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Abstract: In data processing, the fundamental idea behind wavelets is to analyze according to scale, with the ad-
vantage over Fourier methods in that of optimally processing signals that contain discontinuities and sharp spikes.
Apart from the two major characteristics of the wavelet analysis - multiresolution and adaptivity to nonstationarity
or local features in data - there is a related application in functional neuroimaging on the basis of the fractal or scale
invariant properties demonstrated by the brain imaging data. Wavelets provide an orthonormal basis for multiscale
analysis and decorrelation of nonstionary time series and spatial processes. The discrete wavelet transform (DWT)
has applications to statistical analysis in functional magnetic resonance imaging (fMRI) like time series resampling
by wavestrapping, linear model estimation, and methods for multiple hypothesis testing in the wavelet domain.
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1 Introduction

In data analysis, it is often desirable to reduce the
dimension of the feature space because there may be
irrelevant or redundant features that complicate subse-
quent inferences and model design, increase the com-
putational demand, and render the analysis subopti-
mal. A common task is to find an adequate some-
what reduced representation of a multivariate data set
for discovery, analysis, and recognition of patterns.
Transform domain processing is a versatile approach
widely used in data analysis. In data compression, the
energy compaction properties of some classes of lin-
ear transforms are employed [25]. In data processing,
noise reduction is performed by generalized filtering
based on the fact that the underlying signal tends to get
concentrated into few coefficients while the noise is
spread out more evenly. The overall effect of working
in the transform domain is an increase in the signal-
to-noise ratio (SNR).

The wavelet transform (WT) of an image pro-
duces a multiresolution representation where each
wavelet coefficient represents the information content
of the image at a certain resolution in a certain posi-
tion. Preprocessing in image analysis (like noise re-
duction, contrast enhancement, ...) can be carried out
by making the operations frequency dependent (i.e.,
split signal/image into frequency subbands and apply
different operations on each subband).

Wavelet methods approach the analysis of statis-
tical fields by estimating the signal at any resolution

among the random fluctuations. The appearance of
explicit orthonormal bases entailed significant impli-
cations on fMRI data analysis. Unlike the traditional
Fourier bases, wavelet bases offer a degree of localiza-
tion in space as well as frequency. This enables the de-
velopment of simple function estimates that respond
effectively to discontinuities and spatially varying de-
grees of oscillations in a signal, even when the obser-
vations are corrupted by noise. Wavelet application
to statistical fields is similar to wavelet applications
to images since statistical maps are just images with
noise with variance equal to unity. Therefore, statisti-
cal maps are transformed using the DWT, the resulting
coefficients are thresholded, and then denoised statis-
tical maps are reconstructed [24]. [20]. Since the con-
trol of false positives is stringent in this application,
the Bonferroni approach to wavelet thresholding was
initially suggested.

The computation of the variance wavelet trans-
form (WT) is more straightforward for statistical maps
than it is for images: (i) the noise variance of the im-
age is 1; and (ii) the correlation function is computed
because pure noise images (i.e., residual images) can
be obtained by subtracting from the original scans the
effects estimated through statistical analysis. Then
the noise power of the field can be computed through
Fourier techniques [28]. Variances of wavelet levels
are computed by the product of the power function of
the field with the power function of the wavelet fil-
ters [23].

In general, the most attractive mathematical prop-
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erties of wavelets in applications are: compact support
(i.e., they vanish outside a finite interval) and contin-
uous differentiability. By truncating the wavelet co-
efficients below a certain threshold, the data become
sparsely represented, which makes wavelets appropri-
ate for data compression and quite similar to the topo-
graphic independent component analysis (ICA) [10]
[19]. The interest in wavelets is also due to compu-
tationally efficient implementation of multiresolution
analysis (MRA). Just as Fast Fourier Transform (FFT)
algorithms made the Fourier Transform (FT) a practi-
cal tool for spectral analysis, the MRA has made the
DWT a viable tool for computational time-scale anal-
ysis.

