
A Web-based Self-assessment System with Multi-language Programming
Questions

ÁNGEL GARCÍA-BELTRÁN, SANTIAGO TAPIA, RAQUEL MARTÍNEZ, MANUEL GONZÁLEZ

Department of Automática, Ingeniería Electrónica e Informática Industrial
Universidad Politécnica de Madrid

ETSI Industriales, C/José Gutiérrez Abascal, 2. 28006 - MADRID
SPAIN

1

Abstract: - This paper describes a web assisted self-assessment application with multi-language programming
questions. The whole user-system interactivity, based on a client-server architecture, is carried out by means of a
computer connected to the Internet with a web browser. Practical matters of authoring code questions and their
implementation and use methodology are explained. These self-assessment code questions are meant not only to
encourage and motivate the students but also to assess them. Finally, the results of a survey of students'
perceptions and the influence of these on future developments are presented.

Key-Words: e-Learning, b-Learning, self-assessment, programming questions

1 This work is funded by the DGES (Ministerio de
Educación y Ciencia of Spain) under contract SEJ2004-
08004-C02-02.

1 Introduction
The purpose of this work is to present the design and
implementation of a web-based self-assessment
environment with multi-language programming
questions.
 This application has been implemented in a
complete e-learning system, named AulaWeb [1], and
is being used as a facility to encourage students to
practice programming techniques in computer science
courses with different programming languages, for
example, TurboPascal, Java and C/C++. Furthermore,
this paper describes the pedagogical methodology
and some results drawn from this experience.
 AulaWeb system has been used as an on-line
support of courses by more than ten thousand
students of the Universidad Politécnica of Madrid
since 1999.
 AulaWeb exploitation consists of four main
activities in more than three hundred courses:
theoretical and practical content, open discussion
forums, self-assessment exercises and homework
delivery. Each tutor can exploit these activities
depending on the course methodology and its
characteristics.

2 Self-assessment
In this way, self-assessment may appear as a key
activity in courses with an enormous number of
students (i.e. Computer Science courses). A major

challenge for tutors is encouraging the students to
engage actively in learning programming
fundamentals, and, in this way, a regular assessment
system is essential.

2.1 Reasons for a Regular Testing
A regular assessment forces the students to increase
their motivation, study harder and practice the
material actively. These tests are used to improve the
performance of the students, focus their activities and
so drive them to practice computer programming
during the academic term.
 Furthermore it provides an opportunity for the
professor to get frequent feedback about how well
students are learning and assimilating the contents of
the course [2]. Besides, both the students and the
tutor know much earlier if the material is not being
understood. To be effective, feedback should be
given immediately after the student has finished the
test [3]. The main drawback: a considerable amount
of time may be required to prepare, grade and
implement these frequent exercises.
 With large groups of students, it would be
especially impossible to implement this kind of
assessment without computers. There are many
authors that report about different computer and web
assisted assessment tools to develop a regular testing
system [4]–[9], but none of them is specifically
focused to students of programming languages.

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 206

2.2 The Self-assessment Module in AulaWeb
There are many types of questions (single-choice,
multiple-choice, short answer, true-false, etc)
implemented in AulaWeb platform [10]. However, in
a programming course, tests should be driven
preferentially to questions with code answers. In fact,
from the 2001/02 academic year onwards, the
environment has been specifically made suitable for
self-assessing computer programming skills in
TurboPascal [11]. The feedback from this use has
resulted in improved systems and methodologies
incorporating new implementations, great experience
and best practices.
 The self-assessment module is based on a questions
database, with a friendly and easy-to-use interface for
adding and updating questions. Tutors can configure
exercises indicating the quantity, the level of
difficulty, the type and the syllabus chapters of the
questions. When finishing the exercise, results are
stored in the database and the system allows the
student the possibility of checking his exercise and
comparing his/her answers to the correct solutions.
Evaluation of the exercise is, therefore, automatic,
and the student and his/her teacher can access the
results of the self-assessment activities.
 The following section explains how the multi-
programming code questions module has been
developed in AulaWeb.

3 Code Questions
Code questions are a new development of the
AulaWeb platform oriented to any programming
language learning-teaching. Aim: the system asks the
student a code-type question in order to carry out an
specific task and subsequently correct his answer.

3.1 Preparation
The implementation of each code question involves
the following elements: a wording, a set of code files
with gaps to be completed by the students and a set of
code files used to check the students answers.

