
Evolutionary Composition of Music
with Learned Melody Evaluation

ROMAN KLINGER
Fraunhofer Institute for

Algorithms and Scientific Computation
Department of Bioinformatics

Schloss Birlinghoven, 53754 Sankt Augustin
GERMANY

roman.klinger@scai.fhg.de

GÜNTER RUDOLPH
University of Dortmund

Department of Computer Science
LS XI – Computational Intelligence

44221 Dortmund
GERMANY

guenter.rudolph@uni-dortmund.de

Abstract: We describe our approach for the automatic composition of monophone melodies on a user given chord
sequence. For this purpose we use evolutionary algorithms for the music generation with automatically learned
classifiers next to interactive evaluation as fitness functions.

Key–Words: computational intelligence, music, composition, classification, data mining

1 Introduction

The main motivation for developing a program for au-
tomatic composition is to attach importance on get-
ting melodies that have something new: The pro-
gram should simulate creativity so that it can be used
for composition assistence. Similar to the work of
Biles [2, 3] or Wiggins and Papadopoulos [10] we
use an evolutionary algorithm. Biles uses an interac-
tive method as evaluation function, Wiggins and Pa-
padopoulos use weighted sums of numerical features
values extracted from the melodies. The interactive
approach has the disadvantage of requiring much time
to evaluate melodies. Using weighted sums raises the
question if that method maps the personal taste of mu-
sic appropriately.

There have been some approaches to learn a fit-
ness function, for example with neural networks, but
without emphasizing creativity [5], so the generated
melodies are not pleasing to the ear [4] or they are just
not very interesting [8].

Our idea is to extract features [15, 16] on which a
data mining algorithm can classify the melodies. That
approach has the advantage of the possibility that the
automatically generated classifier fits the user’s taste
and can classify the melodies fast.

Another important thing to point out is that the
implementation is licensed under the Gnu Public Li-

cence1 so that everyone can try out the program and
experiment with different parameters2. This is a spe-
cial feature because most systems for automatic com-
position are closed source apparently.

The rest of the paper is organised as follows: At first
we explain the evolutionary algorithm developed here.
Then some of the variation operators are described and
elucidated on some examples. The probably most im-
portant part of our work is the evaluation procedure
for melodies which will be explained next. The last
section is a conclusion and an outlook on future work.

2 Overview
An evolutionary algorithm [1] is an optimization
scheme which works on a set on possible solutions,
in our case on melodies. A visualisation is given in
figure 1.

At first the set of solutions, also called population
of individuals, is initialised. This is done by using
statistical methods like Markov chains so that they
are meaningful according to some musical laws. For
that, the user specifies the chords on which the melody
should be played. After that this set is altered by mu-
tation and recombination of the individuals. Then the

1http://www.gnu.org/copyleft/gpl.html
2Download information can be found on

http://www.romanklinger.de/musicomp/musicomp.html
and on http://sourceforge.net/projects/musicomp

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 234

Start

Criteria satisfied?

End

Recombination

Mutation

Initialisation

Evaluation

Selection

no

yes

Fig. 1: Main components of an evolutionary algo-
rithm.

original individuals and the altered ones are evaluated
by some fitness function. The best ones, in our case
the hopefully most pleasant melodies, form the suc-
cessing population.

3 Mutation and Recombination
The operators mutation and recombination represent
the methods to change the melodies so that they en-
hance their interestingness. Here we only give some
examples because a description of the whole set of
operators would exceed the size of the paper awfully.
More details can be found in [9].

The mutation operators can be distinguished in
those which change pitches (one-point-mutation,
transposition, inversion), those which change rhythm
(moving, merging, splitting of notes) and those which
make some structural modification of the melody (ro-
tating, sorting, mirroring of some range).

For the examples we assume figure 2 being the orig-
inal melody. An example for the one-point-mutation
could be the melody in figure 3 in which the second
note is raised by one half step and the fifth tone is
raised by one step. That method changes the pitch
of every note with a low probability. The stepsize is
determined by a bilateral geometric distribution [14].

G 4
4 ˇ ˇ

ÂÂ
ˇ ˇ ˇ ĆĆ̌

Fig. 2: Example of some melody prior to variation.

G 4
4 ˇ 4ˇ

ÂÂ
ˇ ˇ ˇ ˇ

Fig. 3: One-point-mutation of melody in figure 2.

G 4
4 ˇ ˇ ˇ ˇ \ˇ ˇ ˇ ĹĹ̌

Fig. 4: Splitting some notes of melody in figure 2.