The continuous wavelet transform (CWT) is
commonly applied in Physics, whereas the discrete
wavelet transform (DWT) is more common in nu-
merical analysis, signal and image processing. The
main three directions of wavelet applications in imag-
ing are: (i) image compression, (ii) image denoising,
and (iii) image/contrast enhancement. The following
stands for that.

2 Continuous Function Spaces
The space of all functions f(t), t ∈ R that are

square integrable
∫ +∞

−∞
|f(t)|2 dt < +∞ (1)

is denoted by L2(R) or, simply L2. The space L2(R)
may be endowed with some properties:

1. Scalar (inner) product:

〈f(t), g(t)〉 =
∫ +∞

−∞
f(t)g(t) dt (2)

where the integral is taken in the Lebesgue’s
sense. A space where a scalar product is defined
is called a unitary space. A unitary space with
finite dimension is called an Euclidian space.

2. Norm:

‖f(t)‖ =
∫ +∞

−∞
|f(t)|2 dt < +∞ (3)

A norm always exists in a unitary space due to
the scalar product defined therein. However, a
norm may be defined in a space which is not en-
dowed with a scalar product. The energy of a
function f(t) is given by its squared L2-norm:

‖f‖2
L2

= 〈f, f〉L2 (4)

thus, the notation f ∈ L2 is equivalent to the
statement that ‖f‖2

L2
is finite.

3. Distance:

d(f(t), g(t)) = ‖f(t)− g(t)‖ (5)

Spaces endowed with a distance are called met-
ric spaces. A unitary space is always a metric
space since it is equipped with a norm However,
a distance may be defined without a norm.

4. Completness: A metric space is called complete
if all Cauchy sequences converge to an element
in the space. That is, if M 6= ∅ is a metric space
and xk ∈ M,k ∈ N and d(x, y) is the distance
function, and if the following holds:

∀ε > 0, ∃N ∈ N : n,m > N ⇒ d(xn, xm) < ε
(6)

then
∃x ∈ M : lim

k→∞
xk = x (7)

A Hilbert space is a complete unitary space that
corresponds to the inner product:

〈f, g〉L2 =
∫ +∞

−∞
f(t)g(t) dt (8)

where the integral is taken in Lebesgue’s sense.
A Banach space is a complete space endowed

with a norm of finite or infinite dimension.
More generally, one defines the Lp spaces for 1 ≤

p ≤ +∞ (where L stands for Lebesgue) as the set of
functions whose Lp-norm:

‖f‖Lp =
(∫ +∞

−∞
|f(t)|p dt

)1/p

(9)

is finite. These are Banach spaces; there is no corre-
sponding inner product whatsoever (except for p = 2).

2.1 Fourier Transform
The Fourier transform (FT) of f(t) is denoted

hereafter by f(ω); if:

f ∈ L1 ⇒ F(f(t)) = f(ω) =
∫ +∞

−∞
f(t) e−jωt dt

(10)
The definition can be extended for functions f ∈ Lp,
as well as for generalized functions µ ∈ S′, where S′
stands for Schwarz’ space of temporal distributions on
R [13].
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2.2 Wavelet Transform
Wavelets appeared as the consequence of inter-

est shifting from frequency analysis to scale analysis,
which entailed the design of mathematical structures
that vary in scale. In approximation using superpo-
sition of functions, Fourier basis functions (sines and
cosines) are non-local and stretch out to infinity, ren-
dering them unsuited to analyze choppy signals [4].
In contrast, wavelets were developed to process sig-
nals that contain discontinuities and sharp spikes by
cutting them up into different frequency components
and subsequently analyzing each component with a
resolution matched to its scale.

Wavelet analysis procedure is to adopt some two
continuously-defined functions:

1. The scaling function (or father function) φ(x),
which is the solution of a two-scale equation:

φ(x) =
√

2
∑

k∈Z
h(k)φ(2x− k) (11)

where the sequence {h(k)}k∈Z is the refinement
filter.

