servents

JOERG ABENDROTH* and JEAN-MARC SEIGNEUR#

*Corporate Technology, Siemens AG, 81739 Munich, GERMANY
University of Geneva, SWITZERLAND

Abstract:
A number of P2P file sharing systems have tried to rate the level of contribution and participation of peers in order to
avoid free-riding by selfish peers and increased performance and reliability of file sharing among all peers. However,
the proposed software rating mechanisms (including the ones that use computational models of trust) are still flawed by
the use of modified peer servent applications that bypass or trick the rating mechanism. In this paper, we propose to
bind the peer servent application with the new hardware Trusted Platform Modules (TPM) that are going to be
massively deployed. In doing so, it is not possible anymore to bypass or trick the computational trust and rating
mechanisms associated with the peer servent application version and P2P file sharing can trustworthily use these
mechanisms for increased reliability, fairness and performance. To validate our approach, we detail how the current
specification of TPMs can be used in P2P file sharing to enforce trustworthy rating mechanisms.

Key-Words: - Behavioral Identity, TPM, TCG, Computational Trust, P2P, PCR, AIK

1 Introduction
A number of P2P file sharing systems have tried to rate
the level of contribution and participation of peers in
order to avoid free-riding by selfish peers and increased
performance and reliability of file sharing among all
peers. For example, the official KaZaA [18] peer
SERver/servent (servent) application version computes a
user participation level. A user participation level
increases each time the user rates the integrity of a file,
increases the number of megabytes shared with the peers
community, adjust bandwidth, and so on. Some servents
have better behavior than other and users are free to use
any servents. The P2P network community has the
option of treating selfish servents different than well
behaving.
However, the proposed software rating mechanisms
(including the ones that use computational models of
trust [25,26,27])) are still flawed by the use of modified
peer servent applications that bypass or trick the rating
mechanism. It is well-known that modified KaZaA
servent’s application versions exist and trick the user
participation level rating mechanisms.
In this paper, we propose to bind the peer servent
application with the Trusted Platform Modules (TPM)
that are going to be massively deployed. In doing so, it is
not possible anymore to bypass or trick the
computational trust and rating mechanisms associated
with the peer servent application version and P2P file
sharing (or other recommendation based systems) can
trustworthily use these mechanisms for increased
reliability, fairness and performance. Our system reliably
allows the system to differentiate different servent

versions and to enforce correct reporting of servent
behavior. The servents of the P2P file sharing system
can rely on industrial standardized TPM hardware to
identify the servent versions and to differentiate between
fair and unfair behaving servents versions. To validate
our approach, we details how the current specification of
TPMs can be used in P2P file sharing to enforce
trustworthy rating mechanisms.
The following Section 2 describes computational trust
systems. Section 3 presents the design of a TPM
enhanced P2P file sharing system. Then Section 4
describes a lifecycle and gives an example, afterwards
Section 5 evaluates the system. After a discussion of
related work in Section 6, we draw conclusion in Section
7.

2 Computational Trust Systems
Computational trust systems have been researched for
some time [28, 7]. Figure 1 gives an overview of a trust
engine. The decision-making component can be called
whenever a trusting decision has to be made. The Entity
Recognition (ER) module [29] bridges the gap between
identity management and reputation by recognizing the
entities involved in the interactions with attack resilience
and privacy protection considerations. The decision-
making of the trust engine uses the trust module to
dynamically assess the trustworthiness of the requesting
entity and evaluates the risk involved in the interaction
based on the available trust and risk evidence in the
evidence store. A computed trust value in an entity may
be seen as the digital representation of the

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 202

trustworthiness or level of trust in the entity under
consideration.

Figure 1. Overview of a Trust Engine

Successful real life systems include eBay, Amazon or
the moleskiing website [6]. However these systems are
centralized and it is hard to transfer their mechanism to
decentralized systems. Often the main problem is that no
reliable enforcement can be done on the decentralized
servents, which is the case in P2P file sharing. For
example the Sybil attack [30] consists of the use of
multiple faked identities used by the same user to vouch
for several successful faked interactions.
A trust metric [29,31,12] consists of the different
computations and communications which are carried out
by the trustor (and his/her network) to compute a trust
value in the trustee. Different trust metrics have been
researched to achieve greater attack-resistance.
However, none so far are perfect in fully decentralized
systems, such as in P2P file sharing.

