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Abstract: - In this paper, the hybrid-mode spectral domain approach is generalized to describe the dispersion 
properties of coupled microwave circuits with any arbitrary metallization thickness and finite conductivity in 
multilayer configuration. The influence of finite metallization thickness on the frequency dependent modal 
propagation characteristics is shown for both suspended and inverted coupled structures and can be easily 
extended to any multilayered circuit. The phase constant and effective permittivity with finite strip thickness 
and finite conductivity are discussed for hybrid and monolithic circuits. 
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1   Introduction 
Any microwave integrated circuit response like 
losses, dispersion, noise, etc., depends closely on 
how the implemented miniaturized devices are 
modeled. To be efficient, this aspect requires the 
resolution of many issues related to the complexity 
of the integrated structure such as the hybrid nature 
of the electromagnetic (EM) fields. Among these 
features, edge effects can significantly modify the 
distribution of the EM fields because of the 
influence of the metallization thicknesses which role 
becomes more and more significant as the frequency 
increases.   
     Finite metallization thickness is one of the main 
factors that affect the propagation and attenuation 
characteristics of planar waveguides, especially in 
high density miniaturized monolithic microwave 
integrated circuits (MMICs) used in moderate power 
purpose or in higher microwave and millimeter-
wave frequency bands. As a result of improvements 
in fabricating high performance complex 
components in these frequency bands, the design of 
MMICs requires efficient simulation tools with 
more accuracy for finite thickness planar 
transmission lines [1]. 

     This effect can be negligible for single circuit 
lines even if the circuits are carried out in thick film 
technology. Nevertheless, this role becomes 
considerable when the circuits are designed to 
support high powers, or when the conductor exhibits 
high losses as in antenna networks, or when the 
circuits are fabricated in MMIC technology. This is 
because the strip thickness may be comparable to 
the strip width.  
     The characteristics of planar circuits with finite 
strip thickness and conductivity were discussed 
using various techniques such as the perturbation 
technique [2], the fullwave mode-matching methods 
[3], and the method of lines [4].  
     However, the perturbation approach is not 
suitable for MMICs since the skin depth and the 
strip thickness are in the same order, and the above 
full-wave methods techniques are time consuming. 
Therefore, an easier and faster method should be 
developed to meet the evolution of MMICs. This 
aspect is particularly crucial for multilayer 
configurations including MIS structures (metal-
insulator-semi-conductor) on GaAs or silicon when 
the loss factor of the layers needs to be taking into 
account. 
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     This paper deals with the analysis of the 
influence of both thickness and finite conductivity in 
coupled multilayered hybrid /monolithic circuits 
using the spectral domain method (SDA) through 
the calculation of the dispersion characteristics 
(phase constant, effective permittivity and guided 
wavelength) versus frequency, thickness and finite 
conductivity of the strips.  
 
 
2   Problem Formulation 
Due to the ease of its formulation and its numerical 
efficiency, the spectral domain approach [5] is a 
well-known technique for the computation of planar 
transmission line circuits. The immittance concept 
[6] further enhances the preprocessing and 
computing works for multilayer multiconductor 
structures. This concept is generalized here to 
generate the complete expressions of Green’s 
functions under their impedance and admittance 
form. 
     The structure under analysis is a general 
unilateral microwave circuit printed on lossy 
multilayered isotropic layers whose transverse 
section is depicted in Figure 1. The conductor strips 
are characterized by finite thickness t and finite 
conductivity σm. The dielectric layers are of loss 
factor tgδi = σdi/ωεi, where σdi and εi are respectively 
the conductivity and permittivity of dielectric i. 
Each dielectric layer is characterized by a complex 
permittivity defined as εi* = ε0εr i(1 – j tgδi).  
 
 

 
 

Fig. 1 Section view of a multilayer microwave 
structure with finite thickness and conductivity. 

 
 
     The modifications made to take into account the 
thickness effect and finite conductivity of the strips, 

are based on certain corrective factors with regard to 
the case of thin metallization (t = 0) and infinite 
conductivity (σm ∞→ ). In order to obtain the dyadic 
Green’s functions of the structure, the proposed 
process starts with the decomposition of the EM 
field into TM-to-y and TE-to-y waves by introducing 
coordinate transforms [6].  