3.1.1 Wording
The wording indicates what task the code must do.
For example: Complete, compile and run the
following Java code in order to calculate the square
of a real value …

3.1.2 Code Files Attached to the Wording
Questions may incorporate several code files (one of
them must implement the main method of the
application) with none, one or more uncompleted
gaps to be fulfilled by the students. In the most basic
case there is only one code file with the main method

and one or more gaps. The gap positions are marked
in the code file with a pair of specific code
comments: ”//##user code##”.
 Once the student has filled them and click over the
Compile option, the answers are sent to server and
the complete code files are compiled. Subsequently
the server gives back the result of the compilation.
 The following code is a very simple example of an
alone code file attached to the wording:

/**
 * SquareTest
 * Purpose: Square method test
 * for Java Programming
 * Author: A. Garcia-Beltran
 * Date: March 4th, 2006
 */
public class SquareTest {
 public static void main (String [] args) {
 System.out.println("The square of 7.5 is: "
 + square(7.5));
 }
 public static double square (double x) {
 //##user code##

 //##user code##
 }
}

3.1.2 Code Files for the Correction
These files are not provided to the students, but they
are used by the server to collect the student answers
and check them. These code files have to include the
corresponding gaps for the answers and some
routines to verify that the answers will carry out the
wording task properly using any technique for
software testing, for example, a black-box method.
Once the student has filled them and click over the
Run option, the answers are sent and these checking
code files (completed with the corresponding
student’s codes) are compiled and executed in the
server. Later, the server returns the result of the
execution. The following code is the code file for
checking corresponding to the previous example:
/*
 * SquareTestCorrector: to check the answer
 */
public class SquareTestCorrector {
 public static void main(String[] args) {
 System.out.println(functionalChecking());
 }
 public static double square(double x) {
 //##user code##

 //##user code##
 }
 public static String functionalChecking() {
 double x = Math.random()+3;
 double aux = x*x;
 boolean t = Math.abs(aux - square(x))<=0.001;
 for (int i=0; i<5; i++) {
 x = x - 1;
 aux = x*x;
 t = t && Math.abs(aux - square(x))<=0.001;
 }
 if (t) { return ("The result is CORRECT"); }

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 207

 else return ("The result is INCORRECT");
 }
}

3.2 Student Interface
Figure 1 shows the interface of a code question which
includes a virtual typical programming environment
implemented by means of the Java applet. This
interface has been built using the ASP technology of
AulaWeb [12] and a Java applet that emulates a
Virtual Programming Environment and shows the
two first elements described in the prior section.
Students can read the wording (HTML) and use the
edition window of the virtual environment to input
and edit the answer codes in order to complete the
whole application. The corresponding gap positions
are marked in each code file in the edition window
with a pair of specific code comments “//##user
code##”.”). In the question example there are two
code files (with the corresponding tab) and only two
gaps in the first code file and the correct answers are
return (height*width); and return
(this.area()>b.area());, respectively.

Fig. 1. Example of a question interface

The environment also includes a menu bar with
options to compile and run the complete application.
The Compile option sends the answers to the server
and the server compiles the code from the edition
window. For this reason, an on-line compiler has
been installed in the server in order to support this

automatic checking for the Java code answers. When
compiling is complete, a status window appears. If a
compile-time or syntax error occurs, an error message
is shown like a real programming environment. For
instance, if the student tries to compile the first code
file with the answer: retun (height*width);
for the question example, then the system displays the
corresponding message window. If the student
answers have no compilation errors, i.e.: return
(2*height*width); then the window indicates a
message of Successful Compilation.
 The Run option executes the input code together
with a checking model code in order to detect run-
time or logical errors. In both cases, the
corresponding error message is shown. For the self-
assessment in logical errors, student code outputs are
compared with randomly generated model outputs in
the server. For instance, if the student tries to run the
application with the code answer: return
(2*height*width); for the question example,
then the system displays the corresponding (“the
result is wrong”) message window. Each specific
mistake may require the display of a customized error
message previously written in the code file for
checking. If the answers have no logical or run-time
errors, then the window indicates a message of
Successful Execution.

