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Abstract: - In this paper, different regression models are obtained to examine relation between house price and 
house features in Centrum of Eskisehir Province (Turkey). The statistical analyses of this paper indicate that 
some of explanatory variables affect the response variable parametrically and some of them nonparametrically. 
Therefore, obtained suitable model has both parametric and nonparametric variables and the model is 
semiparametric additive regression model. It has concluded that this model has given better results  than linear 
model. 
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1 Introduction 
In this paper, semiparametric additive regression 
model, which includes parametric and nonparametric 
components, is discussed [1], [4]. Smoothing spline is 
used for estimating such a model [3], [4]. Generally, 
choosing the suitable (optimal) smoothing parameters 
and estimating smoothing spline predictors by 
smoother matrix are main tools for additive models. 
The predictors for the smoothing spline are obtained 
by backfitting algorithm which is used frequently [3], 
[4]. For choosing smoothing parameters, Generalized 
Cross Validation method (GCV) which is automatic 
method is frequently used. On the other hands, in the 
additive models degrees of freedom measures for 
selecting the smoothing parameters are used instead 
of GCV, because GCV is less reliable and it’s needed 
to select several smoothing parameters 
simultaneously [4].  
     The paper is structured as follows. In the next 
section, smoothing spline is discussed for additive 
and semiparametric models. Also estimating 
equations and backfitting algorithm is discussed. In 
the third section, house characteristics, which affect 
house price in Centrum of Eskisehir Province 
(Turkey), are examined. For this aim, linear model 
and semiparametric additive model are built. 
Statistical analyses made for this study indicate that 
two and more variables of the model affect response 
variable nonparametrically while most of the 
explanatory variables affect parametrically. 

Therefore, it is concluded that additive regression 
model with both parametric and nonparametric 
variables is suitable (best) regression model for data 
of house price. Then, it is also concluded that the best 
(suitable) semiparametric additive model better than 
linear model. 
 
 
2 Estimating Equations for Additive 
Regression Models 
An additive regression model [4] is defined by 
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Where, jf ’s are arbitrary univariate functions. Also 

jf  are the n-vectors , 1( ( ),..., ( ))T
j j j j jnf x f x=f

1, 2,...,j p=  with ijx  in the order iy . 
     A semiparametric additive regression model is 
defined by  
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with p-nonparametric components. Eq.(2) can be also 
sensed as additive regression model, because 
parametric part of Eq.(2) is summation of linear 
functions. 
     If Eq.(2) has only one f  component, the model 
converts to semiparametric regression model [3]. 
     When smoothing spline is used to estimate Eq.(1), 
over all twice continuously differentiable functions 

jf   generalized penalized least-
squares criterion is considered as follows.  

1, 2,...,j = p

dx{ }
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Each function jf  in Eq.(3) is penalized by a separate 
constant smoothing parameter 
     Analogously single-predictor case, Eq.(3) can be 
written as follows [4]. 
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Where the ’s are penalty matrices for each 
predictor and they are defined analogously to the 

jK
K  

for a single predictor. Eq.(4) is a square form with 
respect to ,  vectors. If we 

differentiate Eq.(4) with respect to the function , we 
obtain -system which is called estimate 
equations as follow [4]. 
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Where  is the suitable 

smoother matrix. Eq.(5) shortly can be written as 
. 
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     Eq.(5) reflect that each of k̂f  estimating function 
obtained by solving Eq.(3) is a cubic spline which is 
determined by linear smoother: 
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Eq.(5) and Eq.(6) are equivalent systems. Let 
0
jf ,  be starting cases. Eq.(6) is 

suitable form of Eq.(5) in order to be performed 
backfitting algorithm which is obtained by Gauss-
Seidel procedure. The backfitting algorithm can be 
written as follows. 
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     For Eq.(2), semiparametric additive model, initial 
point of k in Eq(7) is zero: . 
Therefore, matrix  is smoother 
matrix for parametric part. Also  is predictor 
of parametric term. Convergence of Eq(7) is discussed 
by A. Buja, T.J. Hastie and R.J Tibshirani (1989) and 
T.J. Hastie and R.J Tibshirani (1999) [1], [4]. 
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1
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2.1   Inferences 
In this paper, the three main tools of inferences are 
deviance, degrees of freedoms and choosing 
smoothing parameters. 