The application of boundary conditions at all 
interfaces of the multilayered structure yields to a 
set of matrix equations for the impedance Green’s 
functions [7]  
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     These functions link the tangential components 
of the electric field to those of the currents on the 
metallized interface. 
 
 
3   Equivalent surface impedance  
Until now, all strips are considered to be of infinite 
conductivity and of infinitesimal thickness (t = 0). In 
order to use the same model for thick planar 
structures, a transformation technique is used to 
transform the thin conducting film into infinitely 
thin strip. Since most conducting films are 
fabricated to be very thin, the width-to-thickness 
ratio of these films is quite large. 
     As a result, the tangential electric to magnetic 
field ratio on the film surface is almost the same as 
the value of the surface impedance of the conducting 
film. This feature allows the impedance boundary 
condition to be used in solving for the transmission 
characteristics of the conducting microstrip lines. 
     When we apply the boundary conditions at the 
metallized interface of the structure in Figure 1, the 
conducting strip is treated as an impedance sheet, 
which is characterized by a jump discontinuity in the 
values of the tangential magnetic field, but not in the 
electric field. These boundary conditions that exist 
on the surface of the strip are written as [8]  
 

)En(n1J)HH(n ms1mm
rrrrrrr

∧∧−==−∧ +
sZ

    (2) 

0)EE(n 1mm =−∧ +

rrr
                      (3) 

 
where n

r
 is the normal to the metallized interface. 
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Zs is the uniform equivalent impedance of the sheet.      
If the thickness t of the strip is greater than three 
penetration depths, the surface impedance 
 

 msZ σωµ 2/0=                     (4-a) 
 
will adequately represent the boundary conditions 
for plane waves with σm the strip conductivity. If t is 
less than three penetration depths, a better boundary 
condition makes use of   
 

m
s t

Z
σ
1

= .                           (4-b) 

 
 
4   Modified boundary conditions  
The application of these new boundary conditions at 
y = Hm in the Fourier transform domain results in 
some modifications to the elements of the Green’s 
impedance matrix. Specifically, the diagonal 
elements of matrix (1) need to be modified to 
incorporate the complex surface resistance of the 
superconducting strip as 
 

G11m = G11 - Zs   and   G22m = G22 - Zs   (5) 
 
     Thus, (1) becomes 
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     A numerical solution to this matrix equation can 
be obtained by using Galerkin method in the Fourier 
domain to eliminate the right side. The current 
elements are expanded in a set of known basis 
functions which take the edge singularities into 
consideration leading to a proper current distribution 
over the strip.  
 

∑
=

=
P

p
xppx JcJ

1     
and   ∑

=

=
Q

q
zqqz Jd J

1      
(7) 

 
 
5   Application of Galerkin technique  
After substituting the Fourier transforms of (7) into 
(6) and taking inner products of the resulting 
equations with the test functions Jxp', Jzq' (chosen 
equal to the basis functions), we obtain a 
homogenous system of algebraic equations with the 
(P + Q) unknown coefficients cp and dq. 

     This system can be written as 
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and n is the spectral index. The homogeneous 
system (8) has been obtained via the application of 
Parseval's identity. It is solved for the propagation 
constant by setting the determinant of the system 
equal to zero and by evaluating the roots of the 
resulting characteristic equation.  
 
 
6   Numerical results 
The dispersion chart is a necessary step to fix the 
bandwidth of the dominant and higher order modes 
which are excited at high frequencies. These modes 
can create radiation losses that must be avoided. 
     Figure 2 shows the variation of the even and odd 
mode phase constants versus frequency for a 
coupled line on GaAs (εr = 12) where the conductor 
is gold (σm = 4.107 S/m) and of thickness t = 0.6µm. 
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Fig. 2. Even and odd mode phase constant of a 
shielded coupled microstrip on GaAs substrate;      

