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Abstract: - This paper proposes new method for designing scalar quantizers. The proposed method, denoted as 
hybrid method, combines two quantization techniques, the companding technique and the Lloyd-Max's 
algorithm. In this paper an exact and complete analysis of the hybrid quantization method considering the 
Laplacian input signals is carried out. Furthermore, two approaches to the problem of finding the sets of 
parameters are considered. It is demonstrated that by using both approaches the hybrid quantization method 
provides optimal scalar quantizer design. Moreover, the designing complexity of the proposed method is 
considered and compared with the complexity of the other models in use. It is shown that, in case of average 
and large number of quantization levels, scalar quantizers designed by using the hybrid quantization method 
have less complexity than optimal Lloyd-Max's scalar quantizers. Also, it is demonstrated that the proposed 
quantization method has a little bit greater complexity than the method based on the companding technique, 
but provides optimal quantizer's performance. 
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1   Introduction 
     The problem of finding an optimal scalar 
quantizer is not only important but is also an 
intriguing one. The lack of any straightforward 
design solution is a result of the difficulty in dealing 
with the highly nonlinear nature of quantization [1]. 
There are several methods for designing nonuniform 
scalar quantizers, but there has not been much 
theoretical or even quantitive comparison among 
them. Consequently, much work is still need in 
order to determine which method provides the best 
performances versus complexity trade off and in 
gaining an understanding of why certain 
complexity-reducing methods are better than others. 
Complexity is itself a difficult thing to quantify. In 
this paper we consider the designing complexity that 
is defined with the computation promptitude when 
computing the optimal parameters of scalar 
quantizers. Consequently, the goal of this paper is to 
find method that provides optimal quantizer design 
attaining as less as possible the designing 
complexity. 
     Here, we begin with a brief review of the 
quantization methods (or techniques) and their 
complexities. The principal goal of scalar quantzer 
design is to select the representation levels and the 

partition or cells so as to provide the minimum 
possible average distortion for a fixed number of 
quantization levels N. In general, this problem does 
not have any explicit, closed form solution. Lloyd 
[2] and Max [3] independently proposed an 
algorithm to compute optimal quantizers using 
mean-square error distortion measure. Particularly, 
Lloyd-Max’s algorithm is an iterative algorithm, 
which in each iteration performs calculation of all 
representation levels (N parameters) and decision 
thresholds (N+1 parameters) of the N levels scalar 
quantizer. Hence, the values of 2N+1 parameters 
should be computed and memorized in each 
iteration. The amount of the necessary computation 
and the number of iterations are the deficiencies of 
this algorithm, and they grow with the number of 
quantization levels N. However, when analyzing and 
optimizing nonuniform scalar quantizers with 
average and large number of levels it is advisable to 
use the companding technique [4, 5]. Namely, a 
nonuniform quantization can also be achieved by 
compressing the input signal, than quantizing it with 
a uniform quantizer and expanding the quantized 
version of the compressed signal using a 
nonuniform transfer characteristic inverse to that of 
the compressor. The described quantization 
technique is called the companding technique [4, 5]. 
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Fig. 1 Illustration of the inner region and the outer region of the scalar quantizer for L=1