2. Its associated wavelet function ψ(x) (prototype
or mother wavelet function):

ψ(x) =
√

2
∑

k∈Z
g(k)φ(2x− k) (12)

where {g(k)}k∈Z is a suitable weighting se-
quence.

Wavelets are ”small” waves: they oscillate and their
curves yield zero net area:

∫ +∞

−∞
ψ(x) dx = 0 (13)

The term ”small” refers to the fact that they are lo-
calized in time, in contrast to Fourier basis consist-
ing of sines and cosines that are perfectly localized
in frequency space but do not decay as a function of
time (i.e., nonlocal support). Wavelets decay to zero
as x → ±∞ and exhibit good localization properties
in frequency space.

Any function f ∈ L2 can be uniquely represented
by the expansion:

f(x) =
∑

j∈Z

∑

k∈Z
dj(k)ψj,k(x) (14)

The wavelet coefficients {dj(k)}j,k∈Z are obtained by
forming the (double infinite) sequence of inner prod-
ucts:

dj(k) = 〈f, ψ̃j,k〉L2 , j, k ∈ Z (15)

where {ψ̃j,k}j,k∈Z is the biorthogonal basis of
{ψj,k}j,k∈Z such that:

〈ψ̃j,k, ψi,l〉 = δj−i · δk−l, i, j, k, l ∈ Z (16)

The biorthogonal basis is generated by a single tem-
plate (biorthogonal wavelet) ψ̃(t) [3].

The wavelet coefficients are efficiently calculated
using Mallat’s algorithm [15], which is based on a hi-
erarchical application of the filterbank decomposition
(Fig. 1). The only constraints on the choice of the fil-
ters are the perfect reconstruction (PR) conditions; in
this case:

H̃(z−1)H(z) + G̃(z−1)G(z) = 1

H̃(z−1)H(−z) + G̃(z−1)G(−z) = 0
(17)

The underlying decomposition algorithm is best de-
scribed by two complementary filters h and g. We
consider hereafter non-redundant dyadic orthogonal
wavelet transforms only. The algorithm consists of
an iterated orthogonal filterbank with an analysis and
a synthesis part. In a one-level WT, in the decompo-
sition (analysis) step, the digital signal ci(k) is split
in two half-size sequences: an approximation part
ci+1(k) and a detail part di+1(k) by filtering it with
a conjugate pair of low-pass (H̃(z−1)) and high-pass
(G̃(z−1)) filters, respectively (Fig. 1). The results
are subsequently down-sampled. During the recon-
struction (synthesis) step that follows, the signal is
reconstructed by up-sampling, filtering, and summa-
tion of the components. The analysis and synthesis
procedures are flow-graph transposes of each other.
This kind of 2-channel processing is one-to-one and
reversible if the z-transforms of the filters satisfy the
PR conditions [26]. Different transforms correspond
to different sets of PR filters. For a signal vector
of length N0, the operations required by the WT are
O(N0), as compared with the standard FFT complex-
ity ofO(N0 logN0). In multilevel WT, rather than us-
ing a huge multichannel filterbank to encompass the
full spectrum, the WT employs recursive 2-channel
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Figure 1: Decomposition and reconstruction quadra-
ture mirror filters. Analysis part (left) and synthesis
part (right) of the WT filterbank.
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Figure 2: Blocks in recursive filterbank implementation of the wavelet transform.

filterbanks; each subsequent ci is split into an approx-
imation ci+1 and detail di+1 pair of coefficients. The
inverse WT reconstructs each ci from ci+1 and di+1

(Fig. 2).
Spline bases posses the best approximation prop-

erties like the smallest L2-error [25]. Due to their
smoothness, splines are well localized in both time
and frequency domains. Studies on wavelet applica-
tion in neuroimaging data analysis emphasized the im-
portance of symmetric wavelets and scaling functions
that are free from phase distortions [20]. Orthogonal
bases are mainly recommended because of the follow-
ing: (i) signal features not known beforehand can be
detected and extracted in a multiresolution approach
over many scales; (ii) transform of white noise into
white noise [11]. As such, in wavelet analysis of fMRI
time series, the preprocessed data are subject to spatial
non-redundant DWT, rather than spatially convolved
with a Gaussian kernel [17].

