Proceedings of the Sth WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 176

Networks of Evolutionary Processors.vmz architecture-

MIGUEL ANEL PENA
Escuela de Informética
Dept. OEI - UPM
Crta. de Valencia km. 7
28031 Madrid - Spain

MIGUEL ANGEL DIAZ
Escuela de Informéatica
Dept. OEI - UPM
Crta. de Valencia km. 7
28031 Madrid - Spain

NURIA GOMEZ BLAS
Escuela de Informética
Dept. OEI - UPM
Crta. de Valencia km. 7
28031 Madrid - Spain

Abstract: This paper presents a connectionist model that is widely used to solve NP-problems:
Networks of Evolutionary Processors (NEP). A NEP is a set of processors connected by a
graph, each processor only deals with symbolic information using rules, that is, symbols in a
processor evolve according some rules. Communication through the graph is based on a filter set
that permits (or not) symbols to go from one processor to another. This two steps: evolution

and communication, makes NFEPs able to solve NP-problems.

This paper also proposes an

UML architecture to implement NEPs. This work is actually under development and will be
implemented in a distributed way, maybe using Java Agent Development Enviroment - JADE,
in order to obtain similar results to theoretical ones: solution of NP-problems in linear time.
Proposed UML architecture is based on the general behaviour of NEPs.

Key—Words: Natural Computing, Evolutionary Processors, UML Architecture

1 Introduction

Membrane Computing is inspired in the struc-
ture and functioning of living cells [1]. Nowa-
days, Membrane computing is one of the most
popular research topics in the European com-
munity of cellular computing. The membrane
systems, also named P systems, are a class of
distributed parallel computing devices of a bio-
chemical type, which can be seen as a general
computing architecture where different types of
objects can be processed by different operations.
The basic model consists of a membrane struc-
ture (several membranes hierarchically embed-

*This work has been partially supported by Spanish
Grant TIC2003-09319-c03-03.

ded in a main membrane skin). Membranes de-
fine regions where different objects are placed.
These objects are processed according to given
evolution rules, which are associated with the
regions. When a rule is applied in a region, the
objects present in the region are modified, some
of them are sent out or in it. The evolution rules
can also dissolve the membrane. In that case, all
the objects present in the membrane remain free
in the membrane that includes the dissolved one;
however, rules associated to the dissolved mem-
brane are removed. The skin membrane never
is dissolved because then the system can not be
considered a system anymore. As can be seen,
the system is governed by evolution rules, mem-
branes are considered as separators and commu-

nication channels. The application of evolution
rules is made in a nondeterministic and maxi-
mally parallel manner; at each step, all objects
which can evolve must evolve in every region of
the system.

This kind of systems compute by passing
from a configuration to another configuration by
applying evolution rules in the way described
above. A computation is considered complete
when it halts, e.g. when no further rules can be
applied to the objects present in the last configu-
ration. The result of a halting computation can
be made in two different ways: by considering
the multiplicity of objects presents in the halt-
ing configuration inside a determined region, or
by concatenating the symbols which are sent out
of the system considering the order in which they
were sent out. In the first case, vectors of natural
numbers are computed while in the second case,
languages are generated. Many variants of P sys-
tems have been considered [2]. In some of them,
the number of membranes can only decrease by
dissolving membranes as result of applying evo-
lution rules. However, many of them the num-
ber of membranes can be increased using some
biological features of living cells, for example:
by division. Some other variants consider mem-
branes not only passive objects of the system,
these kind of systems are based in biological pro-
cesses performed by membranes when chemical
compounds pass through the membrane (protein
gates or protein channels).

1.1 From membranes to processors

The origin of networks of evolutionary proces-
sors (NEP for short) is a basic architecture for
parallel and distributed symbolic processing, re-
lated to the Connection Machine [6] as well as
the Logic Flow paradigm [3], which consists of

Proceedings of the Sth WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 177

several processors, each of them being placed in a
node of a virtual complete graph, which are able
to handle data associated with the respective
node. Each node processor acts on the local data
in accordance with some predefined rules, and
then local data becomes a mobile agent which
can navigate in the network following a given
protocol. Only such data can be communicated
which can pass a filtering process. This filtering
process may require to satisfy some conditions
imposed by the sending processor, by the receiv-
ing processor or by both of them. All the nodes
send simultaneously their data and the receiving
nodes handle also simultaneously all the arriving
messages, according to some strategies, see, e.g.,
[4, 6].

