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Abstract: - In this paper, the smoothing parameter selection problem has been examined in nonparametric 
regression using smoothing spline method for different data sets. For that reason a Monte Carlo simulation study 
has been performed with a program that coded in MATLAB. This simulation study provides a comparison of the 
five popular smoothing parameter selection criteria. Thus, the emprical performances of the five selection 
criteria have been investigated and suitable criteria, which used for smoothing parameter selection, have been 
obtained. 
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1 Introduction 

Smoothing spline method is one of the most 
popular methods used for the prediction of the 
nonparametric regression models. The aim of this 
method is to estimate the nonparametric function that 
minimizes penalized least squares criterion. A 
roughness penalty term multiplied by a positive λ  
smoothing parameter is added to the residual sum of 
squares in smoothing spline regression. For this 
reason, the estimation of the unknown function 
depends on smoothing parameter λ  whose values is 
generally obtained from data. Therefore, the 
determination of an optimum smoothing parameter in 
the interval (0, )∞  has been arisen as an important 
problem. As related with subject in theory, many 
studies based on the different selection methods have 
been discussed for choosing an appropriate 
smoothing parameter. For references on choosing of 
the smoothing parameter, see, for example, Craven 
and Wahba (1979); Hurvich, et al. (1998); Eubank 
(1999); Lee and Solo (1999); Cantoni and Ronchetti 
(2001); Lee (2003 and 2004); Kou and Lee (2003). 
     In this study, the empirical performances of five 
smoothing parameter selection methods which are 
used for selection of the smoothing parameter have 
been compared. The selection criteria mentioned here 
are given as fallowing: Cross-validation (CV), 
generalized cross-validation (GCV), improved 
version of Akaike information criterion (AICc), 
Mallows’ Cp and risk estimation using classical pilots 
(RCP). A simulation study is conducted to find out 
which selection methods are the best in smoothing 

parameter selection. Thus, the small and large 
samples are obtained via the mentioned simulation 
study and the six selection methods are evaluated.  
     The rest of this paper is organized as fallows. 
Nonparametric regression and its prediction is 
presented in Section 1. Five different smoothing 
parameter selection methods are reviewed in Section 
3. Section 4 compares these methods via a simulation 
study, while conclusion and recommendations are 
offered in Section 5. 
 
 
2 Nonparametric Regression Model 

and Its Prediction 
Nonparametric regression model including a 

predictor (independent) variable x  and a response 
variable y  is defined as  

1( ) , ... ni i iy f x a x x bε= + < < < < ,               (1) 

where 2[ , ]f C a b∈  is an unknown smooth function, 

1( )n
i iy =  are observation values of the response 

variable y , 1( )n
i ix =  are observation values of the 

predictor variable x  and 1( )n
i iε =  are normal 

distributed random errors with zero mean and 
common variance 2σ  ( 2~ (0, )i Nε σ ).  
     The essential aim of the nonparametric regression 
is to estimate unknown function 2[ , ]f C a b∈  (the 
class of all functions f  with continuous first and 
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second derivatives) in model 1. Smoothing spline 
estimate of the f  function arises as solution to the 

following minimization problem: Find 2ˆ [ , ]f C a b∈  
that minimizes the penalized residual sum of squares 

{ } { }2 2( ) ( ) ( )
b

a

n

i i
i=1

S f = y - f  x + λ f x dx′′∑ ∫          (2) 

for pre-specified value 0λ > . The first term in 
equation (2) denotes the residual sum of the squares 
(RSS) and it penalizes the lack of fit. The second 
term which is weighted by λ  denotes the roughness 
penalty (RS) and it imposes a penalty on roughness. 
In other words, it penalizes the curvature of function. 
The λ  in (2) is known as the smoothing parameter. 
As λ  varies from 0 to +∞, the solution varies from 
interpolation to a linear model. When λ → +∞ , the 
roughness penalty dominates in (2) and the spline 
estimate is forced to be a constant. When 0λ → , the 
roughness penalty disappears in (2) and the spline 
estimate interpolates the data. Thus, the smoothing 
parameter λ  plays a key role in controlling the trade-
off between the goodness of fit (the closeness to data) 

represented by { }2( )
n

i i
i=1

y - f  x∑ and smoothnees of 

the estimate measured by { }2( )
b

a

f x dx′′∫ . 