Orthogonal wavelet basis functions can be found
by appropriate choice of the sequences {h(k)}k∈Z
and {g(k)}k∈Z or, equivalently, φ and ψ, such that
{ψj,k}j,k∈Z constitutes an orthonormal basis of L2.
Hence

∀f ∈ L2, f(x) =
∑

j∈Z

∑

k∈Z
dj(k)ψj,k+

∑

j∈Z

∑

k∈Z
cj(k)φj,k

(18)
where the wavelet coefficients {dj(k)}j,k∈Z and the
approximation coefficients {cj(k)}j,k∈Z, due to or-
thogonality, are obtained by inner products with the
corresponding basis functions:

dj(k) = 〈f, ψj,k〉, cj(k) = 〈f, φj,k〉, (19)

The decomposition of any f ∈ L2 is practically car-
ried out on a finite number of scales only, say J , so
that:

f(x) =
J∑

j=1

∑

k∈Z
dj(k)ψj,k +

∑

k∈Z
cJ(k)φJ,k (20)

Orthogonality imposes:

H̃(z) = H(z−1) and G̃(z) = G(z−1) (21)

where H(z) is the the synthesis scaling filter, that
is, the transfer function (z-transform) of the low-pass
refinement filter h, and H̃(z) is the associated anal-
ysis scale filter. Likewise, G(z) is the the synthe-
sis wavelet filter, that is, the transfer function (z-
transform) of the high-pass filter g, and G̃(z) is the
associated analysis wavelet filter. The high-pass filter
g is the modulated version of h given by:

G(z) = z ·H(−z−1) (22)

The filters must obey the quadrature mirror filter
(QMF) conditions for PR (17), which, in terms of the
low-pass filter h only, equate:

H(z)H(z−1) + H(−z)H(−z−1) = 2

H(1) =
√

2 ⇔ H(−1) = 0
(23)

The orthogonality property means that the inner
product of the mother wavelet with itself is unity, and
the inner products between the mother wavelet and
the shifts and dilates of the mother wavelet are zero.
The collection of shifted and dilated wavelet func-
tions is called a wavelet basis. The grid in shift-scale
space on which the wavelet basis functions are defined
is called the dyadic grid. Any continuous function
(e.g., signals or images) is uniquely projected onto
the wavelet basis functions and expressed as a linear
combination of the basis functions. The set of coef-
ficients which weight the wavelet basis functions in
representing any continuous function are referred to
as the wavelet transform (WT) of the given function.
Remarkably, the WT yields an efficient representation
for functions which have similar character to the func-
tions in the wavelet basis. There are wavelet families
of orthornormal basis functions like the biorthogonal
wavelets or wavelet basis functions not orthogonal in
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any sense. The large number of known wavelet fam-
ilies and functions provides a rich space in which to
search for a wavelet which optimally represent any
function of interest.

The continuous-time interpretation of the wavelet
decomposition is based on the fundamental concept
of scaling (or scale-varying) function. Scale-varying
basis functions render signal processing less sensitive
to noise because it measures the average fluctuations
of the signal at different scale. Since the original data
can be represented in terms of wavelet expansion (i.e.,
a linear combination of the wavelet functions), any
operations on data can be carried out using the cor-
responding wavelet coefficients only. Decomposition
of functions in terms of orthonormal basis functions
is performed by a Fourier expansion as well. The
wavelet basis functions have compact support, in con-
trast with the Fourier basis functions. That is, the
wavelet basis functions are non-zero only on a finite
interval, whereas the sinusoidal basis functions of the
Fourier expansion are infinite in extent. The compact
support allows the WT to adequately represent func-
tions or signals which have localized features. This
representation is suitable in data compression, signal
detection and denoising. The point is that the struc-
tured component of a signal is well represented by
a relatively few wavelet coefficients, whereas the un-
structured component on the signal like noise projects
quasi-equally onto all of the basis functions. Subse-
quently, the structured and unstructured parts of the
signal are separated in the WT domain.