Each node in NEPs may be viewed as a cell
having genetic information encoded in DNA se-
quences which may evolve by local evolutionary
events, that is point mutations. Each node is
specialized just for one of these evolutionary op-
erations. Furthermore, the data in each node is
organized in the form of multisets of words (each
word appears in an arbitrarily large number of
copies), and all the copies are processed in par-
allel such that all the possible events that can
take place do actually take place. Obviously, the
computational process just described is not ex-
actly an evolutionary process in the Darwinian
sense. But the rewriting operations we have con-
sidered might be interpreted as mutations and
the filtering process might be viewed as a se-
lection process. Recombination is missing but
it was asserted that evolutionary and functional
relationships between genes can be captured by
taking only local mutations into consideration

[9]-

2 Networks of Evolutionary Proces-
sors

A network of evolutionary processors [5, 7, 8] of
size n is a construct I' = (V, N1, Na,- -+, Ny, G),
where V' is an alphabet and for each 1 < i < n,
N; = (M;, Ai, PI;, PO;) is the i-th evolutionary
node processor of the network. The parameters
of every processor are:

M; is a finite set of evolution rules of one of
the following forms only

e a — b,a,beV (substitution rules)
e a —¢,a €V (deletion rules)

e ¢ — a,a €V (insertion rules)

More clearly, the set of evolution rules of any
processor contains either substitution or deletion
or insertion rules.

A; is a finite set of strings over V. The set
A; is the set of initial strings in the i-th node.
Actually, in what follows, we consider that each
string appearing in any node at any step has an
arbitrarily large number of copies in that node,
so that we shall identify multisets by their sup-
ports.

PI; and PO; are subsets of V* represent-
ing the input and the output filter, respectively.
These filters are defined by the membership con-
dition, namely a string w € V* can pass the
input filter (the output filter) if w € Pli(w €
PO;).

Finally, G = ({N1, Na, -+, N, }, E) is an undi-
rected graph called the underlying graph of the
network. The edges of G, that is the elements of
E, are given in the form of sets of two nodes. The
complete graph with n vertices is denoted by K.
By a configuration (state) of an NEP as above
we mean an n-tuple C = (Ly, Lo, - - - ., L), with

Proceedings of the Sth WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 178

Ny

a— b
My=¢ e—=c¢
c—e

oy

Pl = {a,b aa} POy = {b,e}

Ny

Ns Na

Figure 1: Network of Evolutionary Processors Architec-
ture: (right) communication graph, (left) processor inter-
nals.

L; CV*forall 1 <i<n. A configuration rep-
resents the sets of strings (remember that each
string appears in an arbitrarily large number of
copies) which are present in any node at a given
moment; clearly the initial configuration of the
network is Cyp = (A1, Ag,- -+, Ay) (see figure 1).
A configuration can change either by an evolu-
tionary step or by a communicating step. When
changing by an evolutionary step, each compo-
nent L; of the configuration is changed in ac-
cordance with the evolutionary rules associated
with the node i. When changing by a commu-
nication step, each node processor N; sends all
copies of the strings it has which are able to pass
its output filter to all the node processors con-
nected to N; and receives all copies of the strings
sent by any node processor connected with N;
providing that they can pass its input filter.

Theorem 1 Fach recursively enumerable lan-
guage can be generated by a complete NEP of
size H.

A NEP architecture is given by the shape of the
underlying graph defined by G, there are some
classical architectures such as: complete, star,
diamond, etc.

Theorem 2 Fach recursively enumerable lan-

guage can be gemerated by a star NEP of size
5.

And a result concerning the universality of Sim-
ple NEP is given by the PCP problem by the
following theorem:

Theorem 3 The bounded PCP can be solved by
an NEP in size and time linearly bounded by the
product of K and the length of the longest string
of the two Post lists.

2.1 Simple NEP

A simple NEP of size n is a construct I' =
(V, N1, N3, -+, N,,G), where, V and G have the
same interpretation as for NEPs, and for each
1 < 7 < TL,NZ' = (MZ,A“PIZ,FIZ,PO“FOZ) is
the i-th evolutionary node processor of the net-
work. M; and A; from above have the same inter-
pretation as for an evolutionary node in a NEP,
but

e PI; and FI; are subsets of V repre-
senting the input filter. This filter, as
well as the output filter, is defined by
random context conditions, PI; forms
the permitting context condition and
FI; forms the forbidding context con-
dition. A string w € V* can pass
the input filter of the node proces-
sor ¢, if w contains each element of
P1I; but no element of FI;. Note that
any of the random context conditions
may be empty, in this case the cor-
responding context check is omitted.
We write p;(w) = true, if w can pass
the input filter of the node processor
i and p;(w) = false, otherwise.