Deviance: One way of testing adequacy of an 
interesting model and comparing the model is to 
compare the interesting model with saturated model, 
which has the maximum number of parameters that 
can be estimated. Let max( ,l b y  and  denote 
the maximum value of the likelihood function for the 
satturated model and interesting model, respectively. 
Where  is parameter vector of saturated model 
and  denotes the maximum likelihood estimator 
of . Then deviance can be denoted as follows. 

( , )l b y

maxβ

maxb

maxβ

{ }max( ; ) 2 ( ; ) ( ; )D l l= −y b b y b y                            (8) 
     Eq.(8) has an approximately chi-square 
distribution. It was called deviance by Nelder and 
Wedderburn (1972) [2]. 
     The deviance plays the role of the residual sum of 
squares for generalized models and can be used for 
testing goodness-of-fit and comparing models [2]. It is 
evaluated that, model with smallest deviance value is 
the best model within the all present models. 

     For nonparametric and additive models, the 
deviance is used to assess models and their 
differences. The distribution theory is not developed, 
but chi-square distribution still is used to compare 
models as the reference distribution [4]. 

Degrees of freedoms: The effective numbers of 
parameters or degrees of freedoms ( df ) of a 
smoother are used to compare different smoothers and 
models. In actually, it is possible to choose the value 
of smoothing parameter by specifying the degrees of 
freedoms for the smooth [4]. For non-parametric 
regression model with one variable, degrees of 
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freedoms is the trace of a smoother matrix, say λS : 
( )df tr λ= S . Analogously, for nonparametric model 

with more than one variable, overall degrees of 
freedoms can be defined as follows: ( )df tr λ= R . 
Where λR is the smoother matrix that produces 
ˆ

λ+ =f R y . f̂+  is sum of predictor vectors: 
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ˆ
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Selecting of smoothing parameters: Theoretically, 
selecting methods of smoothing parameters (GCV-
Generalized Cross Validation, AIC-Akaike 
Information Criteria, etc.) that used for functions with 
single variable, can be also used for additive models. 
Classical selecting models, like GCV and AIC 
especially, are designed in order to select 

, 1,...,j jλ =  smoothing parameters [7]. In the 
additive model with p-terms, it is accepted that p- 
smoothing parameters jλ  make optimization of a 
criteria as GCV [4]. 
     Practically, a suitable model is selected by 
changing degrees of freedoms, because selecting of 
two or more smoothing parameters simultaneously is 
too difficult and these parameters relation with 
degrees of freedoms directly.  
 
 
3 Application 
It is known that some explanatory variables affect 
house prices. In this application, it is examined that 
how these variables affect house prices. Shape of the 
variables on house prices (parametrically or 
nonparametrically) cannot be known. So, in this 
application, a suitable semiparametric additive 
regression model is constructed by using these 
variables and then if this model good or not is 
investigated 
     We collect data from information of 105 
apartments for sale in Centrum of Eskisehir Province 
(Turkey) at 2006, May and June. The variables of the 
data set are defined as follows. 
Price : House Price (YTL) 
Age : Age of houses 
Area : Using area of houses (m2) 
Garage : Dummy variable for garage 
Elevator: Dummy variable for elevator 
Park  : Dummy variable for park 
Erdgas : Dummy variable for erdgas 
Doorkeeper: Dummy variable for doorkeeper 
Car park: Dummy variable for car park 

     For these variables, suitable semiparametric 
additive regression model is constructed. On the 
other hand linear regression model that contains all 
variable parametrically is also constructed. 
Estimating results obtained from the semiparametric 
additive model are compared with the results of the 
linear model.  
     R and S-plus programmes are used for statistical 
analyses. 

     Details of semiparametric additive regression 
model: In constructing suitable semiparametric 
additive model, selection of smoothing parameter or 
equivalently degrees of freedom is one of the most 
problems. In this application, several models, whose 
nonparametric variables have different values of 
degrees of freedoms, are constructed. Then suitable 
(or the best) model is selected from between these 
models and the results for this selected suitable model 
are listed Table 1.  

Table 1. Semiparametric additive regression model 
results. 