3 Design of a Strong Computational

Trust System
The system proposed in this paper mitigates the attacks
described above by means of using a TPM as the
underlying decentralized, trusted third party. The TPM
vouches for the behavioral identity. Our framework
prevents attackers to act nicely today and “turning bad”
tomorrow.
3.1 Utilizing TPM Hardware to Build Strong

Trust
The Trusted Computing Group (TCG) standardizes the
trusted platform module (TPM)[3,4,5], which is already
used today in commercial applications to provide a root
of trust, secure key and data store [24, 1, 2]. An
extensive deployment of TPM-aware computers can be
foreseen because modern operating systems require or
use the TPM chip [14, 17, 15, 16]. Two benefits are
provided by the TPM: (1) secure storage of key material,
that may only be accessed in certain platform states or
by certain persons; (2) provide a trustworthy source that
can be queried by external entities. It is important to note
that these benefits can only be obtained if the device
software (and OS) is TPM-aware. Care has to be taken to
design a system that inherits the trust placed in the TPM

chip and that does not allow attackers to subvert the
implementation.
A TPM is a passive chip that needs to be accessed and
used by the operating system software. The software and
user can choose to use or not use the TPM chip (e.g. it
can be deactivated). If it is used, the chip has to be
involved in the boot process from the first step on. The
root of trust has to ensure that the TPM is fed with the
hash values of the first program to run, which is the root
of trust itself. This requirement is ensured by means out
of scope of this paper, but already existing in the market
place [13]. The second requirement is that the root of
trust has to hash and store evidence of the second
program in the boot process in the TPM chip, then
control can be handed over to that program. At the point
the second program gets control of the computer there
are three abstract things that can happen: (1) First it can
discontinue using the TPM (e.g. switch of the chip); (2)
it can do things that it is not expected to do, namely hand
over control without first storing evidence of the new
controller in the TPM; and (3) the program acts as
expected continuing the boot process involving the TPM
and correctly sending evidence to the TPM. We will
review the consequences of the three cases below.

Trust Value
Computation

Risk
Analysis

Decision
making ER

Trust Engine’s Security
Perimeter

Request

Decision
Virtual

Identities

Evidence
Manager

Evidence
Store

In the case where the program turns the TPM off, the
chip can not be used to provide trustworthy evidence of
the existing programs, neither can it be switched on
again later. Hence the case where the TPM is turned off
is of less interest to us.
In the second case where the second program in the boot
process loads and hands over control to another program
without first storing evidence in the TPM is similarly
undesirable. In this case it would not be possible from
the outside to differentiate between the different
programs that could be started by the second program in
the boot chain, hence it can not be differentiated if a
well-behaving or misbehaving program was started - the
system security can be said to be broken. Although the
TPM is not switched off, it will only "know" the
existence of the programs up to the second program in
the boot chain. Any actions done by the following, not
recorded, programs will be counted as the actions of the
second program. In practice, the second program, which
did not honor the TPM boot process, would have already
been counted as not trustworthy. The systems with a
TPM reporting that second program is running should be
counted as not trustworthy1.

1 Two definitions of trustworthiness are
used in this paper:
I)Trustworthiness based on the TPM
hardware (binary either trustworthy or
not trustworthy)
II) Trust values that are computed based
on evidence and a trust metric (e.g., a
value between 0 and 1)

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 203

P2P Client

P2P Client

P2P Client

Operating System

P2P Client

P2P Client

P2P Client

Operating System

P2P
Client

OS Loader

P2P
Client

Operating System

BIOS

TPM Chip

Checks hash
and stores

evidence in TPM

Checks hash
and stores

evidence in TPM
 Alternative

Case

Checks hash
and stores

evidence in TPM

First thing
to be

executed Hardware

Figure 2: Boot Sequence

The third case is the one depicted in Figure 2. In this
case evidence of all programs up to the last (currently
executing) program is recorded in the TPM. It is possible
to request a signed statement from the TPM about the
currently loaded (and running) programs. The figure
depicts the root of trust, the OS loader, the Operating
System, and one P2P servent. Here evidence of each
state of the boot sequence is stored in the TPM (i.e.
platform configuration registers, PCRs) and hence it is
possible for an outsider entity to identify the behavioral
context.
3.2 Behavioral Identity
We define a behavioral identity by the executable code
in the boot sequence. It is expected that each behavioral
identity can share the same trust value “account”,
meaning all actions and recommendations will be
accumulated to the same trust value.