 
Choosing smaller cells where the probability of 
occurance of the input random variable x is high,i.e., 
where the pdf p(x) is comparable high and choosing 
larger cells otherwise results in rough approximation 
of the input signal in the region of high amplitudes. 
This is an essential deficiency of the companding 
technique. 
     The afore mention issues were insighted in [6], 
and resolved in [6, 7] by giving the heuristic 
solution of the problem for L=1, (L«N). Namely, 
Sangsin Na and David L. Neuhoff applied the 
companding technique to N-2 inner cells and Lloyd-
Max's algorithm when computed the values of the 
first and the last representation levels. Namely, they 
considered the special case for L=1, of the proposed 
hybrid method and provided solution that are not 
optimal regarding to distortion optimlity [8]. 
     In order to reduce the amount of the necessary 
computation in comparison to that for Lloyd-Max’s 
algorithm, as well as to improve the deficiency 
introduced by using the companding technique, we 
propose one quantization method, denoted here as 
the hybrid method. The proposed method 
generalizes the method considered in [6, 7]. It is 
based on the combination of the companding 
technique and the Lloyd-Max’s algorithm of 
designing scalar quantizers. Namely, applying the 
companding technique to N-2L inner cells, (L«N), 
and Lloyd-Max’s algorithm to 2L outer cells it is 
possible to design N-levels scalar quantizer. The 
proposed method is very simple for analysis. 
Analyzing it we demonstrate that for particular 
value of L the hybrid method provides an optimal 
scalar quantizer design. Moreover, we derive the 
expression for determining the support region of the 
observed scalar quantizer, ranging (-tN-1, tN-1). 
Furthermore, we consider the performances of the 
quantizers designed by using the hybrid method. We 
demonstrate that these performances are arbitrarily  

 
close to those of optimal scalar quantizers, that are 
given in [5] for R≥5 (R=log2N). 
 
 
2.   Scalar quantization methods 
     Let us consider an N-level nonuniform scalar 
quantizer Q for the Laplacian input signals. Scalar 
quantizer Q can be defined with Q: R→C, as a 
functional mapping of the set of real numbers R onto 
the set of the output representation. The set of the 
output representation constitutes the code book: 
 { } RyyyyC N ⊂≡ ,,, 321  (1) 
that has the size |C|=N. The output values, yj, are 
called the representation levels. Here, we define the 
nonuniform scalar quantizer Q with the set of output 
values and with the partition of the input range of 
values onto N cells, i.e., intervals αj, j=1,2,...,N. 
Cells αj are defined with the decision thresholds {t0, 
t1,…, tN}, such that αj=( tj-1,tj], j=1,2,...,N. A 
quantized signal has value yj when the original 
signal belongs to the quantization cell αj. Hence, N-
level scalar quantizer is defined as a functional 
mapping of an input value x onto an output 
representation, such that: 
 jyxQ =)( ,    jx α∈ . (2) 
Due to symmetry of the Laplacian distribution we 
can consider that the negative thresholds and the 
representation levels are symmetric to their 
nonnegative counterparts. Therefore, the considered 
scalar quantizer can be depicted by using only 
positive values of the decision thresholds, 
0=tN/2<tN/2+1<…<tN-1<tN=∞, and representation 
levels, yN/2+1<yN/2+2<…<yN. Let us denote the 
distances from the representative levels to the nether 
decision thresholds, i.e., reconstruction offsets with 
δj, j=1,…,N. The values of the reconstruction offsets 
are necessary when computing the parameters of 
scalar quantizers.  
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     Let us consider the region of the scalar qantizers 
as a union of inner and outer region, as depisted in 
Fig. 1 in caes of L=1. The cells αL+1,…,αN-L, are 
reffered to as the inner cells, and they comprise the 
inner region ranging (-tN-L, tN-L) interval. The set of 
cells α1,…,αL and αN-L+1,…,αN are reffered to as the 
outer cells and they comprise the outer region, 
ranging the union of intervals (t0,-tN-L) and (tN-L, tN). 
Therefore, the threshold denoted with tN-L presents 
the boundary between the inner and the outer region. 
In order to achieve the optimal quantizer design the 
observed quantizer should have the optimal value of 
the boundary tN-L. This condition of optimality is 
considered in the Section 2.3 and the expression for 
the boundary tN-L, in case of the Laplacian source is 
derived. In the following subsections we consider 
quantization method based on the companding 
technique, quantization method based on the Lloyd-
Max's algorithm and the mixed quantization method, 
proposed in this paper, and denoted as hybrid 
quantization method. 
 
