
Simulation Environment for Selected Parts of Artificial Life Domain

K. KOHOUT, P. NAHODIL
Dept. of Cybernetics

Czech Technical University in Prague
Karlovo náměstí 13, 121 35 Prague

CZECH REPUBLIC

Abstract: Our research is focused on the simulation of agent – animate. The architecture of these agents is
mainly inspired by nature and therefore they are sometimes called artificial creatures. The main contribution of
this paper is the description of designed simulation environment architecture for the Artificial Life (ALife)
domain. It was named the World of Artificial Life (WAL). Our platform incorporates results of research in the
domain of hybrid agent architectures. Based on this results it focuses on the proposal and implementation of
the simulation environment. First, we formulate the problem we were solving and the important goals, then we
present our proposal for the simulator, followed by brief overview of achieved results.

Key-Words: Anticipation, ALife, Hybrid Architecture, Behavior, Animate, Artificial creatures

1 Introduction

Nowadays there are a lot of freely available
simulation platforms. Based on our analysis of
current status of simulations for ALife domain [1]
including our research group and others as well with
the aim to find a platform capable of running
required simulations, none of analyzed was not fully
capable to satisfy our needs. We have found out that
they are mainly focused just on one specific domain
of Artificial Life. Almost none of them are capable
of simulating Artificial Life on a more general level
or provide a set of analytical tools to evaluate the
simulation in a broader context. This led us to a
decision to design our own simulation environment.
The main goal was to develop a simulator on a high
modularity level and simple enough to be usable by
anyone interested in the ALife research. Our
simulator helped us to focus on the studied topic
while abstracting from implementation details of the
environment itself. Special care has been applied to
possibilities of analysis, either during the simulation
or after the simulation from saved data.
Visualization modules are covering not only
displaying the simulated agent world in 3D, but are
targeted on efficient analysis of agents' behavior.
Visualization can provide simplified and an
attractive view in order to present the simulation to a
non-technical audience. It can also offer scientific
views with various statistics and a value detail of the
agent world. This view can satisfy needs of
researchers for detailed analysis of behavior of the
simulated system.

2 Designed Abstract Architecture

Our requirements for this platform were following.

• The ability to simulate various phenomena of

Artificial Life from cellular automata, boids,
bimorphs, ants colonies etc. up to complex and
socially behaving agents.

• The ability to export inner data so it can be used
for parameter visualization.

• Variability of simulation which can be easily
modified in step by step run.

• Interesting visualization of agent world, in order
to present the simulation to wider and non
technical audience.

• Meaningful and helpful visualization of
parameters in time.

• Modularity
• Easy extendibility
• Interoperability.

In order to implement such task a general abstract
architecture was proposed and named WAL
Abstract Architecture, WALA2 in short. This should
provide a general guide or instructions on how an
application for simulation of Artificial Life should
be defined and implemented with care for high
interoperability and modularity between various
implementations. This design was not the work of
one person, but result of tight cooperation and many
discussions of all MRG members. While designing
this abstract architecture we kept in mind that our
implementation can be superseded in the future by

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 170

better ones, however if we will stick with the
philosophy and recommendations of the abstract
architecture, agents will be transferable with none or
minor reprogramming and redesign. Another goal of
WALA2 is to assure that agents can also run and
compete on other implementations of same
architecture. The reason for this is the evaluation of
results when different agents architectures. The
approaches can be evaluated in base environment, or
to simply test agents’ behavior in different
environment that it was designed for. We can
observe if he can adapt and to new circumstances
and survive.
WALA2 itself defines modular block architecture of
platform as it is shown on Fig. 1.

Fig. 1. Block scheme of WAL abstract

architecture

This architecture was designed to enable easy
parameterization of simulation and distributivity of
its parts (body and mind can be separated and even
run on different computation units). One of the
benefits is separation of the environment into layers.
This is not layered architecture in agent design, but
is the environment design. This decomposition of
environment leads to simpler and more
comprehensive simulation and also gives the
opportunity to describe more complex
environments.