     The solution based on smoothing spline for 
minimum problem in the equation (2) is known as a 
“natural cubic spline” with knots at 1,..., nx x . From 
this point of view, a special structured spline 
interpolation which depends on a chosen value λ  
becomes a suitable approach of function f  in model 
1. Let 1( ( ),..., ( ))nf x f x=f  be the vector of values 
of function f  at the knot points 1,..., nx x . The 

smoothing spline estimate ˆ
λf  of this vector or the 

fitted values for data T= ( ,..., )1 ny yy  are given by 

( )

1

22

λ ( )

(n×1)

ˆ ( )
ˆ ( )

..ˆ ˆS

..

..
ˆ ( )

1

n n

nn

f x y

yf x

or S

yf x

λ

λ

λ λ λ

λ

×
= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

f f y=    (3) 

where f̂λ  is a natural cubic spline with knots at 

1,..., nx x  for a fixed smoothing parameter 0λ > , 

and Sλ  is a well-known positive-definite 
(symmetrical) smoother matrix which depends on λ  
and the knot points 1,..., nx x , but not on y . For 
general references about smoothing spline, see 
Eubank (1988), Green and Silverman (1994) and 
Wahba (1990). 
 
 
3 Smoothing Parameter Selection 

Criteria 
Smoothing spline estimator solves the problem of 

allowing fits with variable slope, but it creates a new 
problem. In other words, it creates the determination 
of the appropriate value for the smoothing parameter 
λ  for a given data set. The same value of λ  is 
unlikely to work equally well with every data set. For 
this purpose, the selection methods have been 
introduced for the selection of smoothing parameter 
λ  in equation (2). The positive value λ  that 
minimizes any selection criter is selected as an 
appropriate smoothing parameter.  

Cross-Validation: The basic idea of CV is to leave 
the points { } 1

, n
i i i

x y
=

 out one at a time and to select 
the smoothing parameter λ  that minimizes the 
residual sum of squares and to estimate squared 
residual for a smooth function at ix  based on the 
remaining ( 1)n −  points. The CV score function to 
be minimized is given by 

{ }
2

2( )

1 1

ˆ1 1 ( )ˆCV( ) = ( ) CV( ) = 
n 1 ( )

n n
i i i

i i
i i ii

y f x
y f x

n S
λ

λ

λ

λ λ−

= =

−
− ≡

−

⎧ ⎫
⎨ ⎬
⎩ ⎭

∑ ∑
                     (4) 

where f̂λ  is the fit (spline smoother) for n pairs of 

measurements { } 1
, n

i i i
x y

=
 with smoothing parameter 

λ , and ( )ˆ ifλ
−  is the fit calculated by leaving out the 

ith data point and ( )iiSλ  is the ith diagonal element 
of smoother matrix Sλ  (see Wahba, 1990; Green and 
Silverman,1994). 

Generalized cross-validation: GCV is a modified 
form of the CV which is a popular criter for choosing 
the smoothing parameter. The GCV score is 
constructed by analogy to CV score obtained from 
dividing to the factors 1 ( )iiSλ− of the ordinary 
residuals. The main idea of GCV is to replace the 
factors 1 ( )iiSλ−  in equation (4) with the average 
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score 11 ( )n tr Sλ
−−  Thus, by summing of the 

squared residual corrected and factor 

{ }211 ( )n tr Sλ
−− , by the analogy ordinary cross-

validation, the GCV score function is obtained as 
fallow (Wahba, 1990): 

{ }

{ }
( )
( )

2

211
1

2 21 1

ˆ ( )
1

GCV( )
1 ( )

n

i
λi

y f x
n I - S

n n tr S n tr I S

λ

λ λ

λ
−

=

− −

−
= =

− −⎡ ⎤⎣ ⎦

∑ y
(5) 

İmproved Akaike information criterion: An improved 
version of a criterion based on the classical Akaike 
information criterion (AIC), AICc criterion, is used 
for choosing the smoothing parameter for 
nonparametric smoothers (Hurvich et al., 1988). This 
improved criterion is defined as 

{ } { }

( ) { }

2

c

2

ˆ ( ) 2 ( ) 1
AIC ( ) log 1

( ) 2

2 ( ) 1
log 1

( ) 2

i iy f x tr S

n n tr S

S I tr S

n n tr S

λ λ

λ

λ λ

λ

λ
− +

= + +
− −

− +
= + +

− −

∑

y
              (6) 

This criterion is easy to apply for choosing of 
smoothing parameter, as can be seen from the 
equation (6).  