Alice
PC1 using fair

P2P client

PC1 using fair
P2P client

Bob

Share same
behavioral

context

PC1 using fair
P2P client

Alice

PC2 using fair
P2P client

PC2 using fair
P2P client

Alice

Alice
PC1 using
cheating

P2P client

Alice

Each have a
different

behavioral
context

Figure 3: Behavioral Identities

Figure 3 shows that the same PC with the same software
configuration will be counted as the same behavioral
identity and thus accumulate trust in the same trust
account. Hereby it will not be necessary to differentiate
between the different users of the same configuration.
Our assumption is that the user can not influence the
behavior of the programs (the next section explains this
assumption in more detail). However several parameters
can cause a change in behavioral identity: a different PC
configuration is used (e.g. OS version) is used, or
programs any of the programs started with the servent
changes. It is important to note that although the user can
freely choose the configuration (P2P servent), that he
can not cause an attack by choosing one identity to
acquire trust and later to choose another identity to take
advantage of the accumulated trust. Furthermore, as the
configuration is known to others (e.g. the TPM may
report sufficient information so that it can be checked
which servent version is used) it can be noted the system
is PC/User independent. Hence it is possible to have the
servent configuration building up trust independently of
the user or the PC.
3.3 Behavioral Variance
The system of behavioral identities works well for fixed
programs, which do not allow the user to influence the
program behavior, e.g. by setting unfair configuration
parameters. To cope with latter behavioral variance was
introduced. Behavioral Variance expresses the flexibility
allowed to a peer servent to change the behavior. Valid
values are from 0 to 1, with 0 expressing a static
behavior (no user defined parameters) and 1 expressing a
very variant (or undefined) behavior. There are two ways
of deriving this parameter: manually and automatic.
Manually, means manually examining the program and
defining a value, this is the preferred method. Automatic
means taking the current trust value, determining if the
observed behavior is outside the current variance and
adjusting the value if necessary. There is room for
research of the best algorithm for automatically finding
the behavioral variance. In practice it is expected that the
behavioral variance is also an indicator for how likely it
is that the user can collect trust and later exploit the
system.
3.4 Actions
In the following we propose a simple mechanism of
actions, but the approach of utilizing TPMs to build
enforced trust can be extended to other trust computation
mechanisms too.
We define a set of actions, as shown in the table below:

A1 Successful file download
A2 Failure during file download (small loss)
A3 Virus after downloaded file execution

(high loss)
A4 No further sharing of the downloaded files

Table 1: List of Actions

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 204

3.5 Identity of the User
Many computational trust systems include identities of
the user [7, 6, 12]. In the basic version of our system, to
rely on the user identities is not mandatory. However our
framework includes identities bound to each TPM. The
main purpose of this identity is to verify the authenticity
of a TPM. The EK (Endorsement Key) is unique to each
TPM and has special constraints in its usage (due to
privacy concerns). The EK may not be used for signing
or other operations than to retrieve attestation identity
keys (AIKs) from trusted third parties [11]. The AIKs
are used to verify the correctness of the behavioral
identity (or PCR values as explained later).
The use of AIKs and behavioral identities rather than
user identities has the advantage that more observations
can be collected than if each user has its own trust
account.
Although a user may still try to carry out a Sybil attack
on the AIKs, it can be discovered, as the underlying EK
is unique. As a countermeasure trusted third parties (that
issued the AIKs) provide a function that can say whether
or not several given AIK signatures belong to different
TPM EKs. Hence if one interaction has been certified by
the local TPM, the evidence used to build the trust value
can not be used twice in the system as repetition will be
detected.
In the case where user identities are needed it is possible
to include them in the protocol, but the creation,
distribution and protection are beyond the scope of this
paper.

