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Abstract:- In this paper, a mathematical model is developed to simulate the �ow of blood through stenosed coro-
nary arteries taking into account of arterial wall deformation under pulsatile �ow condition. The �ow of blood
through the lumen region is governed by the continuity equation and the Navier-Stokes equations, while blood
�ow through the poro-elastic wall is described by the Brinkman equations. The deformation of coronary arteries
is modelled by the equations of classical elastodynamics. The velocity �eld, the pressure, the wall shear stress and
the deformation of the arterial wall are computed in a fully coupled manner through the use of the �uid-structure
interaction condition. The in�uences of the severity of stenosis on blood �ow and wall shear stresses are investi-
gated.

Key�Words:- Mathematical modelling, blood �ow, stenosis, coronary artery, poro-elastic wall, �nite element
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1 Introduction

Cardiovascular disease is one of the major causes of
death in developed countries. Most of the cases are
associated with some form of abnormal blood �ow in
stenotic arteries. When the coronary artery is affected
by a stenosis, critical �ow conditions occur, such as
�ow separation, high wall shear stress and wall com-
pression, which are believed to be the signi�cant fac-
tors at the onset of coronary heart diseases. In recent
years, surgical treatments of cardiovascular diseases
have been developed rapidly, and coronary artery by-
pass grafting (CABG) has been widely used for pa-
tients with severe stenosis. A large number of bypass
grafts are implanted worldwide each year. However,
up to 25 percents of the grafts fail in one year and up
to 50 percents fail in ten years after surgery. Today,
it has been recognized that one of the most important
determinations in a successful bypass operation is the
information of the rheological behavior of blood, the
�ow speed, the pressure distribution, the wall shear
stress in the stenotic artery, and the wall deformation
in cardiac cycles.

In order to understand the pathogenesis of coro-
nary diseases, a number of in-vivo and vitro experi-
ments have been conducted using animal models. Due
to the dif�culty in determining the critical �ow condi-
tions for both in-vivo and vitro experiments, the exact
mechanism involved is not well understood. On the
other hand, mathematical modelling and numerical
simulation can lead to better understanding of the phe-
nomena involved in vascular diseases. Thus, over the
last two decades, various mathematical models based
on the �nite element method have been proposed to
describe the rheological behavior of blood in stenotic
arteries. However, some of the studies describe the
�uid �ow without taking into account of the motion
of the arterial wall, while some others concentrate on
the behavior of the structure without taking into ac-
count of the �uid �ow [9, 8, 4, 7].

It is well established that the �uid-structure inter-
action determines the behavior of blood �ow through
arteries. Recently, various studies have focused on the
coupled �uid �ow - arterial wall deformation prob-
lem [2, 5, 6, 3]. Pontrelli [5] proposed a quasi
one-dimensional model based on the �nite difference
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method to describe the wave propagation disturbance
due to prosthetic implantation and to investigate the
effect of changes in elasticity properties along the
vessel. Chahboune and Crolet [2] proposed a two-
dimensional mathematical model and a numerical al-
gorithm based on the �nite element method for the
�uid-structure interaction during the cardiac cycles.
The model is used to couple the �ow of blood with
the motion of the arterial wall of the left ventri-
cle. Gerbeau el al. [3] proposed a three-dimensional
model and a numerical algorithm to simulate the �uid-
structure interaction in large compliant vessels where
large displacement occurs but the biological interpre-
tation of the results are not given. So far, none of
the models seems to be completely satisfactory for all
kinds of �ow regimens.

In this study, we consider the �ow of blood
through coronary arteries with an unsymmetrical
stenosis. Fig. 1 shows the angiogram of such a
stenosed coronary artery. A mathematical model is
developed to study unsteady state blood �ow through
a stenotic artery and the deformation of the arterial
wall in a cardiac cycle. Human blood is considered as
an incompressible non-Newtonian �uid and the arte-
rial wall is modelled as a poro-elastic material. Using
three different geometry domains of a straight tube
with three different size of stenosis, 25%, 50% and
65%, numerical simulations based on the �nite ele-
ment method are carried out for the �ow �eld, pres-
sure �eld, internal wall shear stress and the wall de-
formation in a cardiac cycle. Dependence of the �ow
�eld on the severity of stenosis and wall-interaction
will be discussed.