Mallows’ CP criterion: pC  criterion is known as 
unbiased risk esimate (UBR) in smoothing spline 
literature. This type of estimate was suggested by 
Mallows (1973) in regression case, and applied to 
smoothing spline by Craven and Wahba (1979). 
When 2σ  is known, an unbiased estimate of the 
residual sum of squares is given by pC  criterion: 

{ }

{ }

2 2 2

p

2 2 2

1
( ) ( ) 2 ( )

1 ˆ 2 ( )

C S I tr S
n

tr S
n

λ λ

λ λ

λ σ σ

σ σ

= − + +

= + +

y

y - f

                  (7) 

Unless 2σ  is known, in practice an estimate for 2σ  is 
estimated by 

( )
( ) ( )

n
2

2ˆi λ i
ˆ2 2 λi=1

λ̂
ˆ ˆλ λ

ˆ ( )
( )

ˆ ˆ
y f x

S I

tr I S tr I S
σ σ

−
−

= = =
− −

∑ y
             (8) 

where λ̂  is pre-chosen with any of the CV, GCV or 
AICC criteria ( λ̂  is an estimate of λ ) For reference, 
see Lee (2002), Lee (2003), and Wahba (1990). 

Risk estimation using classical pilots: Risk function 
measures the distance between the actual regression 

function ( f ) and its estimation ( ˆ
λf ). Actually, a good 

estimate must contain minimum risk. A direct 
computation leads to the bias-variance decomposition 
for λ

ˆ( , ) R f  f : 

( ){ }

2

λ λ

2 2

1ˆ ˆ( ) =  
n

1
( )T

R E

S I tr S S
n λ λ λσ= − +

f, f f - f

f

                (9) 

It is straightforward to show that 

( ) { }p
ˆ, ( )R E Cλ λ=f f  Because the risk λ

ˆ( , ) R f  f  is 

an unknown quantity, so-called risk is now estimated 
by computable quantity 

p λ
ˆ ˆ( )R λf , f . The obtained 

expression for 
p λ

ˆ ˆ( )R λf , f  is  

( ){ }
p p

p p

2

λ λ

2 2

1ˆ ˆ ˆ ˆ( ) =  
n
1 ˆ ˆ ( )T

R E

S I tr S S
n

λ λ

λ λ λ λ λσ= − +

f , f f - f

f

           (10) 

where 2ˆ
pλ

σ  and 
p

ˆ
λf  are the appropriate pilot 

estimates for 2σ  and f , respectively. The pilot pλ  
selected by classical methods is used for computation 
of the pilot estimates. 
 
 
4 Simulation Study 

In this section we use Monte Carlo simulations to 
examine the properties of the various selection 
criteria. The simulations investigates the performance 
of the selectors as they relate to the four regression 
functions and standart deviations of the errors. The 
four regression functions for the experimental setup 
adopted here were used in earlier Monte Carlo 
studies ( Ruppert et al., 1995; Hart and Yi, 1996; 
Herrmann, 1997), but we used different error standart 
deviations; besides generated the samples sized 
n = 200 from each of regression functions. The 
number of replications were 300. For each simulated 
data sets, the mean squared-errors (MSE) was used 
for evaluate the quality of any curve estimate f̂ . 
Whether the difference between the MSE median 
values of any two selection methods is significant or 
not were tested with paired Wilcoxon tests. In this 
way, methods which select the best smoothing 
parameter were determined by evaluating so-called 
selection methods.  
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4.1 Experimental setup 

The experimental setup applied here was 
designed to study the effects of the factors over the 
following four regression functions:  

1. ( ) sin(15 )i r i r i i r iy f x xσ ε π σ ε= + = + ,  

2. 2 3 4( ) 1 48 218 315 145i r i r i i i i i r iy f x x x x xσ ε σ ε= + − + − + +=
 

3. 
{ }

{ }

2

2

( ) 0.3exp 64( 0.25)

0.7 exp 256( 0.75)

i r i r i i

i r i

y f x x

x

σ ε

σ ε

= + − −

+ − − +

=
 

4. ( ) 10 exp( 10 )i r i r i i r if x xy σ ε σ ε= + = − +  

Where 20.02 0.04( 1) , 1,...,r r i nσ = + − =  and 
0.51,...,6; ; ~ (0,1)i i

ir x iid N
n

ε−
= =  

     The simulation study was performed with 
MATLAB program and the experimental setup was 
designed as the following way: 

• To see the performance of the selection methods 
for each set of experiments, factor level r  is 
changed six times ( 1, 2, 3, 4, 5, 6r = ).  

