
XML-driven Homogeneity in E-commerce Applications1

ROBERT ANDREI BUCHMANN

Business Information Systems Dpt., Faculty of Economics and Business Management
University "Babes Bolyai" Cluj Napoca

Str. Teodor Mihali 58-60, 400591, Cluj Napoca
ROMANIA

Abstract: - XML vocabularies open new doors for Web applications in general and e-business applications in
particular, by inducing a new level of homogeneity and interoperability and by adding new value to traditional
data and data structures. Whether XML is used as a data medium, as a data repository or as a presentation
source, it is able to provide a backbone which increases application modularity, homogeneity and connectivity.
This paper provides an overview for a potential e-commerce application architecture which is intended to
improve some software quality parameters and bring dynamic web pages closer to the 3-tier principles, while
keeping clear client-server modularity. The Macromedia Flash XML parsing implementation is used to build
client-side XML packages which are processed along the XML backbone of the presented model, through an
abstract XML gate that clearly separates client and server modules.

Key-Words: - E-commerce, XML backbone, XML in Flash, Relational database, Hierarchical data

1 This article contains results of a research grant managed by its author, as part of the CEEX program
2005 (identified with code 16, module 2-ET), financed by the Romanian Ministry of Education and
Research - the Research National Authority

1 Introduction
From the software quality perspective, Web
applications have developed in a heterogeneous and
collaborative fashion, by continuously building
interface solutions between existing technologies.
The global character of the Internet, software
competition and open-source efforts contribute day
by day to the increasing heterogeneity which further
raises difficulties to the standardization process,
global usage and interoperability [5]. The 3-tier
modularity is blurred by the traditional dynamic
page generation model which continuously loads the
connection between the client and the server.
Portability and interoperability with enterprise-
oriented software (ERPs, CRMs etc.) is also affected
by the increasing interfacing effort between different
data models, different operating or data management
systems. The XML standard was generally adopted
to reduce application heterogeneity and provide a
way of sharing information on various levels
(structure, syntax, semantic, processing
recommendations). An XML backbone reclaims
converting data to the backbone rather than direct
interfacing between every two modules of a system
and both software competitors and the open-source
community adopted XML as a basic, common way
of structuring data separated by the presentation or
processing needs. Furthermore XML vocabularies

(DTD or XMLSchema) provide consistent data
interpretation and validation on various levels.
Recent technologies such as OWL push XML into
the knowledge management field. On a more
general level, XML covers the gap between data-
oriented technologies and text-oriented technologies,
a gap that was not induced by the natural form of
information (which is usually mixed - data points
floating in text blocks), but by the way software
products chose to model it.
Macromedia is one of the companies that
implemented basic XML parsing in its Web-oriented
products and its Flash product provides great data
connectivity features allowing developers to build
XML-driven multimedia applications [7].

2 Problem Formulation
The purpose is to build an e-commerce application
model able to improve some quality parameters,
such as [2]:

 Portability of the data repository;
 Portability of the data inputs and outputs;
 Modularity with respect to the 3-tier

principles;
 Homogeneity of data structures (along and

XML backbone);

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 110

 Low module coupling (the decrease of
connection load) and more intense local
processing;

 Multimedia potential and friendly user
interface (by using Macromedia Flash).

Traditional Web applications usually adopt the
following structure:

Fig. 1. Traditional web application
mode

The figure clearly shows the heterogeneity of the
involved coupled technologies and the way in which
3-tier separation is blurred due to the interference of
the server scripts as a provider for the dynamic user
interface.

3 Problem Solution
3.1 Overview
Data portability is provided by the use of XML trees
validated against a problem-specific vocabulary
(such as an e-commerce vocabulary).

Fig. 2. Multimedia and XML-driven
web application model

The model is based on two connected XML parsers:

 the parser built-in the Flash player, which is
able to pack XML trees and send them via
HTTP, using a simplified DOM model
manipulated with ActionScript, the Flash
built-in scripting language;

 the server-side parser, provided by the
server platform of choice (DOM or SAX),
which is able to receive XML trees loaded
with data from the user interface, impose
vocabulary validation and generate trigger
signals that control how the user interface
behaves and what it displays.