4 Lifecycle/Operation of the System
In this section we give an example of how the system
operates.
4.1 Initialization Phase
The TPM of each servent generates an AIK, which is
then certified by a trusted third party using the standard
TPM AIK issuing protocol (e.g., the one described in
[11]).
A trusted entity reviews the P2P servents (i.e., the
configuration options) and determines the behavioral
variance; this might also be done by the users
themselves. The programs without reviews get a
variance of 1 (full scope of behaviour variance).
4.2 Servent Booting
Alice boots her first PC, PC 1. The trusted BIOS is the
first thing to be started and records its own hash in the
PCR 1; then it records the hash of the OS Loader in PCR
12. Alice continues to boot the OS and the fair P2P
servent. The final value in PCR 1 is:

2 The resulting value is the result of a
one-way function, thus it is not feasible
to predict an extension value so that a
desired PCR value is achieved.

 PCR 1 Alice: 000000003af29c6441
Bob also boots his PC2, but uses the unfair P2P servent:
 PCR 1 Bob: 000000007fcc31542c
Further on the following participants exist:
 PCR 1 Charlie: 000000002144fcad3
 PCR 1 Dorothy: 000000003af29c6441
 PCR 1 Ernest: 0000000021d42c6f1a

Dorothy also uses the fair P2P servent, in the same
configuration as Alice. Charlie, Ernest, Frank and
George use the unfair P2P servent. Ernest and Frank
have the same configuration setup, thus both PCR values
are the same.
4.3 Evidence Collection
Now our group starts to participate in a P2P network.
We briefly list the interactions (see table 1 for meaning
of the actions) and give the explanations afterwards:

Alice>Charlie: A1
Alice>Dorothy: A1
Alice>Frank: A4
Alice>Charlie: A1
Alice>Charlie: A1
Dorothy>Frank: A1
Dorothy>Alice: A1
Dorothy>Alice: A1
Dorothy>Frank: A4
Dorothy>Bob: A1

Bob>Alice: A1
Bob>Alice: A1
Bob>Charlie:A4
Bob>Frank:A1
Bob>Ernest:A1
Ernest>Charlie:A3
Ernest>Bob:A2
Frank>Charlie:A3
Frank>Alice: A3
Frank> Dorothy: A3

We observe that Alice and Dorothy have well behaving
servents and many successful interactions, that are both
counted into the same behavioral identity account. Bob
has also a well behaving setup, but he is collecting trust
only on his own. Ernest and Frank might know how to
tweak the unfair servent to gain an advantage, but this
causes both to collect negative feedback into their shared
behavioral identity. The other participants are ignored in
this example.
4.4 Recording and Transferring Evidence
For each interaction the servent records the action in a
log file and submits it to the TPM, which records the
action in a special PCR (one PCR per behavioral
identity). Later the TPM can vouch for the PCR value
and the log file allows one to reconstruct which actions
were done.
The transfer of observations is done by the use of the
TPM_PCR_Quote command, which provides the PCR
values in a data blob signed by the AIK. The remote
party can verify that the PCR values originate from a
real TPM. Repeated transfer of the same observation is
discovered as the signature will be from the same AIK.
Below an example token is given, that is transmitted if a
remote party asks for the trust value for a certain
behavioral identity.

(BI; [BV]; [UI]; (TV)signed by AIK; [Logfile])

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 205

BI: Behavioral Identity, the value of PCR1 after the
servent is started.
BV: Behavioral Variance, the manually determined
value how much behavior can differ
UI: User Identity, if required by the system
TV: Trust Value, the concatenation of the actions
recorded in the PCR. This value is signed by the AIK of
the TPM to vouch for the correctness.
Logfile: optionally a log file of the observed interactions
used to compute TV.
4.5 Example of a Computational Trust System
After a few interactions George wants to interact with
Alice. First he queries the P2P network. He retrieves the
trust value for Alice’s behavioral identity
(000000003af29c6441) from each participant:
 Alice says: +1 (the interaction with Dorothy)
 Bob says: +1 (the interaction with Dorothy)
 Charlie says: +4
 Dorothy says: +2
 Ernest says: 0

Frank says: 0 (not accepted transactions count 0)
 George himself knows he has 0. He then computes the
overall trust value and bases his decision on this value.

Then George wants to interact with Ernest:
 Alice says: -1
 Bob says: -2 (big loss counts double)
 Charlie says: -2
 Dorothy says: -1
 Ernest says: 0
 Frank says: 0
Ernest and Frank share the same behavioral identity and
will be noted as not well behaving.