3.3 Teacher Interface
The system makes easy the introduction of a new
code question in the database by means of a step-by-
step assistant. Authors must insert a short description,
the corresponding syllabus unit, the wording, the
code files attached to the wording, the code files for
checking and the theoretical difficulty level. A
significant amount of time is required to prepare one
code question, but once a set of questions have been
accumulated, they can be recycled in later courses in
the future. Teachers can also use the same code
question interface that the student can see and reports
windows about the results of the students’ exercises
and the questions database. So, the system allows the
teacher to track the student’s progress during the
course and also provides some statistical tools to
compare the theoretical and experimental level of
difficulty of the questions and to revise the first ones.

3.3 Multilanguage Programming Questions
The above development is intended for Java
programming language only, but a new improvement
has been implemented to meet more demanding
functionalities. This application can deal with more
complex questions including multi-programming
language, since the compiling and running process

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 208

for testing the students’ answers are fully
configurable by means of a makefile. The student’s
interface is the same, but the question design
changes. A new task of the question design is writing
the instructions for compiling and executing the
students’ answers. As before, the system looks for the
students’ answers and inserts them in the
corresponding gaps of the testing program. Then it
looks for the makefile and executes the GNU make
application [13] with options “compile” and “all”. In
doing so, the answers should be compiled and their
functionality checked with the appropriate
commands. As any command can be used in the
makefile, the teacher can choose among a wide-
variety of tools or, even more, design his own tools.
Up to date, questions for Java and C/C++
programming languages have been designed and
implemented. In the future, we are working to
develop questions for MatLab, FORTRAN, Maple
and SQL. There are a lot of possibilities, even outside
the language programming area: for example,
questions for HTML pages design or any technology
with a syntax or content analysis tool.

4 Methodology
The self-assessment module can be used for learning-
teaching of programming languages in several
scenarios. It has been used in the ETSII of the UPM
for some programming languages courses with the
following methodologies:

4.1 Face to Face Teaching. On-line Self-

assessments
The system provides a supporting tool for students’
homework in face-to-face courses. It improves the
motivation, encourages continuous homework and
checks the student’s comprehension of the subject
with an immediate feedback. The application has
been used in this manner in a first programming
language course about TurboPascal with some
hundreds of students per academic term. Five tutors
have been scheduled several exercises as they
progress along the syllabus subject. Questions are
selected randomly from a database of about 800
questions. It has allowed the teachers to assess the
students without correcting thousands of exercises
[11].

4.2 Face to Face Practical Teaching. On-line

Self-assessment during the Class
The application provides a method to keep students’
attention during a practical lecture. The tutor should
design some questions for a practical session, then
explain the problem in the lecture and clarify the

doubts from the students. The tool will check the
progress of the students and keep them working,
therefore the teacher can focus on individual
explanations. Even more, while the correcting
program will provide some clues about the students’
work, the tutor can explain the doubts more
efficiently. There is no need for a huge question
database because it is not likely the students are going
to cheat, just a few long questions will work. This
methodology is being used in a course about C
programming language with thirty students, one PC
per student and face to face teaching.

4.3 Full On-line Teaching
Tutors of online courses use the self-assessment
system to track the students’ progression during the
term, since there are no face-to-face lectures. This
methodology is being used in a course about Java
programming language with fifteen students from
different European countries during the second term
of the academic years 2004-05 and 2005-06.

5 Experimentation and Results
The self-assessment system with code question has
been tested with students enrolled in a course named
Object Oriented Programming taught in the
Computer Science Department of the ETSII-UPM
during the first term of the 2005-06 academic course.
In this course, self-assessment appears as a key
activity to encourage the students to connect the
students actively in Object Oriented Programming
basics by doing. In this way, the Java code questions
are absolutely necessary. More than 150 questions
have been generated and stored in the courses
database. The tutor set up a new self-assessment test
after the face-to-face lesson and, in order to
encourage the students, the exercises results make a
contribution (30%) to the course grading, so these
marks are meant not only to motivate but also to
assess. This, also, reduces the anxiety of a final
examination since each exercise is less important in
determining the final grade of the student. On the
other hand, frequent exercises also provide a more
valid basis for a grade since one bad day has much
less of an effect. Students can take each test more
than once to improve their score. They can use any
book, bibliographic material or reference to solve the
questions.

5.1 Results
Fifteen students and a tutor have participated in this
course activity. Students finished 275 tests configured
by the tutor. Consequently, tutor avoided having to
correct one thousand questions during that term.