2 Mathematical Model

Figure 1: The right coronary artery with stenosis.

The arterial wall consists of three embedded lay-
ers including the tunica intima, the tunica media and
the adventitia. The innermost layer is the tunica in-
tima which consists of a thin layer of endothelial cells,
connective tissue and basement membrane. The mid-
dle layer is the tunica media which comprises the
smooth muscle cells and a continuous interstitial �uid
phase of proteoglycan and collagen �ber. The outer-
most layer is the adventitia which is made up mostly
of stiff collagenous �bers having an elastic modulus
of 108 − 109 dyn/cm2. Blood is transported mainly
through the artery lumen but some could be trans-
ported through the wall layers. To make the model
simple and more tractable, the entire arterial wall is
assumed as one poro-elastic layer.

The model in this study uses two coordinate sys-
tems. One is a �xed mesh system ΩF , in which the
�uid model in the lumen region is solved. Another
system is a moving mesh ΩS(t), corresponding to the
deformed geometry of the structure, in which the �uid
model in the arterial wall is solved. Blood is assumed
to be an incompressible non-Newtonian �uid. The
non-Newtonian Carreau model is used to determine
the viscosity of blood. Blood �ow in the lumen region
is governed by the continuity equation and the Navier-
Stokes equations, while blood �ow in the porous wall
is described by the Brinkman equations. The wall de-
formation is modelled by the equations of classical
elastodynamics. The velocity �elds u in the luminal
channel and v in the wall and the displacement d(x, t)
of the arterial wall are computed in a fully coupled
manner through the use of the �uid-structure interface
condition.

2.1 Continuum Model of Human Blood
Human blood consists of plasma �uid, red blood cells,
white blood cells and thrombocyte. The blood plasma
is made up of about 90-95% water and contains nu-
merous dissolved materials such as proteins, lipopro-
teins and ions by which nutrients and wastes are trans-
ported. The elements of blood seem to be continu-
ous, with no empty space between the cells. Blood
can therefore be assumed as a continuum medium.
The small semisolid particles of red blood cells cre-
ate the viscosity of blood. When the red blood cells
clump together into larger particles at low shear rate,
the non-Newtonian behavior becomes most evident. It
has been generally accepted that when the shear rate
is greater than 100 s−1 [1], human blood behaves as
an incompressible Newtonian �uid and thus the stress
- deformation rate relations are described by the New-
tonian model :

σF
ij = −pF δij + 2µDij , (1)
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where µ is the blood viscosity and D denotes the rate
of deformation tensor

Dij =
1
2
(ui,j + uj,i)

However, when the shear rate is lower than 100
s−1, blood behaves as a non-Newtonian �uid and the
stresses depend nonlinearly on the deformation rate.
The stresses are related to the deformation rate by

σij = −pF δij + 2µ(γ̇)Dij , (2)

which is similar to the Newtonian model except that
the viscosity is a function of shear rate instead of
a constant. In different non-Newtonian models, the
relation between the viscosity µn and the shear rate
γ̇ =

√
2D : D is different. The Carreau model used

in this work, µn = µ∞+(µ0−µ∞)[1+(λγ̇)2](n−1)/2

for the constant values of µ0, µ∞, λ and n.

2.2 Governing �eld equations for blood �ow
In the luminal region ΩF , the equations governing the
�ow of blood include the constitutive equation (2),
and the continuity equation as well as the stress equa-
tions of motion as detailed below

ui,i = 0, (3)

ρF
(

∂ui

∂t
+ ujui,j

)
=

∂σF
ji

∂xj
+ FF

i , (4)

where ρF denotes the blood density which is
1.06g cm−3, ui represents the component of veloc-
ity vector in the ith direction, and FF is the volume
force acting on the �uid.