5 Evaluation
The presented system utilizes the TPM as an underlying
trust provider. Unlike in other computational trust
systems the trust of the TPM collected evidence is
enforced by strong means. Remote parties can first
verify that the behavior of the trust value reporting
servent is trustworthy; then receive the trust value using
the TPM_PCR_Quote command. The advantage of using
the TPM command is that attacks relying on
resubmission of the same evidence can not succeed,
because each TPM has one or several unique AIK and
the remote party can recognize if evidence of a particular
AIK is already taken into account.
The use of behavioral identities has several advantages.
First, behavioral identities are naturally recorded by the
TPM usage proposed in current standards and practice
and do not restrict the user.
Secondly, behavioral identities are user-independent and
thus allow the collection of trust values to be quicker. It
is even possible that new users benefit from already
established knowledge that this servent is well behaving.

Finally, behavioral identities are naturally dividing
different interaction domains and thus facilitate a clear
division between interactions done in one setting (e.g.
ebay trading) to another (e.g. P2P file sharing). Some
computational trust systems inherit problems from the
fact that a user may collect trust in one interaction
domain (which is easier) and exploit it in another (where
the benefit is bigger). In our approach behavioral
identities are bound to the interaction domain that the
respective servent program is limited to.

6 Related Works
The TPM specifications [3,4,5] have been subject to a
wide range of research [19, 22, 23], some of it focusing
on security aspects or privacy concerns.
Poritz and Cachin [20] describe the boot process, like
used by our mechanism, but focus their research on
logical errors in the TPM system design.
Closest to our mechanism are Sandhu and Zhang with
their “Peer-to-Peer Access Control Architecture”. They
employ the trusted computing technology to build a
decentralized access control architecture [21]. Unlike our
system they employ a micro kernel approach [22] and a
secure boot process, instead of allowing the user to start
any kind of servent. We use the TPM to retrieve
trustworthy evidence for the computation trust system,
without restricting the user with regard to the
applications that may be used.

7 Conclusion
We have presented a computational trust system that
benefits from the trustworthiness of an underlying TPM
system. Users can freely choose the servent version that
they want to use to participate to the P2P file sharing
system. However, the users can not lie about the servent
version that they use. Over time trust is formed in the
servent versions (i.e. behavioral identities) by means of
recorded actions. Several users can share the same
behavioral identity and thus trust in behavioral identities
increases quite fast, interaction after interaction in the
whole P2P network..
The proposed system is flexible enough to accommodate
different computational trust algorithms.
Although we use the example of P2P file sharing, we
also see applications of our approach in the area of
recommendation-based contract negotiation, online
auctioning or community knowledge sharing. All these
systems can benefit from an enforced trust in the
applications a user runs, in addition to solely build trust
based on his past interactions.

References:
[1] Wave Systems Corp., Embassy Trust Suite Software

Product , Company web page, (checked
11.8.06)http://www.wave.com/products/ets.html

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 206

http://www.wave.com/products/ets.html

[2] Wave Systems Corp., Trust System / Toolkit ,
Company web page, (checked 11.8.06)
http://www.wave.com/products/toolkit.html

 http://www.wave.com/products/trust_system.html
[3] Trusted Computing Group, TCG Main: Part 1

Design Principles, Version 1.2 Rev.94, Standard
Specification, 2005

[4] Trusted Computing Group, TCG Main: Part 2
Structures of the TPMs, Version 1.2 Rev.94,
Standard Specification, 2005

[5]Trusted Computing Group, TCG Main: Part3
Commands, Version 1.2 Rev.94, Standard
Specification, 2005

[6]Paolo Avesani, Paolo Massa, Roberto Tiella
Moleskiing: a Trust-aware Decentralized
Recommender System.. FOAF Workshop at DERI
Galway, September 2004.

[7] T Grandison, A survey of trust in Internet
Applications, IEEE Communication surveys Fourth
quarter 2000

[8]Chuk-Yang Seng, William A. Arbaugh, A Secure Trust
Establishment Model, pp. 78-85, IEEE International
Conference on Sensor Networks, Ubiquitous, and
Trustworthy Computing -Vol 1 (SUTC'06), 2006.