• We generated sample sizes n  = 200 for each 
level of the  regression functions. The number of 
replications were m  = 300 for each data set of 
the generated samples  

• We computed the appropriate smoothing spline 
estimators ˆ

λf  in equality (3) by selecting the 
smoothing parameter λ  which minimizes the 
selection methods. 

• We used the MSE values to evaluate ˆ
λf  

computed according to each of the selection 
criterion: 

{ }
2n

i i
i=1

1 ˆ( ) ( )MSE f x f x
n λ= −∑ , 

( ˆ ˆ( ) ( )i if xλ λ= f ).                                              (11) 

• Paired Wilcoxon test was applied to test whether 
MSE values considered as the performance 
measure of any two methods are significant or 
not. 

• By considering 4 functions and 6 factor levels, 
we performed totally 24 numerical experiments. 

 

4.2 Empirical performance of the selection 
criteria  
For each simulated data set used in the 

experiments, the MSE values were used in order to 
evaluate the quality of any curve estimate f̂ . Paired 
Wilcoxon tests were applied to test whether the 
difference between the median MSE values of any 
two methods is significant or not. The significance 
level used was % 5. The selection methods were also 
ranked in the following manner: If median MSE 
value of a method is significantly less than the 
remaining five, it will be assigned a rank 1. If median 
MSE value of a method is significantly larger than 
one but less than the remaining four, it will be 
assigned a rank 2, and similarly for ranks 3-5. 
Methods having non-significantly different median 
values will share the same averaged rank, on the 
other hand, method or methods having the smallest 
rank will be superior. 

 
Figure 1: In each of fanels the top row plots display the 
true regression function together with one typical 
simulated data set. The bottom row plots display the 
boxplots of the elog MSE  values for, from left to right, 
AICc, GCV, CV, Cp and RCP  criteria. The numbers 
below the boxplots are the paired Wilcoxon test rankings. 

     According to the simulation, the resulting 
rankings are given  in Figures 1-4 to five selection 
methods, which is express in section 3. For 24 
different simulation experiments, the averaged 
ranking values of the selection methods according to 
Wilcoxon tests are tabulated in Table 1. 
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Figure 2: Similar to Figure 1, but the simulation results of  
the regression function  2 
 
5 Conclusions and Recommendations 

According to all regression functions and general 
means in Table 1, it may seem that AICc is the best 
criter. However, AICc was not better than the other 
criteria in the 24 different smimulation 
configurations. For example, when Figure 1 is 
examine, RCP has taken the best ranking for r =1, 
then  CV has taken the best ranking for r = 4 and 5. 
As similar, the same postions may seem into the 
other figures.  In brief, from a closer inspection of the 
simulation results, the following observations were 
made: 
• According to all regresion and functions general 

means, AICc has had the superior emprical 
performance.  

Figure 3: Similar to Figure 1, but the simulation results of  
the regression function 3 

• CV criterion indicated the worst performance 
according to all regression functions and general 
means;  

• The two selection methods, GCV and Cp criteria, 
gave very similar results according to all regression 
functions;  

• The two selection methods, GCV and Cp 
criteria, gave a very good  performance 
after the AICc. 

Figure 4: Similar to Figure 1, but the simulation results of  
the regression function  4 

Table 1: Averaged Wilcoxon test ranking values for the 
six selection criteria  

 Func.1 Func.2 Func.3 Func.4 Average

AICc 2.667 2.333 2.500 2.083 2.583 

GCV 2.667 3.083 2.750 2.917 2.854 

CV 3.000 3.667 3.417 3.500 3.396 

Cp 2.667 2.750 2.750 2.917 2.761 

RCP 3.000 3.167 3.083 2.917 3.045 

 

     According this simulation results, our 
recommendation is as fallows: In all regressions 
moodels and general means, use the AICc criterion 
because of its superior emprical performance; 
otherwise use one of the GCV and Cp criteria that 
emprical performance is very close to AICc.  
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