In the arterial wall ΩS , blood �ow is described by
the following continuity equation and the Brinkman
equations,

vi,i = 0, (5)

ρF ∂vi

∂t
+

µ

κ
vi = −pS

i +(µ(vi,j + vj,i)),j +FS
i , (6)

where µ denotes the viscosity in porous layer, κ is
permeability, vi represents the component of velocity
vector in the ith direction, pS denotes pressure, and
FS is the body force acting on the �uid in the wall.

2.3 Governing �eld equations for arterial
wall deformation

The arterial wall is assumed as an elastic material.
During a cardiac cycle, blood pressure acting on the

inner wall surface varies with time, and thus the arte-
rial wall deformation is a function of time. The dy-
namic wall deformation can be modelled by the equa-
tions of classical elastodynamics:

ρs ∂2d
∂t2

= µ∇2d + (λ + µ)∇(∇ · d) (7)

where ρs is the density of the structure, d denotes the
displacement vector, λ and µ are the Lamé constants
which are related to the material Young's modulus E
and Poisson's ratio ν by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

2.4 Boundary and interface conditions
To specify the boundary conditions for the blood �ow,
we consider precisely the blood �ow mechanism. The
heart is a two-step pump: �rst the atria, then the ven-
tricles contract. The heart ejects and �lls with blood
in alternating cycles known as systole and diastole.
Blood is ejected from the left ventricle into the arterial
system during systole. The heart rests during diastole
in which no blood is ejected. The cyclic nature of the
heart pump creates pulsatile conditions in all the ar-
teries. The pulsatile characteristic of pressure varies
in different part of the arterial system.

Ignoring the variation in different cardiac cycles,
the pulsatile pressure and �ow rate are given by

p(t) = p(t + nT )

and

Q(t) = Q(t + nT ), n = 0,±1,±2, . . . .

Mathematically, a periodic function can be expressed
as a Fourier series. Based on a typical set of data, we
obtain the following Fourier series representations

Q(t) = Q̄ +
5∑

n=1

αQ
n cos(

2nπt

T
− θQ

n ) (8)

and

p0(t) = p̄ +
5∑

n=1

αp
ncos(

2nπt

T
− θp

n), (9)

where Q̄ = 59.09 cm3/min and p̄ = 122.5 mmHg
are respectively the mean �ow rate and mean pressure,
T is the cardiac period, and the values of αQ

n , αp
n, θQ

n
and θp

n are listed in Table 1.
We therefore impose a pulsatile �ow rate condi-

tion on the inlet boundary and a corresponding pul-
satile pressure condition on the outlet boundary of the
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Table 1: Values of parameters used in computation

n αQ
n θQ

n αp
n θp

n

1 17.28 2.256 -21.740 -0.406
2 -34.91 -0.226 -9.088 0.202
3 -16.11 1.228 4.771 -0.633
4 11.70 4.882 2.035 -4.315
5 6.64 -0.074 0.768 3.932

computation region. The boundary conditions for the
velocity and pressure �elds thus include both Dirichlet
type and Neumann/Robin type, i.e, for i, j = 1, 2, 3

u1 = ū0(t) = Q(t)
A , u2 = u3 = 0 on ∂ΩF

in

p = p0(t), (µn(ui,j + (uj,i)) · n = 0 on ∂ΩF
out

(10)
where A denotes the inlet cross-section area of the
artery, Q(t) is the pulsatile �ow rate, p0(t) represents
the pulsatile pressure.

On the interface between the lumen and the arte-
rial wall ΓF/S , the expression for the velocity must be
continuous across the interface. We thus set

v = u =
∂d
∂t

. (11)

The movement of the in�ow and out�ow boundaries
∂ΩS

in and ∂ΩS
out of the structure is assumed to be

restricted in all directions,

d(x, t) = 0. (12)

3 Numerical results and discussion
From section 2, the boundary value problem govern-
ing the �uid-structure interaction in stenotic arteries
is:

BVP : Find u,v, pF , pS and d such that the �eld
equations (3)�(7) are satis�ed in the computa-
tion domain, and all boundary conditions are sat-
is�ed.