2.1 Platform - engine
The core part of the simulation environment will be
referred to as the engine or platform. It is the base
unit and it controls the run of the simulation on a
program level. This means it synchronizes the whole
application – gives impulses on start and end of each
step. It contains an interface for modules and it

components of the environment, the layers and the
agents. In the one simulation step the engine asks all
layers to evaluate actions of all agents and
environmental changes according to these actions.
The distribution of evaluation to layers means
distribution of simulation control so that each layer
can run in different computation thread (on
multiprocessor unit they also might run on different
processors). The main data structure where
parameters of all layers and agents are stored is
maintained by engine. This data can be view or
modified by agent actions or even by external
modules. It is important to distinguish between the
control part of the engine, which interacts mostly
with the operating system (graphical interface,
loading and saving configuration, user interaction
etc.) and the part providing and simulating the
virtual world for agents. The first is done by above
described engine. The second function is described
further in the text and is handled by layers.

contains and maintains its parts. There are two

.2 Engine interface

Layer 1

Agent 1 Agent 2 Agent n

Layer 2

Layer n

Visualization

Analysis

Other

Simulation Environment - Engine

2
Interface between simulation environment and its
program surrounding (as for example visualization,
analysis tool or parameterization) is an important
part of the application. This is what makes WAL
modular and distributable. From speed of data
processing point of view it is suitable to exchange
information in binary format. It is also possible to
use text based formats such as XML. The textual
format is in principle highly redundant (but
descriptive) and its processing could be slow. Still, it
can be used for offline analysis. The engine contains
all data (including the data of layers and the agents)
in inner tree-based data structure. It can provide all
of these data or just part of it to external modules.
Each connected external module can ask for data
and uses them for its purposes. The inner data
representation is not defined in abstract architecture.
It can be implemented in various ways and it does
not matter as long as the interface for exchanging of
this data remains the same. This interface should
work in both directions for exporting the data to be
read by external modules as well as for receiving
updates of the data structure from modules. The
running simulation can also be stopped at any
moment and even traced back to certain point and
run again to observe if any change of behavior will
occur in exactly the same situation. Change of
simulation parameters should be available while the
simulation is running. As an agent we understand
any object in simulation either virtually alive
(creature, predator) or virtually non-living (trees,
food, water, rocks). Sensors and effectors of the
agent are their interface with virtual world and

Parameterization

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 171

therefore they are part of environment and layers.
Besides that agent mind and control are not part of
the environment and can be also remote. The binary
format is good for both, as it can be parsed very
quickly.

2.3 Simulation world in layers

ctly interacting

.4 Human interface and analysis
hm with no

Fig. 2. Example of internal visualization

The external module can be the exact opposite. It

This is the part of the application dire
with the agent via its sensors and effectors. Layers
define the virtual or simulated world in which agents
live. It serves for logical and computational
separation of operations which has to be controlled
by the engine. The layer is a logically separable part
of the environment which can be used as standalone
and which, when combined with others, defines the
environment as whole. All agents having influence
in a particular layer or being influenced by this layer
must be registered in it. This means that the layer
has the full information for computing the next step.
The layer will evaluate and execute agents’ actions
in each step. According to the executed actions of
the agents the layer will modify its own values and
then will provide a new sensoric data to agents. The
layer must have the ability to register and deregister
the agent and also fill the sensors of those registered
agents. This means, that it must have an interface for
communicating with sensors. For example the
thermal layer should have the ability to provide
information for sensors of temperature. In each step
the layer must read agents executed actions, evaluate
them (whether they are possible or executable),
modify the environment and provide new senzoric
data. Basically there were two types of layers
defined. The point layer in which can the value be
evaluated directly or can be obtained immediately
from layers data. The gradient layer where the value
in the point of interest cannot be evaluated just from
the actual information but also the history of the
value must be taken in account. The physical body
of the agent and its sensors and effectors are also
part of the environment, so it is necessary to
interpret them in it. The layer must have the
information how much space the body, sensors and
effectors takes. This could enable building of more
complex agent from basic blocks. The potential of
the layers was then used in several works. The
implementations had up to seven different layers [5].
The advantage of layers is that they can solve
communication between agents in sense of
“physical“ distribution of the signal. We can
implement the acoustic layer, and propagate the
sound based on the physical laws. This solves the
problem of transporting the message, not the
understanding and context of the message. To sum

up layers in one simple sentence, they implement
various physical laws. Complete physical
description is almost unachievable. Layers can bring
us closer to it.