G 4
4 ˇ ˇ

ÂÂ
ˇ ˇ ˇ ÂÂˇ

Fig. 5: Sorting of melody in figure 2.

An example for changing the rhythm is splitting ev-
ery note with a low probability as we can see in fig-
ure 4. Here the second and the third note are split into
two notes, each of half of the length of its original.
The pitch of the second note is changed analogous to
one-point mutation.

An example for a structural modification is sorting
the notes downwards with respect to their pitches as
we can see in figure 5. Here the whole melody is
sorted. In our implementation only a randomly de-
termined part of the melody is changed.

The recombination combines two parents to one or
more new individuals. We experimented with interme-
diate methods which work by using the mean pitches
of two notes on the same point in time of the two par-
ents. Here the problem in using that kind of operator
is that the melodies tend to a single tone repetition. So
the better choice is using a one-point-crossover which
builds two individuals by beginning with the first par-
ent and ending with another and the other way round.
The crossover point is determined randomly. An ex-
ample is shown in figure 6.

4 Selection
The operator selection builds the successing popula-
tion. We tried to use fitness proportional selection, but

Parents:
G 4

4
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ \ˇ ˇ \ˇ \ˇ ˇ ˇ ˇ ˇ ˇ \

ÊÊ
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

G 4
4
< ˇ ˇ ˘ ˇ ˇ 4˘ 4ˇ ˇ ¯

Offspring:

G 4
4
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇÈÈ̌ ˇ \˘ 4ˇ ˇ ¯

G 4
4
< ˇ ˇ ˘ ˇ 4ˇŤŤ

ˇ \ˇ \ˇ ˇ ˇ ˇ ˇ ˇ \
ÊÊ
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

Fig. 6: Example for one-point-crossover.

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 235

this reduces the diversity of the individuals. It is nice
not to have too similar individuals in the set because
then it is more likely to have variations that could pos-
sibly fit the personal taste. Actually, it is crucial to
maintain diversity in the population to provide suffi-
cient potential for continuing evolution. Determinis-
tic selection as used in evolution strategies works very
fine, especially with niching methods to enhance the
diversity.

We use two niching methods [1]. The first, fitness
sharing, works by scaling down the fitness of similar
individuals. The second, in our case much more suc-
cessful, is called crowding. Here two parents are re-
combined to two children. The parents and children
compete to each other in the pairing in which their
similarity is higher. The function that gives the sim-
ilarity between two individuals I1 and I2 with pitches
mi at points of time i is

sim(I1, I2) = 1−
∑n

i=1 dist(m1
i ,m

2
i)

h(I1, I2)

with

dist(m1
i ,m

2
i) =

{
0 if m1

i 6= −2 ∧m2
i 6= −2

min(|m1
i −m2

i |,∆max) otherwise

and

h(I1, I2) =
n∑

i=1

a(x, y)

with

a(x, y) =

{
0 for x = y = −2
∆max otherwise

For understanding the formula above it is impor-
tant to know about our representation of melodies: A
melody is a tuple m ∈ {−2,−1, 0, . . . , 127}n where
i ∈ {1, . . . , n} are points of time and the values
0, . . . , 127 represent the start of a tone with a note
pitch according to the general midi specification3. The
value −1 means “Holding the last event” and −2 starts
a rest.

We set ∆max = 4, which means that the largest
intervall between two pitches that is considered is 4.
This also holds for an interval between a “−1” and the
starting of a note with a given pitch in two individuals
at the same point of time.

That function emphasizes the importance of the
rhythm, so especially rhythmic features of the
melodies are kept over the generations.

3http://www.midi.org/about-midi/gm/gminfo.shtml

G 4
4 ˘ ˇ ˇ ˘ ˇ ˇ Z˘ ˇ ˇ ˘ ˘
G 4

4 ˘ ˇ ˇ ˘ ˇ ˇ ˘ ˇ ˇ ˘ ˘

Fig. 7: Example for feature Harmonicity. The value of
the first melody is 0, the one for the second is
1.

G 4
4 ˘ ˇ ˇ ˘ ˇ 2ˇ ˘ ˇ ˇ ¯
G 4

4
< ˇ ˇ < ˇ ˇ < ˇ 2ˇ ¯

Fig. 8: Example for feature Rests on Downbeats with
a value of 0 in the first melody and a value of
0.75 in the second one.