Proceedings of the Sth WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 179

e PO; and FO; are subsets of V rep-
resenting the output filter. Analo-
gously, a string can pass the output
filter of a node processor if it satisfies
the random context conditions asso-
ciated with that node. Similarly, we
write 7;(w) = true, if w can pass the
input filter of the node processor 7 and
7i(w) = false, otherwise.

Some important results are:
Theorem 4 The families of regular and

context-free languages are incomparable with the
family of languages generated by simple NEPs.

And a result concerning the universality of Sim-
ple NEP is given by the 3-colors problem by the
following theorem:

Theorem 5 The ”3-colorability problem” can
be solved in O(m + n) time by a complete sim-
ple NEP of size Tm + 2, where n is the number
of vertices and m is the number of edges of the
iput graph.

3 UML Architecture

Generic evolutionary processors can be defined
as N = (M, A, PI, PO), where M represents the
evolution rules, A is the strings in the node, PI
and PO are the input and output filter respec-
tively. The UML class diagram is shown in figure
2.

A string would be represented like symbol,
that is the reason why a processor will contain
so many symbols as strings it has. The rules are
divided in two parts: the antecedent that rep-
resents the part that must fulfil for being able
to apply the rule, and the consequent that is the

Proceedings of the Sth WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 180

InputFilter

I ®aliow(symbol : Symbol) : Boolean ‘

Processor

ssend(symbols : Vector) : Void
ceive() : Vector

Filter

[®equal(symbol : Symbol) : Boolean

acess() : Vector QutputFilter
leteSymbol{symbol : Symbol) : Vioid "
- [®allow(symbol : Symbol) : Boolean
0.
Rule
pplicated(symbel : Symbal) : Symboi 0.* 1
hange(antecedent : Symbol, consistent : Symbol, symbol : Symbol) : Symbol
P u | Symboal
|ESalue : String
1 Antecedent 1 |Buetvalue(): Sting

®getantecedent() : Symbol

1
Consistent

[®getConsistent() : Symbol

1

Figure 2: Class Diagram of NEPs.

reason why the antecedent will be replaced if the
rule is applied. Both, antecedent and consequent
in evolutionary processors are not more than a
symbol.

Several filters can be implemented in the evo-
lutionary processors. A filter is a system that
allows a symbol to go from one processor to an-
other. Normally, the detection system is to com-
pare a symbol with another one. Among the pos-
sible filters that an evolutionary processor can

have, most common filters are the PI or input
filters, and the PO or output filters. A processor
can have several filters of each type.

This is the basic composition of an evolution-
ary processor, nevertheless, there exist NEP ar-
chitectures that have forbidden filters in the in-
put and in the output. Differences in the imple-
mentation for the resolution of problems will be
defined as types of the generic model for such
given kind of problems.

Greater differences among the types of evolu-
tionary processors appear in the form they work.
The process that is developed in an evolutionary
processor can be divided in 3 parts: to receive
the string, to apply the rules and to communi-
cate the new string. At the outset, the processor
will contain a series of string. These rules will be
applied and will be sent to the rest of processors
that are related with this. The process in the
processor will begin again, such and as it shows
in figure 3.

The processor will receive the chains and send
them to the rest of evolutionary processors who
is connected. The processor works with a string,
this will have to fulfil the input filters. Thus, all
the string will be validated with respect to the
filters and those will discard strings that do not
fulfil the conditions. The PI simply will compare
the symbol that receives with those it contains,
if both are equal, the string will be valid. On the
contrary, the string will be verified with another
filter.

There are, according to the objective of the
network of evolutionary processors another form
of verification of the string. A string can be
formed by several concatenated symbols, called
substring. The input filter instead of being
formed by complete strings can contain sub-
strings. Then, a string is admitted as a valid
one for a processor if each one of the symbols or
a substring is present in the input filters.

Also, forbidden input filters (FI) can exist,
that is, those that contains the substring that
the input string cannot contain. If the string
is not valid according to a given forbidden filter
after the matching process , that string will be
immediately discarded. It is also possible that
the substring is not present in any PI, in such
case all the string would be accepted.