2
All that described above is just an algorit
human interface. Visualization of designed world
can be both attractive and a useful tool. For this
purpose external visualization module or internal
(default) can be used. Internal visualization is meant
to debug and observe simulation by creator (Fig. 2.)

can be used to present this simulation to wider
audience than the science community (Fig. 3). On-
line or off-line tools for parameters flow analysis are
also supported. Proposed environment is compatible
with highly effective 3D visualization tool called
VAT. It can be used to observe agents parameters at
any time of simulation. I will not go into much detail
about the parameter visualization problem.
Information about it can be found in [4]. By using
the third dimension for data visualization the
analysis is more comprehensive and computer
graphics knows various methods to visualize even
more than thee dimensions. That is why the 3D
analytical tools are strongly supported. This leads to
many advantages, because the value of the
parameter can be also mapped to shape, height,
width or length or many others. Another advantage
is possibility to use sensitivity analysis. Analytical
tools provide offline or online evaluation of
simulation together with fast orientation in complex
situations. It also enables the possibility of backward
analysis of interesting simulation. It can be also used
to observe relations between senzoric inputs and

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 172

executed actions (i.e. what action was triggered
under when there was a specific sensory input and
vice versa).

Fig. 3. Example of external 3D visualization

.5 Influencing the simulation

ty to alter the

.6 Agent of WAL
 body of agent (physical

.6.1 Agent’s sensors

 senses which they use to

2
Parameterization provides the abili
simulation either as an initial setup of simulation or
direct change to the simulation in runtime. This
means changing of agents or layers parameters while
the simulation is still in progress. For example, you
can set a new target for agent, or decrease the
temperature in a particular place. This also covers
creation of new object (agent, food, etc…) while
simulation is still running. This should provide the
ability to run longer simulations, where users’
intervention could alter it according to its state.
Moreover, combined with online visual analytical
tools, there should be possible to observe the
interesting moments of the simulation and change
the scenario, to see how the agents will adapt to this
change. Pausing and resuming the simulation and
tracing step by step (even backwards) are also part
of parameterization. Backward run is one of the key
elements which we are missing in simulations. This
is useful to observe emergent behavior, when we can
trace back the simulation to some interesting
situation, run it again, and observe if the situation
will end exactly the same as previous or it will
differ.

2
WALA2 separates the
representation of agent) from the mind (control
mechanism). The agent’s body is part of the
environment and therefore it is covered here in
environment architecture. The mind of an agent on
the other hand communicates with the body through
data from sensors. Please note that even agents own
state has to be observed by sensors. This covers the

state of agents sensors and effectors (some of them
can be damaged or partial malfunctioning) and the
Vegetative System Block. After agents sensors are
filled with data, the body sends them to the mind of
agent, where they are processed. How the data is
processed is not a subject of this abstract
architecture. Several approaches to agent mind
design can be found in [2], [5], [6]. Finally, the mind
evaluates the situation and selects the action or
actions for execution. The body tries to perform
these actions using its effectors. The layer
mentioned above will then evaluate the cause of
actions by setting new senzoric data. Agent’s body
is part of the environment and as such it has physical
properties such as position, shape, temperature,
etc… The decomposition and the interface is shown
on Fig. 4.

