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Abstract: - We compute the thermal stresses arising in an homogeneous isotropic infinitely long
solid circular cylinder when a constant heat flux is acting on its boundary. We use the hyperbolic
heat equation and Green’s function to compute the temperature. A comparison with analogous
results obtained with the classical Fourier heat equation is made.
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1 Introduction
The purpose of this communication is to

compute the thermal stresses arising in an in-
finitely long solid circular cylinder when a con-
stant heat flux is applied to its boundary us-
ing the hyperbolic model of heat conduction,
and to compare this results with the computed
ones in the case of using the classical Fourier
heat conduction model.

We consider an homogeneous isotropic solid
infinitely long circular cylinder of radius R > 0
at initial temperature T0 with constant and
independent on the temperature physical pa-
rameters thermal conductivity k, density d,
specific heat c, relaxation parameter τ, diffu-
sivity α := k

c d , coefficient of linear dilatation
α, Young’s modulus E and Poisson’s coeffi-
cient ν. Starting in the time t = 0 a constant
heat flux Q0 is normally applied in all the
points of its surface. The first step in order
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to compute the thermal stresses developed in
the cylinder is to find the induced temperature
field. Choosing the z-cartesian coordinate axis
along the axis of the cylinder, the temperature
will be axisymmetric with respect to the z-axis
(independent on the polar angle θ) and inde-
pendent on the z-coordinate, thus the govern-
ing hyperbolic heat equation in cylindrical co-
ordinates will be (see [5])

−∂2T

∂ρ2
− 1

ρ

∂T

∂ρ
+

1
α

(
∂T

∂t
+ τ

∂2T

∂t2

)
= 0 (1)

in the domain (ρ, t) ∈]0, R[×]0,∞[, with the
initial and boundary conditions

T (ρ, 0) = T0
∂T

∂t
(ρ, 0) = 0 ρ ∈]0, R[, (2)

∂T

∂ρ
(0, t) = 0 t > 0 (3)

and
∂T

∂ρ
(R, t) =

Q0

k

(
H(t) + τδ(t)

)
t > 0. (4)

Following [1] we introduce the dimensionless
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variables

V (ρ, t) = k
T (ρ, t)− T0

R Q0
, (5)

η =
ρ

R
, ξ =

α t

4 R2
, Λ =

α τ

4 R2
(6)

which yield to the problem

−∂2V

∂η2
− 1

η

∂V

∂η
+

1
4

(
∂V

∂ξ
+ Λ

∂2V

∂ξ2

)
= 0 (7)

in the new domain (η, ξ) ∈]0, 1[×]0,∞[,

V (η, 0) =
∂V

∂ξ
(η, 0) = 0 η ∈ ]0, 1[, (8)

∂V

∂η
(0, ξ) = 0 ξ > 0 (9)

and
∂V

∂η
(R, ξ) = H(ξ) + Λ δ(ξ) ξ > 0. (10)

2 Green’s function
Problem (7)-(10) is solved in [1] using the

residue and convolution theorems to find the
Laplace inverse transform of V. We follow a
less involved method, the use of Green’s func-
tion, furthermore providing the key to solve
many thermal problems concerning the quoted
geometry in an automatic way (see [3]).

In cylindrical dimensionless coordinates (5)
and (6) Green’s function corresponding to
our problem is the distribution G(η, ξ) :=
G(η, ξ|η0, ξ0) verifying for every (η0, ξ0) ∈
]0, 1[×R the boundary value problem

− ∂2G

∂η2
− 1

η

∂G

∂η
+

1
4

(
∂G

∂ξ
+ Λ

∂2G

∂ξ2

)
=

=
1
η

δ(η − η0) δ(ξ − ξ0) (η, ξ) ∈]0, 1[×R,

(11)
∂G

∂η
(0, ξ) =

∂G

∂η
(1, ξ) = 0 ξ ∈ R (12)

and

lim
ξ→∞

G(η, ξ) = lim
ξ→∞

∂G

∂ξ
(η, ξ) = 0 η ∈]0, 1[.