Once the evolutionary processor has all

Proceedings of the Sth WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 181

strings, rules start to be applied in a not de-
terministic form. The rule and the string are
selected on a random way. The form to apply
a rule is by means of comparison and substitu-
tion. The antecedent of the rule is compared to
the string, and in the case of equality the string
is replaced by the consequent. The antecedent
can also be formed by substrings; in such case, it
replaces only the substring that matches the an-
tecedent by the consequent. The antecedent and
the consequent can be the empty string, in such
case the rules are denominated insert and delete
rules respectively. Usually, the substitution rules
are applied in any position of the chain, whereas
those of insertion and delete rules are only ap-
plied in the right end, as in the implementation
to solve the 3-colorability problem.

The evolutionary processors can be divided in
two types:

e those who apply all the rules in a
non deterministic form and they only
communicate strings when more rules
cannot be applied,

e and those that applies a rule and com-
municates the string.

Once, all the possible rules have been applied
to or only a rule is applied, based on the opera-
tion mode, strings are communicated to another
evolutionary processors. Before the communica-
tion, strings must pass through the output fil-
ters and only strings that satisfied these filters
are sent out. The forms and types of the output
filters are similar to those of the input filters.

4 Conclusions

This paper has introduced the novel computa-
tional paradigm Networks of Evolutionay Pro-

cessors that is able to solve NP-problems in lin-
ear time. The implementation of such model in
a traditional computer is being performed and
this paper shows an UML architecture. This ar-
chitecture is a generic representation of the be-
haviour of the NEPs, and tanking into account
all the possible specific implementations based
on this model all the cases that can appear in
the article could be contemplated. Obviously,
theoretical results will never been achieved due
to the sequential operational behaviour of tradi-
tional computers, but some improvement can be
done in a distributed implementation.

References

[1] Paun G. Computing with Membranes. In:
Journal of Computer and Systems Sciences,
61, 1. 108-143. (2000).

[2] Gh. Paun. Membrane Computing. An Intro-
duction, Springer-Verlag, Berlin, (2002).

[3] L. Errico and C. Jesshope. Towards a new
architec- ture for symbolic processing. Arti-
ficial Intelligence and Information-Control
Systems of Robots 94, 3140, World Scien-
tific, Singapore. (1994).

[4] S. Fahlman, G. Hinton, and T. Sei-
jnowski. Massively par- allel architectures
for AI: NETL, THISTLE and Boltzmann
machines. Proc. AAAI National Conf. on
AT, 1983:109113, William Kaufman, Los Al-
tos. (1983).

[5] M. Garey and D. Johnson. Computers and
Intractability. A Guide to the Theory of NP-
completeness. Freeman, San Francisco, CA,

(1979).

Proceedings of the Sth WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 182

[6] W. Hillis. The Connection Machine. MIT
Press, Cambridge, (1985).

[7] F. Manea, C. Mart?n-Vide, and V. Mitrana.
All NP-problems can be solved in polynomial
time by accepting networks of splicing pro-
cessors of constant size. Proc. of DNA 12,
in press.

[8] C. Martin-Vide and V. Mitrana. Networks
of evolutionary processors: Results and per-
spectives. Molecular Computa- tional Mod-
els: Unconventional Approaches 78114, Idea
Group Publishing, Hershey. (2005).

[9] D. Sankoff and et al. Gene order compar-
isons for phylo- genetic inference: FEvolution
of the mitochondrial genome. Proc. Natl.
Acad. Sci. USA, 89:65756579. (1992).

Proceedings of the Sth WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 183

1: Process()

e

2:recelve()

=S
For each Symbols of Vector
3: allow({Symbal)
4: egual(Symbol)
<=

If false
5: deleteSymbaol{)

<
End of if

End of for
While rules can be applied

Of nondeterminist form 6: applicated(Symbol)

> T: getAntecedent()
= 8: getValue()

If equals symbol with antecedent

9: getConsistent() 10: getValue()

11: change(Symbol, Symbol, Symbol)
=

End while

For each symbaols 12: aliow(Symbol)

‘@ equal(Symbal)
=2

if false

14: deleteSymbol()
<

End of if

End of for

15: send(java.util Vector)

=

Figure 3: Sequence Diagram of NEPs.