Fig. 4. WAL Agent decomposition

Environment

2
Sensors are the agent’s
perceive the surroundings and also its state. The
richness of information about the surrounding world
the agent can obtain depends just on the type and
number of the sensors. Layers should know all types
of possible sensors to be able to fill them with data.
This means that creating a new layer necessarily
requires also the creation of adequate sensors or
altering the layer so it can work with current sensors
and vice versa. When adding a new sensor it is also
necessary to alter the layers so they know this sensor
and are able to fill it. Sensors are the part of an
environment containing exact data (the numerical
value). It is not always wanted to provide this data to
agent’s mind. Human beings are also not able to say,
“That building is 354.56 meters from me”. Rather a
human being can say it is far/near. In addition we
can guess “it might be 350 to 400 meters”. To
simulate this kind of perception even in an agents
world, we want to implement such fuzzy

Layer 1

Agent‘s body

Sensors Effectors

Vegetative block

Learning

PlanningAction
selection

Reactive base

Layer n

…

Knowledge
base

Anticipatory behavior

Agent‘s mind

…

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 173

information rather than crisp values. This can be
done by filtering the exact floating point value to
fuzzy value.

2.6.2 Agent’s effectors

for interaction with its

.7 Communication
the agent body and the

e mentioned already above that there are two

 second simulation a task was given to agent. This

.1 Case study

e mentioned usefulness of external modules

1 2 3 4 5 6 7 8 9 10 15

Effectors serves agent
surroundings. We use simplified effectors. For
example we use effectors of motion which can move
agents in certain direction with certain speed. Of
cause we could go deeper in detail and implement
effectors such as leg or wheel, but this would
distract us (by solving inverse and forward
kinematics tasks etc…) from observing the behavior.
We do not require this level of detail, but we are not
running away from it, and the possibility to
implement it is still open. In the field of effectors
there is space for improvement. Instead of using
effectors as part of the environment and controlling
their action, we implement the action result. In the
movement example above, we move the agent from
one position to another, instead of sending a signal
to agent’s locomotion system. This again requires
implementation of physical laws such as friction.

2
Communication between
layers is internal communication so there is no need
for explicit data sending. This communication can
be done via the internal data structure, which is in
this case, the shared medium. The communication
between body and mind is in general done via
messages. It can be done even remotely via various
media (for example over TCP/IP see Fig. 5).
Communication on the agent level means sending a
message from one agent to another or group of
agents. Here we would like to let layers decide who
receives the information and who not. We are trying
to reflect the real world behavior where information
is carried via different media and can be received by
various entities based on their sensor capabilities.
When one agent wants to send a message (“say
something”) to another it will use its effectors and
certain media (acoustic wave). The information can
be then received not only by the addressee but also
by another agent who is in the range of the signal
(even if it did not request this information). It can
disregard it, or abuse it for its own purposes.

Fig. 5. Block scheme of communication to external client

3 Simulations and results

W
components to run the simulation. First of them is
the hereby described environment, second is the
control of the agent itself (agent mind). There has
been several agent behavior control architectures
introduced. The basis for the agent architecture was
designed by D. Kadleček [2], [3]. This agent
architecture with was redesigned for WAL
environment by K. Kohout in [1]. Several
simulations, concluding the Lotka-Volterra (also
know as predator-prey) system (see Fig. 6) and
several task oriented scenarios were tested.

Prey population density

Predator population density

10

2
1

3
4
5
6
7
8
9

Fig. 6. Lotka-Volterra simulation results

15

Time [step]

In
means that agent except assuring his survival should
complete another task. In our case it was delivery of
messages. This simulation served as a test of the
thresholds set correctly. In case the agent’s “need”
to fulfill the task was low it was focusing almost
only on his survival. In case it was high the agent
was busy with his task and he fulfilled his survival
needs only when needed.

3

W
namely for simulation analysis. We would like to
prove this on a case study performed while
redesigning the agent to WAL environment. The
above mentioned VAT tool was used for the
analysis. The simulation scenario concludes a single
agent which was intended to move an object
between two places. The agent had enough food and
water to satisfy its needs. Fig. 7 shows the visualized
data from this simulation. On the left there is a 3D
mesh; on the right is a detail of values in the 60th
step. Even a very first look at the 3D mesh could
advise that there is something wrong with the

Filter

Serialize Deserialize

Reconst-
ruction

Engine server Client (external module)

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 174

simulation. Almost all of parameters are zero (the
mesh is flat).