 Parametric Part 
 Estimate St. Er. t-ist. Pr ( > t  ) 

(Intercept) 
Garage 
Elevator 
Park 
Erdgas 
D.keeper 
Car park 

10.1987 
0.0796 
-0.1056 
-0.1471 
0.0827 
0.3488 

-0.1548 

0.05999 
0.03771 
0.03772 
0.04394 
0.03105 
0.03353 
0.03094 

170.01211 
2.11203 
-2.79872 
-3.34829 
2.66274 

10.40233 
-5.00234 

3.88587e-55 
4.14965e-02 
8.10099e-03 
1.87885e-03 
1.14053e-02 
1.54878e-12 

1.40050e-05 

 Nonparametric Part 
 Sd Npar Sd 

Npar F Pr (F) 

s(Age) 
s(Area) 

1 
1 

49 
9 

2.8593 
3.6703 

0.0006184*** 
0.0023109** 

Dependent var.: log (Price )    Deviance = 0.7494    R2=0.97097 
Signif. codes: 0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘ ’1 

When Table1 is considered, it’s appeared that both 
parametric variables (“Garage”, “Elevator”, “Park”, 
“Erdgas”, “Doorkeeper” and “Car park”) and 
nonparametric variables (“Age” and “Area”) have 
statistically significant effects. Square of multiple 
correlation coefficient is determined as 0.9707 for the 
suitable semiparametric additive model. In other 
words, the suitable semiparametric additive model 
can explain 97.07% of the total variation in the data. 
     The nonparametric variables in nonparametric part 
of the suitable semiparametric additive model can be 
only displayed graphically, because they can’t be 
expressed parametrically. Effects of these 
nonparametric variables are shown Figure1. 
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Figure 1: (a) Changing of house prices with respect 
to their ages and 95% confidence interval. (b) 
Changing of house prices with respect to their areas 
and 95% confidence interval. 

     Additionally, linear regression model, which has 
all explanatory variables parametrically, is also 
constructed. Then, these two models are compared 
according to their deviance and R2 criteria. Several 
variables (“Age”, “Garage”, “Elevator”, “Car park”), 
which have significant effects in the suitable 
semiparametric additive model, have not significant 
effects in the linear model. Especially, it is 
recognized that, “Age” variable has significant effect 
nonparametrically in the semiparametric additive 

model; however, it has no effect in linear model. 
Because of these insignificant variables, backward 
model selection method can be used for a better new 
linear model (reduced model) with significant 
variables. Backwards model selection method is 
performed by repeatedly removing the single term 
with highest p-value, above some threshold (e.g. 
0.05), and than refitting the resulting reduced model, 
until all terms have significant p-values [6]. Results 
of the reduced linear model are shown in Table 2. 
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Table 2. Reduced linear regression model results. 
 Estimate St. Error t-value Pr ( > t  ) 

(Int.) 
Area 
Park 
Erdgas 
D.keeper 

10.22687 
0.00808 
-0.12625 
0.14808 
0.20502 

0.07239 
0.00065 
0.05774 
0.04096 
0.04324 

141.267 
12.437 
-2.186 
3.616 
4.742 

< 2e-16 *** 
< 2e-16 *** 
0.031147 * 

0.000473 *** 
7.12e-06 *** 

R2= 0.7082     Deviance= 3.669647 
Signif. codes: 0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘ ’1 

     In Table 2, the reduced linear model contains only 
“Area”, “Park”, “Erdgas” and “Doorkeeper” 
variables. On the other hands, the suitable 
semiparametric additive model contains also “Age”, 
“Garage”, “Elevator”, “Car park” variables as well as 
“Area”, “Park”, “Erdgas” and “Doorkeeper” 
variables. Therefore, if we construct the linear model 
instead of the semiparametrik additive regression 
model, we maybe ignore some variables with 
significant effect.  
     Afterwards, R2 and deviance values of both 
models are compared, if the semiparametric additive 
model is better than the reduced linear model or not. 
The results of the comparison are listed Table 3. 

Table 3. Some results of semiparametric additive and 
reduced linear model. 

Model R2 Deviance 
Semiparametric Additive Model 
Linear Model 

0.97097 
0.70820 

0.74940 
3.66965 

     Table3 shows that, R2 value for semiparametric 
additive model (0.97097) is bigger than R2 value for 
reduced linear model (0.70820) while deviance value 
of semiparametric additive model is less than the 
other model. Therefore, we can say that, the 
semiparamteric additive model is better than the 
reduced linear model.  
 
 
4   Conclusion 
In this paper, relationship between house price and 
apartment features is examined by using linear and 
semiparametric additive regression models. It’s 
concluded that, semiparametric additive model with 
both nonparametric and parametric variables gives 
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better results than the linear model. This conclusion 
emphasize that, estimates which base on a method 
like smoothing spline, are better than the traditional 
methods, as a linear regression. Additionally, It’s 
seen that one of the most subject for regression 
analysis is to construct a suitable semiparametric 
additive regression model by specifying nature of 
explanatory variables which affect response 
variables. 
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