h1 = 300µm, h2 = 2700µm, t = 0.6µm, w = s = 1µm 
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     The losses are essentially due to conducting 
strips, the even mode which propagates between the 
strips and ground plane is less attenuated than the 
odd mode which propagates between the two strips. 
The even mode is also less dispersive than the odd 
mode.  The obtained results agree well with [9]. 
     Figures 3-a, 3-b, and 3-c, illustrate the variation 
of the even and odd modes phase constant of a 
coupled MIS (metal-insulator-semiconductor) 
structure for different values of the silicon 
conductivityσSi.  
     Contrary to the structures printed on GaAs, the 
odd and even mode phase constants are different due 
to the stratified nature of the dielectric layers. When 
the conductor losses are predominant (for low values 
of σSi), the even mode phase constant is greater than 
the once of the odd mode while for the high values 
of σSi (Figure 3.c) we note that beyond 25 GHz it 
exhibits the inverse behavior and the results are 
close to those obtained for GaAs. The computed 
show good agreement with [9] 
     Figure 4 shows the variation of even and odd 
modes effective permittivity for coupled planar 
structures on Silicon for different values of the strip 
thickness t. Note the decrease of εeff when t  
increase for the two propagation modes. Also, we 
note that the even mode is less dispersive that the 
odd one. The obtained results agree well with 
measured data [10]. 
     In Figure 5, the even and odd mode effective 
permittivities are shown for different combinations 
of the thickness t and slot width s. In this case, the 
difference in propagation speeds of the even and odd 
modes increases as s decrease and the increase is 
more evident when t is finite, since the two modes 
are influenced in a different way by t.  
     Figure 6 gives the characteristics of coupled 
planar structures in multilayer dielectric 
configuration. On the contrary, as s decreases, the 
difference between the even and odd mode speed 
first increases (for large s) and then decreases. This 
behavior can be observed only when one takes 
metallization thickness into account since when t = 0 
there is a monotone increase in difference of 
propagation speed. The obtained results agree well 
with published data [11]. 
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(a) σSi = 1 S/m 
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(b) σSi = 10 S/m 
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(c) σSi = 100 S/m 

 
Fig. 3. Phase constant of three-layered coupled 
planar structures for various values of silicon 

conductivity (with t = 0.6µm, w = 1µm, a = h3/2,              
s = 1µm, h1 = 300µm, h2 = 0.6µm, h3 = 10(h1+h2),  

εr1 = 12, and εr2 = 4): 
a) σSi = 1 S/m ; b) σSi  = 10 S/m ; c) σSi = 100 S/m 
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Fig. 4. Effective permittivity versus frequency for 
various values of strip thicknesses (with εr = 12.5, 

w/h1 = s/h1 = 0.5, h1 = 0.6mm, h2 = 10mm, and        
2a = 13.8 mm). 
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Fig. 5. Effective permittivity versus slot width for 

different values of strip thicknesses t. 
 
 
     Such behavior is then confirmed for coupled 
suspended-inverted structures (Figure 7). However, 
the curves of the effective permittivity exhibit  
now an inversion of difference in the modal 
propagation velocity for smaller values of s with 
respect to the previous case. The obtained results 
agree well with [11]. 
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Fig. 6. Effective permittivity versus slot width for 
different values of t: case of suspended coupled 
planar structures (with 2a = 10mm, w = 0.5mm,     
h1 = 2mm, h2 = h3 = 1mm, εr2 = 4, εr1 = εr3 = 1). 
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Fig. 7. Effective permittivity versus slot width for 
different values of thicknesses t: case of inverted 

coupled planar structures (with 2a = 10mm,             
w = 0.5mm, h1 = 0.5mm, h2 = 1mm, h3 = 3.5mm,    

εr2 = 4, εr1 = εr3 = 1). 
 

 
7   Conclusion 
In this paper, we have proposed an efficient method 
to analyze the thickness and finite conductivity 
effects in coupled microwave circuits. The 
advantage in the CPU time is reflected by the fact 
that the calculation of phase constant per frequency 
point does not exceed 1s.  
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     The obtained results show the necessity to taking 
into account both thickness and finite conductivity 
of the strips particularly in the case of the MIS lines 
(metal-insulator-semi-conductor) in the region of 
slow-wave modes. The dependence of modal phase 
parallel coupled microstrip on the metallization is 
significant, especially at higher millimeter-wave 
frequencies, and for relatively low dielectric 
constants. The proposed method can be extended to 
anisotropic structures with superconductor signal 
strip. Besides, extension to the coplanar strips and 
coplanar waveguides is straightforward. 
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