Client-side:
 Static user interface

(HTML)
 Dynamic user

interface (HTML
generated by
ASP/PHP/etc.)

 Data binding (HTML
forms, Client script)

 Value validation
(HTML forms,
Client script)

Server-side:
 Conversion,

processing, (server-
side script)

 Storage
(Relational DBMS)

Name=Value pairs

Generated HTML strings

3.2 Details
The client module is a Flash movie which contains
all user forms and interface, which are fully loaded
in the browser when the application is initiated.
Flash files are optimized for HTTP transfer while
strong local processing takes place in the browser
plug-in. This permits a reasonable load time with
respect to the bandwidth capabilities of nowadays.
The internal structure of the Flash movie follows the
timeline authoring principles: even if the movie has
a linear nature (along the timeline), it is populated
with certain key frames which provide the user
interface. Navigation between key frames is
controlled by:

 user navigation decision, with navigation
buttons or movie clips;

 server-generated XML signals which trigger
the behavior of the playhead (when and
where it jumps between keyframes).

While user navigation within a Flash interface tends
to be common knowledge in multimedia-oriented
web development, navigation based on XML signals
is provided by ActionScript and the Flash parser,
which is able to implement a sendAndReceive
method that emulates traditional event handling. The
main difference is that events occurring on the
client-side are handled on the server-side. The signal
is small XML content produced in the server
internal memory, delivered to the client internal
memory and finally destroyed or stored in an event
log. Actually, a single element with several status
attributes would be sufficient to describe a diversity
of possible redirecting or rejection states. The status
attributes would serve as indicators for the movie
playhead regarding the next keyframe to be
displayed. This mechanism is a bandwidth saver,
since XML signals are short strings rather than
complex generated HTML code, the case of
traditional applications. However, the client
transfers more complex data than name=value pairs
over HTTP. This reflects more relations within data,
nesting being more complex than simple

Client-side:
 Static user interface

(Flash)
 Dynamic user

interface (Flash
triggered by XML)

 Data binding (Flash
forms and
integrated
components)

 Value validation
(Flash components)

Server-side:
 Format

conversion, structural
or semantic validation
and trigger generation
(server-side script)

 Storage
(Relational DBMS
and XML)

XML trees

XML triggers

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 111

enumeration. Thus, the server receives a data
structure less raw than the traditional query string
and may apply vocabulary validation rather than
simple value validation.
The server module consists of several scripts
responsible with the generation of signals and the
conversion of data structures between the client and
the data storage. XML trees transferred on HTTP are
received by the server parser of choice and the key
data points (such as user password) are checked
against stored values in order to decide what
happens to data and what kind of response the user
should get. After the decision is made, the script
generates an XML element (the signal) and sets its
status attributes to describe the error or to indicate
which client key frame should be displayed as a
response. Further on, the listening client object
should be prepared to understand all status cases
possible and move the playhead accordingly, to
inform the user. A detailed example of this
mechanism is presented in [4].
Besides the signals, the server script should also
provide data required for display (product details,
account details etc.). Thus, on the storage side, the
server scripts have to provide storing and querying
procedures. Even if relational databases are mature
and widely accepted when it comes about answering
queries with massive sets of data, they don't provide
the needed interoperability. That is why the server
module has to be able to operate an XML repository,
modeled upon a context-specific vocabulary.

3.3 Data Modeling
The way data is modeled from the traditional
structures (name=value pairs, relational tables, query
strings) to XML has a great impact on performance,
both for the parsing process and for the data storage
management. An XML data model is provided by a
vocabulary, which is the general frame in which all
data and its nesting relations must fit. When such a
vocabulary is available, it has to be shared with
potential consumers of the XML documents. The
common solutions for building vocabularies are:
 DTD (document type definition) which is

generally accepted by all software but doesn't
provide content typing and can be used if the
vocabulary rules only state how data is nested and
its occurrence or cardinality [8,9];
 XML Schema provides more complex rules,

with strong content typing and is considered to be a
replacement for DTD. However, XML Schema is
not generally adopted yet [8,9].
The available data models for XML content are:
element-only, void elements (EMPTY) with
attributes, text-only content (used as name=value