[9]S. Balfe, S.Li and J.Zhou,Pervasive Trusted
Computing, Security and Privacy in Pervasive and
Ubiquitous Computing, 2006

[10]W. A. Arbaugh, D. J. Farber, and J. M. Smith, A
Secure and Reliable Bootstrap Architecture, IEEE
Symposium on Security and Privacy , pp. 65-71,
May 1997

[11]Verisign Inc., Verisign Certification Practice
Statement, Technical Report Version 1.1, August
1996

[12]J. Golbeck and J. Hendler, Accuracy of Metrics for
Inferring Trust and Reputation in Semantic Web-
based Social Networks, presented at the 14th
International Conference on Knowledge Engineering
and Knowledge Management, 2004.

[13]Phoenix Corporation, Phoenix Trusted Core Bios,
http://www.phoenix.com/en/Products/Core+System+
Software/TrustedCore/default.htm, checked
20.8.2006

[14]Microsoft Corporation, Whitepaper: Trusted
Platform Module Services in Windows Vista, from
website:http://www.microsoft.com/whdc/system/platform/
pcdesign/TPM_secure.mspx,checked 20.8.2006

[15] Open Trusted Computing Consortium, website:
http://www.opentc.net, Part of the 6th European
Commission Framework. Checked 20.8.2006

[16] European Multilaterally Secure Computing Base
Consortium, website: http://www.emscb.de/, Partly
funded by the German Federal Ministry of
Economics and Technology, Checked 20.8.2006

[17] M. Selhorst and C. Stueble Linux TPM driver,
website: http://www.prosec.rub.de/tpm/ , checked
20.8.2006

[18]KaZaa,website:http://www.kazaa.com/us/help/gloss
ary/ participation_ratio.htm , checked 20.8.2006

[19] Edward Felten, Understanding Trusted Computing:
Will its benefits outweight its drawbacks?, IEEE
Security and Privacy 1, 2003

[20] J. Poritz and C. Cachin, Trust[ed | in] computing,
signed code and the heat death of the interne,
Symposium on Applied Computing, TRECK track,
2006

[21] R. Sandhu and X. Zhang, Peer-to-Peer Access
Control Architecture Using Trusted Computing
Technology, Symposium on Access Control Models
and Mechanisms 2005

[22] A. Sadeghi and C. Stuble. Taming trusted platforms
by operating system design, Information Security
Applications, 4th International Workshop, LNCS
2908, 2003

[23] E. Brickell, J. Camenisch, and L.Chen, Direct
Anonymous Attesation, Proc. Of ACM CCS, 2004

[24] Trusted Computing Group, Trusted Network
Connect Architecture, Version 1.1 , Standard
Specification, 2006

[25] S. D. Kamvar, M. T. Schlosser, and H. Garcia-
Molina, The EigenTrust Algorithm for Reputation
Management in P2P Networks, vol. Proceedings of
the Twelfth International World Wide Web
Conference, 2003.

[26]S. Song, K. Hwang, R. Zhou, and Y.-K. Kwok,
Trusted P2P Transactions with Fuzzy Reputation
Aggregation, IEEE Internet Computing Magazine,
2005.

[27]E. Damiani, S. D. C. d. Vimercati, S. Paraboschi,
and P. Samarati, Managing and sharing servants'
reputations in P2P systems, vol. Transactions on
Knowledge and Data Engineering: IEEE, 2003, pp.
840-854.

 [28]S. Marsh, Formalising Trust as a Computational
Concept, Department of Mathematics and Computer
Science, University of Stirling, PhD Thesis 1994.

[29]J.-M. Seigneur, Trust, Security and Privacy in
Global Computing, Trinity College Dublin, PhD
Thesis Technical Report TCD-CS-2006-02, 2005.

[30]J. R. Douceur, The Sybil Attack, vol. Proceedings of
the 1st International Workshop on Peer-to-Peer
Systems, 2002.

[31] C.-N. Ziegler and G. Lausen, Spreading Activation
Models for Trust Propagation, presented at the
International Conference on e-Technology, e-
Commerce, and e-Service, 2004.

Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006 207

http://www.wave.com/products/toolkit.html
http://www.wave.com/products/trust_system.html
http://www.opentc.net/
http://www.emscb.de/
http://www.prosec.rub.de/tpm/
http://www.kazaa.com/us/help/glossary/%20participation_ratio.htm
http://www.kazaa.com/us/help/glossary/%20participation_ratio.htm