 
2.1. Quantization method based on the 
Companding technique 
     Nonuniform quantization can be achieved by the 
following procedure: 
Step 1. Compress the signal x using a nonlinear 
compressor characteristic c(·). 
Step 2. Quantize the compressed signal c(x) with a 
uniform quantizer. 
Step 3. Expand the quantized version of the 
compressed signal using a nonlinear transfer 
characteristic c-1(·) inverse to that of the compressor. 
The corresponding structure of a nonuniform 
quantizer consisting of a compressor, a uniform 
quantizer, and expandor in cascade is called the 
compandor. There are several definitions of the 
compressor functions. In [9] we provided the 
procedure of finding the optimal compressor 
function. Furthermore, we demonstrated that the 
following compressor function c(x) is optimal: 
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where p(x) is probability density function of 
continuous random variable (corresponding to the 
source signal), tmax is maximum amplitude of the 
input signal and c(tj) are the values of the 
compressor function c(x) for the decision thresholds 
tj, j=0,1,...,N. 

The compandor distortion consists of two 
components, inner and outer distortion, 
symbolically, 
 oi DDD += . (4) 
The inner distortion of quantizers based on the 
companding technique can be expresed by using 
Bennett’s integral [10] ranging [-tN-1,+ tN-1]. Hence, 
the total distortion can be defined as: 
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In this paper we consider the Laplacian source with 
memoryless property. In such a case, assuming unit 
variance, the probability density function of 
continuous random variable can be expressed by the 
Laplacian distribution defined as [5]:  

 ( ) 2

2
2 xexp −= . (6) 

Hence, the total distortion of the compandor may be 
rewritten such as: 
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2.2 Quantization method based on the Lloyd 
Max algorithm 
     Lloyd and Max proposed an algorithm to 
compute optimum quantizers using mean-square 
error distortion measure [2, 3, 12]. They provided 
the nonlinear quantization procedure in order to 
minimize the quantization noise. The Lloyd-Max’s 
algorithm is widely used in practice because of its 
easily implementation. It is frequently called in 
literature the Lloyd-Max’s I algorithm to distinguish 
it from the second algorithm. Namely, Lloyd 
developed the second algorithm for the scalar 
quantizers, known as Lloyd-Max’s II algorithm [11, 
12]. These two algorithms differ in regard to 
stopping criterion that interrrupts the algorithm. 
Namely, the Lloyd-Max’s I algorithm stops when 
further iteration no longer produce any changes in 
distortion or changes are below the suitable 
threshold, while Lloyd-Max’s II algorithm stops 
when suggested absolute accuracy of the last 
representation level is achieved. Let us consider 
Lloyd-Max’s I algorithm. The algorithm consists of 
following steps: 
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Step 1. Begin with an initial codebook C1. Set m=1. 
Step 2.Gven the codebook, Cm, perform the Lloyd 
iteration to generate the improved codebook Cm+1. 
Step 3. Compute the average distortion for Cm+1. If it 
has changed by a small enough amount since the last 
iteration, stop. Otherwise set m+1→m and go to 
Step. 2.  
When using the quantization method based on the 
Lloyd-Max’s I algorithm, the total distortion of the 
scalar quantizer may be defined as: 
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2.3. Hybrid method 
     In this paper we combine two quantization 
methods (techniques). One of them is based on the 
companding technique and the other one on the 
Lloyd-Max’s algorithm. Namely, for L«N, applying 
the companding technique to the range (-tN-L, tN-L) 
(inner region), i.e., to N-2L inner cells αL+1,…, αN-L, 
and Lloyd-Max’s algorithm to union of ranges (t0,- 
tN-L) and (tN-L, tN) (outer region), i.e., 2L outer cells, 
α1,…,αL and αN-L+1,…, αN, it is possible to design the 
N-levels scalar quantizer. It is demonstrated in [5, 6] 
that the widths of the outer cells α1,…,αL and αN-