Fig. 7. Use case – simulation analysis

This means that the agent is not hungry, thirsty; it is
neither tired nor sleepy. But we implemented and
designed all these features. The reason for this could
be a data export failure, a mistake in implementation
of the inner agent vegetative block (part taking care
of “chemicals” in an agent’s body) or a bad initial
configuration of an agent. Because we run the
simulation previously and export of data and the
vegetative block were working properly, there is no
problem with implementation itself. Brief check of
the configuration showed that - there was to high
value set to the time function for the chemical
increasing/decreasing. Fig. 8 shows the mesh after
the configuration mistake correction. Values are
now changing with the time.

Fig. 8. Use case – simulation analysis - correct setup

4 Conclusion

In this paper, we have described the simulation
environment architecture. It was used by several
agent architectures to place the agent into. The first
agent architecture tested in this environment was

described above in section 3. This agent architecture
was superseded by several other architectures
namely Lemming, designed by L. Foltýn [5], ACS
proposed by M. Mach [6] and AnimatSim introduce
by A. Svrček [7]. They were focused on different
topics or different approaches to agent learning.
AnimatSim is focused on reinforced learning,
Lemming uses the TDIDT algorithm to create a
knowledge about environment and reason about it.
ACS uses the Hidden Markov models to interpret
the environment and reinforced learning to adapt to
it. They have one thing in common. They were
designed in various programming languages C, Java,
Matlab. The communication with WAL was
theoretically described but never fully implemented
in them. Therefore the competition was not realized.
This will be our focus in the near future.

Adrenaline

Boredom

Testosterone

Fear

Hunger

Loneliness

SexDrive

Sleapiness

Thirst

Tiredness

0,29

0,00

0,05

0,38

0

0

0

0

0

0

References:
[1] Kohout, K. Simulation of Animates Behavior.

Diploma thesis. Prague: Czech Technical
University in Prague, Faculty of Electrical
Engineering, Department of Cybernetics, 2004.

[2] Kadleček, D., Nahodil, P. New Hybrid
Architecture in Artificial Life Simulation. In
Lecture Notes in Artificial Intelligence No. 2159,
Berlin: Springer Verlag, 2001. s. 143-146.

[3] Kadleček, D. Simulation of an Agent – Mobot in
a Virtual Environment. Diploma thesis. Prague:
Czech Technical University in Prague, Faculty
of Electrical Engineering, Department of
Cybernetics, 2001.

[4] Kadleček, D., Řehoř. D., Nahodil, P., Slavik, P.,
Kohout, K. Transparent visualization of multi-
agent systems. In Proceedings of 4th
International Carpathian Control Conference,
26.-29. 5. 2003, Vysoké Tatry. pp. 723 – 726.
ISBN 80-7099-509-2.

Adrenaline

Boredom

Testosterone

Fear

Hunger

Loneliness

SexDrive

Sleapiness

Thirst

Tiredness

0,29

0,00

0,05

0,38

0

0

0

0

0

0

[5] Foltýn, L. Realization of Intelligent Agents
Architecture for Artificial Life Domain. Diploma
thesis. Prague: Czech Technical University in
Prague, Faculty of Electrical Engineering,
Department of Cybernetics, 2005.

[6] Mach, M. Data mining knowledge mechanism of
environment based on behavior and functionality
of it’s partial objects. Diploma thesis. Prague:
Czech Technical University in Prague, Faculty
of Electrical Engineering, Department of
Cybernetics, 2005.

[7] Svrček, A. Selection and evaluation of robots-
animates behavior. Diploma thesis. Prague:
Czech Technical University in Prague, Faculty
of Electrical Engineering, Department of
Cybernetics, 2005.

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 175