pairs), mixed content (used for text markup) and
vague (ANY content, difficult to process).
Considering several quality parameters (readability,
document size, relational compatibility, value
constraints, DOM parsing effort, SAX parsing
effort) it is easy to demonstrate that the optimal data
model is the one using void elements with data
points stored in attributes [1,9]. This also applies to
the Flash parser, which implements a slow node
constructor when compared to navigating attribute
arrays.
On the other hand there are several frequent errors
that may occur when modeling XML content:

 the presentation model should not be
inherited by the XML model - an essential
quality of XML is the clear separation
between presentation and content: content
must provide the base for presentation
generation and not vice versa;

 formatting details and calculated data
should not be stored with data - an XML
transformation document will be used at
presentation-time, similarly to the
generation of database reports;

 the length and structure of element/attribute
names should be minimized if the potential
consumer is an automated process and
should have improved readability (at the
cost of file size) if the consumer is human;

 the scope of the vocabulary should fit the
potential use of documents - this is given by
chosen document granularity: one document
could encapsulate data destined for one or
several presentation forms; of course,
granularity affects performance with respect
to the expected processing: small atomic
documents are easier to handle but difficult
to aggregate, while large documents are
concurrently handled but the extraction of
aggregated data is easy.

Modeling query strings or presentation data do not
raise specific complications, but converting existing
relational structures need to be approached with a
more careful methodology. Even if tables are
usually modeled as elements while records provide
content and attributes, there are certain problems
regarding relationships and key fields. There are two
ways of reflecting relationships in XML:

 simple containment, by nesting one ore
more associated records in each element to
which they are related;

 cross references between related elements,
provided by special pairs of attributes
(reference=id, similar to HTML hyperlink
definitions).

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 112

Each method has its advantages and disadvantages:
 containment is easy to navigate but creates

redundancy (a record-content will be
repeated for all the table-elements it is
related to);

 cross-references eliminate redundancy but
are more difficult to navigate, especially if
the reference occurs after the referred id
(multiple parsing may be necessary for such
references).

That is why an optimal balance must be set between
redundancy and navigation impediments, by
following a number of steps/rules:

 Not all relational content must be converted
to XML - the potential consumer application
must be established, with its specific input
needs: a CRM might not be interested in the
same data as an accounting or a product
management application;

 Not all XML content must reflect relational
content - certain data may describe
documents or define document granularity
(by stating the scope), usually as attributes
of the root element, which has to be
designed as an envelope for its content;

 Each content table2 is converted to an empty
element and each field to an attribute,
except for the foreign keys;

 Each element must be uniquely identified
with an ID attribute - this is not necessarily
the primary key, since different tables
modeled in the same XML document might
have the same primary key value and
primary key values do not generally fit the
ID attribute value constraints;

 The detail tables3 and their relationships to
content tables are not converted to elements,
but to attributes with enumerated values,
placed within the content table elements;

 The primary tables4 are identified together
with all its relationships, and converted to

2 Working definition: A content table
suffers frequent updates and queries, its
number of records is unstable and its
data is frequently queried for intense
processing.
3 Working definition: A detail table is
updated non-frequently, its number of
records is stable and its content is
formed of ID=description pairs used to
lookup details on records from the
content tables
4 Working definition: The primary
table is a table from which
relationships will be navigated by the

elements of appropriate cardinality, within
the root element;

 A graph is built with the directions in which
relationships will be most probably
navigated by queries, starting with the
primary tables;

 The tables descending from a single arc
should be modeled by containment, with
cardinality given by the type of relationship;

 The tables descending from multiple arcs
should be contained once, in the root
element, and referred by their ascendant
elements (in the graph5);

 The bidirectional arcs will be modeled with
bidirectional references;

 All non-referred ID attributes should be
removed in the end.