5 Evaluation
The evaluation function is a very important point in the
generation of melodies with evolutionary algorithms.
It “restricts” the creativity of the mutation and recom-
bination operators. In addition to the interactive eval-
uation, which we also implemented in form of a slider
the listener can move between 1 and 10 in steps of
0.01 after the melody was played that has to be evalu-
ated, we implemented some methods based on feature
extractions.

5.1 Feature Extraction

The feature extraction follows the work presented in
[15, 16] with some additional methods. The fea-
tures are subdivided into pitch features, tonale fea-
tures, contour features, rhythmic features, pattern fea-
tures, features for chord change and accentuation fea-
tures. For explanation we give some examples which
are all played on the chord sequence4: Am, Dm, E,
Am

The feature Harmonicity gives the ratio between the
number of notes with pitches of the current chord and
the number of all notes. An example for two different
melodies is given in figure 7.

The feature Rests on Downbeats determines the ra-
tio between the number of downbeats and the number
of downbeats on which there is a rest. In figure 8 are

4The chord Am is a set of the notes a, c, e. Dm is d, f, a. E is e,
g#, b.

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 236

G 4
4 ˇ ˇ ˇ ˇ ˇ ˇ \ˇ ^ˇ \ˇ \ˇ ˇ ˇ ˇ ˇ ˇ ˇ
G 4

4 ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ
Fig. 9: Example for feature Repeated Pitch with a

value of 0 in the first melody and a value of
1 in the second one.

two melodies with 4 downbeats: One with a value of 0
with no rests and one with 3 rests and a resulting value
of 0.75.

The feature Repeated Pitch computes the ratio be-
tween the number of all intervalls with a size of 0 and
the number of all intervals (= number of notes −1).
In the example in figure 9 is one melody without pitch
repetition (value 0) and one with all possible pitch rep-
etitions (value 1).

5.2 Evaluation with Data Mining Methods

Typical problems of interactive evaluation are the long
time required for listening to the melodies, the subjec-
tivity and that this methods are not always reliable. So
a nice idea is to use machine learning on the features
mentioned before. We tried artificial neural networks
and decision trees. For generating these we use a set of
examples which were evaluated by a single person. It
is composed of 45 well-known melodies with a major-
ity of high evaluations, 136 automatically generated
individuals (by saving all individuals of an evolution
with interactive evaluation) and 24 outstanding unaes-
thetic individuals with very low fitness values. The
melodies are given in MIDI-Format with an XML-File
specifying the chords and the fitness.

5.2.1 Using Feed Forward Neural Networks

It is possible to select the features that should be used
as input for the neural net. For every feature we use
one input neuron and in every net one output neuron
which gives the evaluation.

We experimented with neural networks with differ-
ent structures and detected that when using all 42 im-
plemented features it is reasonable to use a fully con-
nected net with one hidden layer of 35 neurons. We
decided to use resilient propagation [13, 7] for train-
ing which lasts only few minutes. Figure 10 illustrates
the development of the total sum squared error (TSSE)
for training the neural net. It is possible to reach a re-
substitution error of 0.022.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100 120 140 160

TS
S

E

Iterations

Fig. 10: Development of the total sum squared error
(TSSE) of training the neural net.

5.2.2 Using Decision Trees

Neural networks are theoretically capable of approxi-
mating arbitrary functions, but the weights of the con-
nections between the neurons are not intuitively inter-
pretable. A very good approach for a better under-
standable classifier are decision trees that are built up
in an inductive way [11, 12]. The algorithm we use is
called C4.5 and is implemented in the Weka-Library
[17] for Java. This algorithm deals with continuous
attributes which correspond to our features but cannot
handle regression. Because of that the fitness values
have to be discretized. So the user specifies a number
of classes in which the fitness values of the individuals
in the example set should be reclassified.

An example for an automatically generated decision
tree using only 2 fitness classes (0 and 10) so that the

Repeated Rhythm Patterns of Four Notes

Rhythmic Range

<= 0.166667

Rhythmic Range

> 0.166667

0.0 (149.0)

<= 0.75

Note Pitch Changing with Chord Change

> 0.75

0.0 (6.0)

<= 0.833333

10.0 (3.0)

> 0.833333

0.0 (3.0)

<= 0.0625

Key Centering (Quanta)

> 0.0625

0.0 (4.0)

<= 0.266667

Harmonicity

> 0.266667

Key Centering (Quanta)

<= 0.5

10.0 (37.0)

> 0.5

10.0 (3.0)

<= 0.393443

0.0 (2.0)

> 0.393443

Fig. 11: Example for a decision tree for the classifica-
tion of melodies.