A numerical algorithm based on the �nite element
method has been developed to solve the problem. The
feature of the algorithm include discretization in space
by the Galerkin �nite element method, use of different
function spaces for velocity and pressure, coupling of
velocity with wall deformation on the �uid-solid in-
terface, and time integration with variable time step.

Figure 2: The 3-D geometry of the 50% stenotic tube
and its �nite element mesh.

Figure 3: Vector pro�les of the velocity �eld in the lu-
minal channel at the peak of systole: (a) 25% stenosis,
(b) 50% stenosis, (c) 65% stenosis.

The numerical technique is then used to study
the �ow of blood through a stenotic artery. In this
study, we examine three cases of stenotic arteries with
25%−, 50%− and 65%−area severity respectively.
The part of the artery to be examined is approximated
as a straight tube with length of 5 cm. The diame-
ter of the artery lumen is 0.210 cm, and the thick-
ness of the arterial wall is 0.05 cm. There is a steno-
sis with spherical curvature in the middle part on one
side of the internal wall as shown in Fig.2. The
three-dimensional tubes having 25% 50% and 65%-
area severity are respectively discretized into 10,092
tetrahedron elements with 77,451 degrees of freedom
(velocity and pressure), 12,700 tetrahedron elements
with 96,354 degrees of freedom, and 8,151 tetrahe-
dron elements with 62,574 degrees of freedom. The
solutions were computed for 5 cardiac cycles to ensure
reproducibility of the pulsatile characteristic �ow. In
all the three cases, the minimum time step is taken to
be 4tmin = 0.001s, while the maximum time step is
4tmax = 0.01s.

To determine the inlet pulsatile �ow rate and out-
let pulsatile pressure, the parameters listed in Table 1
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Figure 4: Distribution of pressure along the longitudinal line and variation of blood speed along the throat line of
the stenosis for three different cases of stenosis area severity: (a) 25% and (b) 65% -area severity
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Figure 5: Variations of pulsatile velocity and pulsatile
pressure with time at a point (0,0,5) on the exit surface
of the 65% stenotic artery.

are used. Fig. 3 depicts the velocity �eld in the lumi-
nal channel at the peak of systole in the Oxy plane for
the 25%, 50%, 65% stenotic tubes. The plot clearly
shows the �ow pattern. In upstream from the stenosis,
the velocity pro�le in the �ow direction is parabolic
and the �ow passes through the stenosis at jet speed,
especially at the throat of the stenosis.

The relation between blood pressure and blood
velocity is demonstrated in Fig. 4. These �gures
illustrate the pressure distribution along a longitudi-
nal line and the mean �ow of blood at the throat line
during the systolic period. It shows that the pressure
drops dramatically near the stenosis site and creates
a jet �ow at the throat of the stenosis. The case with
larger stenosis causes larger pressure drop around the
stenosis and consequently leads to higher speed in the
stenosis area.
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Figure 6: Surface plot of wall shear stresses (WSS)
for the 65% stenotic artery: (a) at the peak of systole
t = 3.15s and (b) at the peak of diastole t = 3.50s.
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Figs. 5 shows the pulsatile characteristic of blood
�ow. To capture the effect of wall-interaction on wall
shear stresses, we investigate the models with 65%-
area severity at the peak of systole and at the peak of
diastole. The solutions are plotted on the plane repre-
senting the wall surface where the stenosis is located
at the center. The results show that in the model with
the porous wall, at the peak of systole the wall shear
stress around the stenosis site varies between -965 and
-200 dyn/cm2, and at the peak of diastole it varies be-
tween -510 and -100 dyn/cm2 as shown in Figs. 6.

4 Conclusions
The presented work is carried out to couple the �ow
of blood with the deformation of blood vessels. The
convective-diffusive transport of blood in the luminal
channel and in the arterial porous wall as well as the
deformation of the stenosed coronary artery have been
studied numerically using a three-dimensional math-
ematical model and a numerical technique based on
the �nite element method. The results obtained from
the vessel models having 25%, 50% and 65%-area
severity show that blood pressure drops dramatically
around the stenosis site and creates a jet �ow at the
throat of the stenosis and that a larger stenosis leads
to a higher pressure jump, higher blood speeds around
the stenosis site.
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