3.4 Optimization
A common practice for complex Flash movies is to
create a preamble (based on a Loader object) that
presents the loading progress bar to the user if the
estimated loading time for the client module is in
danger to temporarily block functionality. Intense
XML node parsing might have this effect, another
reason to adopt the attribute-based model which
provides greater performance in all the commonly
used parsers.
Maybe the most important optimization opportunity
comes with the component architecture provided by
Macromedia in order to further support data
connectivity within Flash movies. A robust set of
classes and components covers the three layers of
the architecture, from the back-end to the front-end
of the client, according to [10]:
 Data Connectivity provides two connectors

responsible for transferring data between the client
module and an external producer or consumer of
XML (the server module). The Web service
connector is able to feed or consume WSDL
operations transferred with SOAP, while the more
generic XML connector provides ways for mapping
(with XPath) sent or received data in XML
structures and also coordinates POST transfers via
HTTP [3]. The components can be easily configured
for several types of transfer, mapping and value
validation then, programatically, they can be
managed by a set of classes and events handlers

consumer, in order to reach the rest of
data
5 Note that the descent relations in the
graph will not reflect the parent-child
descent.

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 113

which detail the predictable types of errors occurring
during the transfer;
 Data Management is the layer responsible

with managing data within the client module, just
before it is delivered to a connector, or right after it's
been received. Usually, it serves as a client cache
and filtering mechanism between the user forms that
gather data and the connectors that have to work
ready-to-transfer data points. Two types of
components implement this layer:
o Cache and filtering components (a data set and

a data holder) which transform or just hold data
for various purposes;

o Resolvers (an XML resolver and a relational
resolver) which convert data with respect to its
predictable destination (an XML
consumer/repository or a relational database)

 Data Binding is the layer responsible for
binding values of a user form/interface to attributes
of components from the other layers (management
or connectivity). Because default form fields use
native strings, this layer provides several validation
filters such as mask, format or type of the data that
has to be further processed or was received from
other processes.

4 Conclusion
XML and Flash open great opportunities for
multimedia applications producing and consuming
XML and e-commerce or e-marketing may be the
first fields to benefit from such opportunities even if,
for the present, traditional systems found in
exploitation are preferable to the experimental ones,
at least from the common business point of view.
The future may focus interest on a specialized XML
transfer protocol to replace HTTP and to implement
a robust XML gate between client and server. Even
if the current needs are fulfilled by transferring
XML strings via HTTP, some services, such as
vocabulary validation could take place on the
protocol level, since both protocols and vocabularies
are ways of agreeing on a common set of rules for
sharing data (and its structure or meaning, with
XML). An XML transfer protocol would clearly
separate "pluggable" client-oriented modules (such
as those provided by Flash) from complex back-end
environments (such as an on-line ERP or a
knowledge base).
Another interesting, conclusive issue is that
hierarchical data structures, once considered
obsolete, are returning in the general focus as a
complement to the relational model, which is unable
to meet interoperability requirements but can be

easily connected to a data medium such as the one
provided by XML technologies.

References:
[1] 1. Amiano Mitch et al., XML Problem-Design-

Solution, Wrox, 2006
[2] 2. Buchmann Robert, Conceperea, proiectarea

si realizarea afacerilor pe Internet, Ed.
Risoprint, 2004

[3] 3. Buchmann Robert, Mocean Loredan, Xml
Connectivity within Flash Presentations, in
Information And Knowledge Age - Proceedings
Of The 7th International Conference On E-
Informatics - Bucharest, 2005, pp. 1075-1081

[4] 4. Buchmann Robert, On-line Authentication
and User Registration with ActionScript 2.0,
XML and ASP, in E-COMM LINE Conference
Preprint - Bucharest, 2004, pp. 269-274

[5] 5. Buchmann Robert, The Internet Problem -
Homogeneous or Heterogeneous, in Digital
Economy – Proceedings of the 6th international
conference on e-informatics - Bucharest, 2003,
pp. 65-68

[6] 6. Harold Elliotte, Xml Bible, Idg Books, 1999
[7] 7. Swann Craig, Caines Greg, Xml in Flash, Ed.

Teora, 2002
[8] 8. Walmsley Priscilla, Definitive XML Schema,

Prentice Hall, 2002
[9] 9. Williams Kevin et al., Professional XML

Databases, Wrox, 2000
[10] 10. ***, Macromedia Flash 2004 Professional

Documentation
[11] 11. ***, Web resources:

 http://www.xmlinflash.com
 http://www.xml101.com
 http://www.flash-db.com
 http://www.macromedia.com

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 114

http://www.xmlinflash.com/
http://www.xml101.com/
http://www.flash-db.com/
http://www.macromedia.com/