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 237

 0

 2

 4

 6

 8

 10

 12

 14

lkjihgfedcba

pruned decision tree, 5 fitness classes

unpruned decision tree, 5 fitness classes

decision tree, 11 fitness classes

interactive

Fig. 12: Comparison of decision tree classifiers with
interactive evaluation.

 0

 2

 4

 6

 8

 10

lkjihgfedcba

neural net, 6 hidden neurons

neural net, 35 hidden neurons

interactive

Fig. 13: Comparison of neural net classifiers with in-
teractive evaluation.

tree is small enough to print it here is depicted in fig-
ure 11 (the numbers in brackets give the number of
classified examples on the according leave).

Already this small example provides the facility for
interpretation. If the feature Repeated Rhythm Pat-
terns of Four Notes is very small and Rhythmic Range
is also not very high the individual is classified as a
bad melody. But if the Rhythmic Range is high and the
Note Pitch Changing with Chord Change is also high
it is classified as being a good one. Likely the follow-
ing explanation holds: In the examples the chords are
often changing with the bars. So if the rhythmic range
is high there is a good possibility that the rhythm is
confusing, but if there is always a note on the first beat
in a bar that is not bad.

6 Conclusions
Since it is difficult to evaluate the quality of the au-
tomatic classification functions we used 10 different
melodies and compared their automated classification
with an interactive one. In figure 12 we see the com-
parison of some decision trees. The classification of
the one with 11 fitness classes is identical using a
pruned and an unpruned variant so there is no differ-

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16 18 20

Fi
tn

es
s

 Generation

mean value
maximum

Fig. 14: Fitness development of an example evolution.

G 4
4 ˘ ˇ ˇ ˘ ˇ 4̌ ˘ 4ˇ ˇ ˘ ˘ G 4

4
< ˇ ˇ Z˘ ˇ ˇ Z˘ 6ˇ Zˇ ^ˇ Zˇ ˇ ˇ

Ľ̌Ľ̌ ˇ ˇ ˇ ˇ

G 4
4
< ˇ ˇ ˘ ˇ ˇ \˘ ˇ ˇ ¯ G 4

4
< ˇ ˇ ˘ ˇ 2ˇ ˘ 2ˇ 6ˇ ¯

G 4
4
˘ ˇ ˇ ˘ ˇ ˇ Z˘ 2ˇ 6ˇ ˘ ˘ G 4

4
ˇ ˇ ˇ ˇ ˇ ˇ
Č̌Č̌
ˇ ˇ ˇ
ÏÏ
ˇ ˇ ˇ ˇ ˇ Zˇ ÚÚˇ ˇ ˇ ˇ ¯

G 4
4
< ˇ ˇ \˘ ˇ ˇ -ˇ

` \-ˇ` (ˇ \ˇ \ˇ ˇ ˇ ˇ ˇ
Ŕ̌Ŕ̌ ˇ ˇ ˇ ˇ G 4

4
ˇ ˇ ˇ ˇ ˇ ˇ
Č̌Č̌
ˇ ˇ ˇ ˇ ˇ ˇ Zˇ Zˇ ˇ ˇ ˇ ˇ

ňň̌ ¯

G 4
4 ˇ ˇ ˇ
ÏÏ
ˇ ˇ
ÎÎ
ˇ ˇ Zˇ ˇ
Ŕ̌Ŕ̌ ˇ ˇ ˇ ˇ Zˇ Zˇ ˇ ˇ ˇ ˇ ¯ G 4

4 ˘ ˇ ˇ ˘ ˇ ˇ ˘ 4ˇ 4ˇ ˘ ˘

Fig. 15: Automatically generated melodies using a
pruned decision tree with 5 fitness classes in
20 generations. The bars specify the automat-
ically assigned fitness.

ence. The individuals a to l are sorted with respect
to the interactive evaluation. The tree with 11 fitness
classes makes some errors on the bad individuals and
the unpruned one with 5 fitness classes is questionable
in the middle fitness area. The pruned tree with 5 fit-
ness classes leaves the best impression.

The comparison of the neural networks in figure 13
reveals that they are not very good in our configura-
tion. Because of the very low TSSE it is likely that
there is a problem with overfitting (see section 5.2.1).

An example for some automatically generated
melodies is given in figure 15. The development of
the fitness is presented in figure 14. Here for every
generation the mean value of all individuals in the cur-
rent population and the best fitness value in the current
population is shown.