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 209

5.2 Students Opinion
At the end of the term, students completed an
anonymous questionnaire, providing a very
interesting information and feedback about the course
and the methodology. Ease of use, flexibility and
instant feedback were seen as one of the major
benefits. According to the questionnaires results, 86%
of them enjoyed using AulaWeb and 93% of them
thought that AulaWeb was very useful. On the other
hand, some students had some connections problems.
Overall comments were positive, so much that the
majority would be pleased if a similar system were
used in other courses.

6 Conclusions
The overwhelming conclusion is that this type of
blended methodologies is viewed positively by
students and tutors. Students do not have to install
locally a programming environment in their home
computers for training and practice purposes.
Academic staff acceptance is also overwhelmingly
positive, showing that not only the system is very
easy to manage but also has a very intuitive interface
and gives very useful feedback to students.
Furthermore, teachers do not have to correct
programming exercises and the system makes them
easy to motivate, track, assess and grade students.
Depending on the course characteristics, tutors can
choose a different methodology. Moreover, this kind
of web-based application may help to reduce distance
barriers not only for local or national students but
also for other students from international institutions.
 The system will be further developed to include
code questions for other programming, script or
symbolic languages like MatLab, FORTRAN, Maple
and SQL, in order to be used in other courses that
need this kind of pedagogical tools.

Acknowledgements:
The authors would like to acknowledge the
implementation support of A. Alonso, J. M. Arranz,
P. Avendaño, M. Aza, J. A. Criado, F. de Ory, C.
Engels, M. Fernández, P. García, M. González, J.
Granado, T. Hernández, I. Iglesias, J. A. Jaén, A. R.
López, D. López, J. A. Martín, M. Martín, F.
Mascato, D. Molina, C. Moreno, L. M. Pabón, J. C.
Pérez, A. Rodelgo, A. Valero, E. Villalar and C.
Zoido.

References:
[1] García-Beltrán, A., Martínez, R.: Challenges of a

blended e-learning system in traditional
engineering faculties, Proc, of 2nd Int. Conf. on

Multimedia and Information & Communication
Technologies in Education, Vol. III, Badajoz,
Spain, December 3-6th (2003), 1960-1963

[2] Wankat, P.C., Oreovicz, F.S.: Teaching
Engineering. Purdue University (1990)

[3] Venables A. and Haywood, L.: Programming
students NEED instant feedback!, 5th Aus-
tralasian Computing Education Conf. (ACE2003),
Adelaide, Australia, Conf. in Research and
Practice in Information Technology, Vol. 20. T.
Greening and R. Lister, Eds., (2003).

[4] F. Rizvanov and R. Lizotte, A Bridge to Success:
Active Learning Model for the Effective Hybrid
Courseware Development, Proc. of Fourth
International North America Web Conference,
Fredericton, New Brunswick, (1998) 181-184.

[5] N. Serbedzija, A. Kaiser and I. Hawryszkiewycz,
E-Quest: A Simple Solution for e-Questionnaires,
Proc. of the IADIS International Conference e-
Society 2004, Avila, Spain, (2004) 425-432.

[6] D. Smith and G. Hardaker, e-Learning Innovation
through the Implementation of an Inter-net
Supported Learning Environment, Educational
Technology & Society, 3(3), (2000), 422-431

[7] S. Lewis and G. Mulley, Experiences gained from
producing a compiler to guide first year
programming students, 5th Annual Conf. on
Teaching of Computing, Dublin, (1997) 129-131

[8] E. V. Wilson, ExamNet asynchronous learning
network: augmenting face-to-face courses with
student-developed exam questions, Computers
and Education, 42, (2004) 87-107.

[9] M. Thelwall, Computer-based assessment: a
versatile educational tool, Computers and
Education, 34, (2000) 37-49.

[10] R. Martínez, A. García-Beltrán. AulaWeb: a
WWW-Based Course-Support System with Self-
Assessment and Student Tracking, Proc. of ED-
MEDIA 2001, World Conf. on Educational
Multimedia, Hypermedia and
Telecommunications, Tampere, Finland (2001)
1239-1240.

[11] García-Beltrán, A., Martínez, R.: Web assisted
assessment in computer programming learning
using AulaWeb, International. Journal of
Engineering Education, 22-5 (2006)

[12] González, M. Sistema de Autoevaluación con
Preguntas de Programación Multilenguaje
Integrado en la Plataforma de eLearning
AulaWeb, Ms. Thesis, Universidad Politécnica de
Madrid, Spain (2005).

[13] GNU Operating system web page. Retrieved
from the World Wide Web at
http://www.gnu.org/software/make/ on April 26th
2006.

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 210