(13)

Denoting by L(η, p) the Schwartz-Laplace
transform with respect to ξ of G(η, ξ) we ob-
tain (see [6])

− ∂2L

∂η2
(η, p)− 1

η

∂L

∂η
(η, p)+

+
1
4
(p + Λp2) L(η, p) =

1
η

δ(η − η0) e−p ξ0 ,

(14)
∂L

∂η
(0, p) =

∂L

∂η
(1, p) = 0 (15)

and (16)
lim
p→0

L(η, p) = lim
p→0

p L(η, p) = 0. (17)

In order to verify (15), condition (17) allow
us to take finite Hankel transforms of second
kind with respect to η

Hm(p) :=
∫ 1

0
η J0(βm η) L(η, p) dη

(m ∈ N ∪ {0}) where {βm}∞m=0 is the strictly
increasing sequence of non negative zeros of
the equation J1(β) = 0, the Bessel function
of first kind and order 1. Thus, using equation
(14) and the inversion formula of finite Hankel
transforms (see [7]) we obtain

L(η, p) =

= 8
∞∑

m=0

J0(βm η0) J0(βm η)(
4 β2

m + p + Λ p2
)

J0(βm)2
e−p ξ0 .

In order to simplify the exposition we assume
that the material of the cylinder is such that
16 λ β2

m − 1 6= 0 for every m ∈ N∪ {0}. Thus,
by inversion of Schwartz-Laplace transforms
we obtain the adimensional Green’s function

G(η, ξ|η0, ξ0) = 16 H(ξ − ξ0) ×

×
∞∑

m=0

J0(βm η0) J0(βm η)
J0(βm)2

Fm(ξ, ξ0) (18)

where, for every m ∈ N ∪ {0}

Fm(ξ, ξ0) = e−
ξ−ξ0
2 Λ ×

×
(

H
(
1− 16 Λ β2

m

)
√

1− 16 Λ β2
m

sinh γm(ξ − ξ0)+
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+
H

(
16 Λ β2

m − 1
)

√
16 Λ β2

m − 1
sin Γm(ξ − ξ0)

)

where we have defined, for every m ∈ N

γm :=

√
1− 16Λβ2

m

2Λ
,

Γm :=

√
16Λβ2

m − 1
2Λ

. (19)

3 Temperature in the case of
boundary constant flux

According to the theory of Green’s func-
tions, the solution of problem (7)-(10) is given
directly by

∀ (η, ξ) ∈]0, 1[×]0,∞[ V (η, ξ) =

=
∫ ∞

−∞
G(η, ξ|1, ξ0)

(
H(ξ0) + Λ δ(ξ0)

)
dξ0

and after elementary computations and the
application of the equality (see [1])

∞∑

m=1

J0(ηβm)
β2

m J0(βm)
=

η2

4
− 1

8

we obtain

= 16
∞∑

m=0

J0(βm η)
J0(βm)

∫ ξ

0
Fm(ξ, ξ0) dξ0+

+ 16 Λ
∞∑

m=0

J0(βm η)
J0(βm)

Fm(ξ, 0) =

= 8 ξ +
2 η2 − 1

4

− e−
ξ

2 Λ

∞∑

m=1

J0(βmη)
β2

mJ0(βm)
Rm(ξ) (20)

where

∀ m ∈ N Rm(ξ) = H
(
1− 16Λβ2

m

)×

×
(

cosh γmξ +
2− 16Λβ2

m√
1− 16Λβ2

m

sinh γmξ

)
+

+ H
(
16Λβ2

m − 1
)×

×
(

cos Γmξ +
2− 16Λβ2

m√
16Λβ2

m − 1
sin Γmξ

)
.

It can be checked, after elementary compu-
tations, that this function coincides with the
obtained one in [1].

4 Thermal stresses
We start computing the actual value of

some expressions which will appear frequently
in the sequel. From (5), (6) and (20), by the
well known equality (see [8], page 45)

∀ γ > 0
∫ ρ

0
r J0(γ r) dr =

ρ

γ
J1(γ ρ)

we obtain
∫ ρ

0

(
T (ρ, t)− T0

)
rdr =

=
R Q0

k

(
αρ2

R2
t +

ρ4

8R2
− ρ2

8

− Rρ e−
t
2τ

∞∑

m=1

J1

(
βm

R ρ
)

β3
mJ0(βm)

Rm

(
αt

4R2

)


(21)

and thus
∫ R

0

(
T (ρ, t)− T0

)
ρ dρ =

αRQ0

k
t. (22)

We are now in a position to compute the
thermal stresses in the cylinder. Since we are
concerned with an infinitely long cylinder we
have to deal with a state of plane strain. It is
well known that in this case the components
of the stress tensor in cylindrical coordinates
are given by (see [4], page 206)