Based on this preliminary experimental study we
conjecture that decision trees seem to be good for au-
tomatic classification on a comparative small number
of example individuals. Neural networks are not con-

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 238

vincing and should be analysed on a larger training
set. With our method it is possible to generate pleasent
melodies in just a few generations of an evolutionary
algorithm.

7 Future Work
One main task for future work is to generate a larger
example set for analysing different methods for auto-
matic classification in a more comprehensive manner.
For that purpose it will be helpful to have many exper-
iment participants for a not that subjective evaluation
of the training melodies. Another point is the analysis
of other similarity functions like the one mentioned in
[6].

References:

[1] Thomas Bäck, David B. Fogel, and Zbigniew
Michalewicz, editors. Handbook of Evolution-
ary Computation. Institute of Physics Publishing
and Oxford University Press, Bristol, UK, 1997.

[2] John A. Biles. Genjam: A genetic algorithm
for generating jazz solos. In Proceedings of
the International Computer Music Conference
(ICMC 1994), pages 131–137, San Francisco,
USA, 1994. International Computer Music As-
sociation.

[3] John A. Biles. Genjam populi: Training an iga
via audience-mediated performance. pages 347–
348, San Francisco, USA, 1995.

[4] John A. Biles, Peter G. Anderson, and Laura W.
Loggi. Neural network fitness functions for a
musical iga. In Proceedings of the Soft Comput-
ing Conference (SOCO 1996), pages B39–B44,
Reading, UK, 1996. ICSC Academic Press.

[5] Anthony R. Burton. A Hybrid Neuro Genetic
Pattern Evolution System Applied to Musical
Composition. PhD thesis, University of Surrey,
School of Electronic Engineering, Information
Technology and Mathematics, Guildford, Surrey,
England, 1998.

[6] Maarten Grachten, Josep-Lluís Arcos, and Ra-
mon López de Mántaras. Melodic similarity:
Looking for a good abstraction level. In Pro-
ceedings of the International Conference on Mu-
sic Information Retrieval (ISMIR), Barcelona,
Spanien, 2004.

[7] Christian Igel and Michael Hüsken. Empirical
evaluation of the improved Rprop learning algo-
rithms. Neurocomputing, 50:105–123, 2003.

[8] Brad Johanson and Riccardo Poli. Gp-music:
An interactive genetic programming system for
music generation with automated fitness raters.
Technical Report CSRP-98-13, Stanford Univer-
sity, University of Birmingham, 1998.

[9] Roman Klinger. Komposition von Musik mit
Methoden der Computational Intelligence. Mas-
ter’s thesis, Department of Computer Science,
University of Dortmund, Germany, June 2006.

[10] George Papadopoulos and Geraint Wiggins. AI
methods for algorithmic composition: A survey,
a critical view and future prospects. In Sympo-
sium on AI and Scientific Creativity (AISB’99):
Symposium on Musical Creativity, pages 110–
117, 1999.

[11] John R. Quinlan. Induction of decision trees.
Machine Learning, 1(1):81–106, 1986.

[12] John R. Quinlan. Learning with continuous
classes. In Proceedings of the Fifth Australian
Joint Conference on Artificial Intelligence, pages
343–348, 1992.

[13] Martin Riedmiller and Heinrich Braun. A di-
rect adaptive method for faster backpropagation
learning: the rprop algorithm. In Proceedings
of the International Conference on Neural Net-
works, San Francisco, USA, 1993.

[14] Günter Rudolph. An evolutionary algorithm for
integer programming. In Yuval Davidor, Hans-
Paul Schwefel, and Reinhard Männer, editors,
Parallel Problem Solving from Nature – PPSN
III, pages 139–148, Berlin, 1994. Springer.

[15] Michael Towsey, Andrew Brown, Susan Wright,
and Joachim Diederich. Towards melodic exten-
sion using genetic algorithms. In A. R. Brown
and R. Wilding, editors, Proceedings of Inter-
faces: The Australian Computer Music Confer-
ence, pages 85–91, 2000.

[16] Geraint Wiggins and George Papadopoulos. A
genetic algorithm for the generation of jazz
melodies. In Proceedings of the Finnish Con-
ference on Artificial Intelligence (STeP ’98),
Jyväskylä, Finnland, 1998.

[17] Ian H. Witten and Eibe Frank. Data Mining. El-
sevier Inc., San Francisco, 2005.

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 239

	Introduction
	Overview
	Mutation and Recombination
	Selection
	Evaluation
	Feature Extraction
	Evaluation with Data Mining Methods
	Using Feed Forward Neural Networks
	Using Decision Trees

	Conclusions
	Future Work