L+1,…, αN are constant and independent of the 
number of quantization levels N. When designing N-
level scalar quantizer, based on the hybrid method, it 
is required to know the boundary between the inner 
and the outer region, tN-L, and the set of L values of 
the reconstruction offsets δN-L+1,…,δN, i.e., the set of 
L+1 values. Thus, sparing the memory space in 
comparison to those, that are necessary for Lloyd-
Max’s scalar quantizers, simpler solution of 
hardware can be achieved. This is particularly of 
interest when designing scalar quantizers with 
average and large number of quantization levels N. 
The main contribution of this paper is finding for the 
values of L that provides optimal scalar quantizer 
design. 
     Considering the definition of the optimal 
compresor function given by Eq. (3) we can define 
the optimal compressor function (for the values of 
the decision thresholds tj j=0,1,...,N) that is applied 
by the observed hybrid quantization method as 
follows: 
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where tN-L is boundary between the inner and the 
outer region. When the values of the input signal x 
are within the (-tN-L, tN-L) range the values of c(tj) are 
copied into the [-tN-L, tN-L] range by using thus 
defined compressor function. Considering the Eqs. 
(7) and (8) the distortion of the obsreved quantizer 
can be expresed as a sum of the inner and the outer 
distortion: 
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The optimal value of the boundary tN-L can be find 
by minimizing the total distortion. Consequently, 
setting the first derivative of the total distortion, 

0=
∂
∂

−LNt
D  , to zero leads to the following equation for 

the determining of the optimal boundary tN-L:  
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3.   Parameters of the hybrid model 
     We can consider two approahes in order to 
compute the values of the decision thresholds and 
the representation levels of the outer region. Namely 
we can use the values of the reconstruction offsets 
δN-L+1,…,δN that were iterively computed in case of 
optimal Lloyd-Max’s scalar quantizers [5] or we can 
use the values of the reconstruction offsets δN-

L+1,…,δN obtained by using the linearizing method, 
provided in [13]. These values are necessary when 
computing the values of the decision thresholds and 
the representation levels of the outer region that can 
be defined with:  
 11 +−−+− += iNiNiN ty δ ,    , (12) Li ,...,1=
 211 +−+−+− += iNiNiN yt δ ,     . (13) Li ,...,2=
Now, it is easy to define the support region of 
observed scalar quantizer ranging (-tN-1,tN-1L) 
interval, where tN-1 can be defined with: 

 . (14) NLN

N

LNk
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1 2

The values of the decision thresholds and 
representation levels of the compandors are not 
optimal [5]. The goal of the proposed hybrid method 
is to make, as much as possible, the decision 
thresholds and the representation levels to be 
optimal. Also, when designing N-level Lloyd-Max’s 
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scalar quantizer it is necessary to know all the 
values of the decision thresholds and the 
representation levels. Hence, in such a case, 
considering the symmetry of the scalar quantizers’ 
parameters, N+1 values should be memorized. The 
proposed quantization method is generale 
quantization method which for L=N/2 presents the 
quantization method used when designing Lloyd-
Max’s quantizers, while in case of L=0 presents the 
quantization method based on the companding 
technique. Increasing the values of L it is possible to 
arbitrarily approach to the optimal solution of the 
scalar quantizer designing problem.  
 

 t31     
(N=32) 

t63     
(N=64) 

t127     
(N=128) 

L=1 5.0864 6.5244 7.9784 

L=2 5.1119 6.5483 8.0015 

L=3 5.1194 6.5552 8.0081 

L=4 5.1184 6.5531 8.0055 

 
Table 1. Support region thresholds tN-1

 

 N=32 N=64 N=128 

tN-1
opt 5.1259 6.5604 8.0125 

 

Table 2. Optimal reference of the support region 
thresholds tN-1

opt

 

SNRQ N=32 N=64 N=128 

L=0 23.5709 29.5915 35.6121 

L=1 23.8382 29.7261 35.6797 

L=2 23.8523 29.7333 35.6833 

L=3 23.8582 29.7363 35.6848 

L=4 23.8615 29.7380 35.6856 

 
Table 3. Numerical values of the SNRQ 

 