σρθ(ρ, t) = 0

σρρ(ρ, t) =
αE

1− ν

(
− 1

ρ2

∫ ρ

0
r
(
T (r, t)− T0

)
dr+

+
1

R2

∫ R

0
r
(
T (r, t)− T0

)
dr

)
,

(23)
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σθθ(ρ, t) =
αE

1− ν

(
1
ρ2

∫ ρ

0
r
(
T (r, t)− T0

)
dr+

1
R2

∫ R

0
r
(
T (r, t)− T0

)
dr − (

T (ρ, t)− T0

))

(24)

and

σzz(ρ, t) =
αE

1− ν

(
2

R2

∫ R

0
r
(
T (r, t)− T0

)
dr

−(
T (ρ, t)− T0

))
(25)

having in mind the existence of an axial strain
of magnitude

ε0(t) =
2ααQ0

kR
t (26)

(see [4], page 205).
After substitution of previous results and

elementary computations we obtain

σρρ(ρ, t) =
αERQ0

k(1− ν)

(
1
8
− ρ2

8R2
+

+
R

ρ
e−

t
2τ

∞∑

m=1

J1

(
βm

R ρ
)

β3
mJ0(βm)

Rm

(
αt

4R2

)
 ,

σθθ(ρ, t) =
αERQ0

k(1− ν)

(
1
8
− 3ρ2

8R2
−R e−

t
2τ×

×
∞∑

m=1


J1

(
βmρ
R

)

ρ β3
m

−
J0

(
βmρ
R

)

R β2
m


 Rm

(
αt

4R2

)

J0(βm)


 ,

σρθ(ρ, t) = 0

and

σzz(ρ, t) =
αERQ0

k(1− ν)

(
1
4
− ρ2

2 R2
+

+ e−
t

2τ

∞∑

m=1

J0

(
βm

R ρ
)

β2
mJ0(βm)

Rm

(
αt

4R2

)
 .

5 Comparison with the classi-
cal case

If we use the classical parabolic Fourier heat
equation to find the temperature (denoted by
TF (ρ, t) to distinguish) we arrive (see [1]) to

TF (ρ, t) = T0 +
RQ0

k
VF

(
ρ

R
,

αt

4R2

)

where
VF (η, ξ) =

= 8 ξ +
2η2 − 1

4
− 2

∞∑

m=1

J0(βmη)
β2

mJ0(βm)
e−4β2

mξ.

It can be seen that this temperature field
produce the same axial strain ε0 given by (26)
and that formulas (22) and σρθ(ρ, t) = 0 still
holds. However in this case we have

σρρ(ρ, t) =
αERQ0

k(1− ν)

(
1
8
− ρ2

8R2
+

+2
R

ρ

∞∑

m=1

J1

(
βm

R ρ
)

β3
mJ0(βm)

e−
αβ2

m
R2 t


 ,

σθθ(ρ, t) =
αERQ0

k(1− ν)

(
1
8
− 3ρ2

8R2
− 2R ×

×
∞∑

m=1


J1

(
βmρ
R

)

ρ β3
m

−
J0

(
βmρ
R

)

R β2
m


 e−

αβ2
mt

R2

J0(βm)




and

σzz(ρ, t) =
αERQ0

k(1− ν)

(
1
4
− ρ2

2 R2
+

+2
∞∑

m=1

J0

(
βm

R ρ
)

β2
m J0(βm)

e−
αβ2

mt

R2


 .

(27)

The quantitative differences arising in the
stresses values given by the hyperbolic and the
parabolic temperature models are numerically
considerable and thus very important concern-
ing practical industrial applications. Remark
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that these differences are proportional to the
applied heat flux Q0 (see the position of the
term Q0 in all previous formulas of stresses)
and that high fluxes applied in small tem-
poral intervals are more and more frequently
used in modern laser technology. As a sim-
ple illustration, working with the dimension-
less stresses deduced from (6) and ignoring the
factor αERQ0

k(1−ν) we have plotted in figures 1, 2
and 3 the radial variation of tension σρρ in the
dimensionless time ξ = 0.15, ξ = 0.158 and
ξ = 0.17 respectively, taking Λ = 0.1 and us-
ing the dashed line for the tension computed
with Fourier heat equation and the solid line
in the case of using the hyperbolic heat equa-
tion.
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0.4

Figure 1: Stress σρρ corresponding to ξ = 0.14
and Λ = 0.1
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Figure 2: Stress σρρ corresponding to ξ = 0.15
and Λ = 0.1
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Figure 3: Stress σρρ corresponding to ξ = 0.159
and Λ = 0.1
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