 N=32 N=64 N=128 

SNRQopt 23.87 29.74 35.69 

 
Table 4. Optimal reference of the SNRQ 

 

δ N=32 N=64 N=128 

L=0 0.0713 0.0348 0.0181 

L=1 0.0074 0.0032 0.0024 

L=2 0.0041 0.0015 0.0015 

L=3 0.0027 0.0008 0.0012 

L=4 0.0020 0.0004 0.0010 

 
Table 5. Relative distortion error δ 

 
 

4.   The quantizer performances 
     In analyzing the behavior of the quantizer, it is 
preferable to use relative quantities, like signal to 
quantization noise ratio and relative distortion error 
instead of absolute quantities, such as distortion. 
Relative parameters portray the behavior of the 
quantizer in a way that is independent of the signal 
level and hence is more general. The performance of 
a quantizer is often specified in terms of SNRQ 
(signal to quantization noise ratio), given by [14]: 

 ⎟⎟
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⎞
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measured in decibels, with σ2denoting the variance 
of x. Here we assume the unit variance input signal, 
therefore SNRQ can be given by: 

 ⎟
⎠
⎞

⎜
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D
SNRQ 1log10 10   (16) 

and it can be calculated for the proposed 
quantization method combining with (10). 
Therefore, using SNRQ we could assess the 
performance of a particular model of scalar 
quantizer. Let us define the relative distortion error δ 
such as: 

 opt

opt

D
DD −

=δ , (17) 
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where Dopt is the optimal distortion value. Also, let 
us denote the optimal value of SNRQ with SNRQopt. 
Introducing the relation: 
  (18) optSNRQSNRQSNRQ −=Δ
the Eq. (17) becomes: 

 110 10 −=
Δ

−
SNRQ

δ .  (19) 
 
 
4.1 Analyse of numerical results 
     Table 1 provides numerical values of the support 
region thresholds tN-1, computed for L=1,2,3,4, when 
the number of quantization levels varies (N=32, 64, 
128). Then, Table 2 depicts optimal reference of the 
support region thresholds tN-1

opt for optimal Lloyd-
Max's scalar quantizers [5, 6, 7]. Assimilating the 
appropriate values from Table 1 and Table 2, one 
can notice that when the value of L grows it is 
approximately possible to approach to optimal 
values of the support region thresholds. Summary of 
the numerical values for SNRQ, computed for 
L=0,1,2,3,4, when the number of quantization levels 
are N=32, 64, 128, is given by Table 3. Furthermore, 
Table 4 provides the optimal reference of SNRQ, 
denoted as SNRQopt [5]. Moreover, Table 5 provides 
the values of relative distorion error δ, computed for 
L=0,1,2,3,4, when the number of quantization levels 
varies (N=32, 64, 128). We can introduce the 
criterion of optimality which will be satisfied if the 
value of relative distorion error is less than small 
constant ε=0.005 [8]. The introduced criterion 
provides the choice of the minimum value of L that 
gives the optimal scalar quantizer design. It is 
obvious that for L=2, the appointed criteria is 
satisfied for all considered values of the number of 
levels N. Therefore, by choosing L=2, the proposed 
hybrid mehod provides optimal scalar quantizer 
design.  
 
 
5.   Conclusion 
     The proposed hybrid quantization method makes 
possible simpler design of optimal scalar quantizers 
demanding less memory space to store parameter 
values in comparison to Lloyd-Max’s quantizers. It 
is very important to point out that for fixed values of 
L, by using the proposed hybrid quantization 
method, when the number of quantization levels N 
varies, the amount of the necessary computation of 
scalar quantizers’ parameters is constant. 
Furthermore, the required memory space remains 
constant. The results demonstrate that by choosing 
the value of L=2 the introduced criterion of 
optimality is satisfied. Analysis presented in this 

paper has the practical importance since it could be 
of great help to engineers. Particularly, it provides 
fast and efficient design of scalar quantizers that are 
used for source coding of images [12] and speech 
[14]. 
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