The decomposition (19) can be extended to multi-
ple dimensions (e.g., 2D or 3D) by using tensor prod-
uct basis functions, which amounts to successively ap-
plying the 1D decomposition algorithm along each di-
mension in multidimensional data. By iteration, 2q

different type of basis functions are generated in q di-
mensions. The corresponding qD separable scaling
functions with x = (x1, x2, ..., xq) are:

φj,k(x) =
q∏

i=1

φj,ki(xi) (24)

where k = (k1, ..., kq) is the vector integer index.
The rest of 2q − 1 types of wavelet basis functions
are obtained by replacing one or more factors in (24)
with wavelet terms of the form ψj,ki(xi), j ∈ Z, i =
1, 2, ..., q. Define b = (b1, ..., bq) a binary vector such
as:

bi =

{
1 if φj,ki is replaced by ψj,ki

0 otherwise
, i = 1, 2, ..., q

(25)

and

ϕj,ki
=

{
ψj,ki

if bi = 1
φj,ki

otherwise
, j ∈ Z, i = 1, 2, ..., q

(26)
then the mixed tensor product wavelets can be rewrit-
ten [20]

wm
j,k(x) =

q∏

i=1

ϕj,ki
(xi), m = 1, 2, ..., 2q−1 (27)

with

m =
q∑

i=1

bi2i−1 (28)

Here, m indicates a preferential spatial orientation
since φ is low-pass and ψ is high-pass. As for in-
stance, in the 2D case, wm

j,k(x) for m = 1, 2, 3 corre-
spond to wavelets oriented along the horizontal, diag-
onal, and vertical directions, respectively. The corre-
sponding multidimensional coefficients:

cj(k) = 〈f, φj,k〉
dm

j (k) = 〈f, wm
j,k〉

(29)

are iteratively obtained by successive filtering and
downsampling by a factor of two. In the case of mul-
tilevel FWT of 2D images, each approximation coeffi-
cient ci is split into an approximation coefficient ci+1

and three detail coefficients d1
i+1, d2

i+1, and d3
i+1, for

horizontally, vertically, and diagonally oriented de-
tails, respectively. The biorthogonal scaling function
and its corresponding wavelet function are also plot-
ted (Fig. 3a). These wavelets are employed to run 2D
three-level WT of an axial MR brain slice (Fig 3b).
Further on, the first three coarse approximation levels
are separately shown in Fig. 4 for better visual com-
parison.

Figure 4: Coarse images of a typical MR axial slice
at various approximation levels: (a) Approximation
1 (resolution level L = 7); (b) Approximation 2
(L = 6); (c) Approximation 3 (L = 5). All images
are rescaled to the same size for better comparison.

The time-frequency resolution difference be-
tween the FT and the WT is best revealed by looking
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Figure 3: Approximation and detailed wavelet coefficients in a level-three 2D WT (left); 2D wavelet decomposition
of a typical MR axial slice. A coarse (approximation) image at a resolution level L is represented by 2L pixels
in each direction. The detail images at a particular level L are produced by horizontal, vertical, and diagonal
differences between successive levels. The set of coefficients consists of the lowest coarse level image and the
higher level detail images. The original image is 28 × 28 pixels.

at the basis function coverage of the time-frequency
plane [27]. A windowed FT (WFT) is shown in Fig.
5a, where the window is a square wave that truncates
the Fourier basis function (sine or cosine) to fit a par-
ticular window width. Because a single window size
is used throughout, the resolution of the analysis is
identical at all locations in the time-frequency plane.
Contrarily, the window size varies in the WT, so that
sharp discontinuities are isolated by short high fre-
quency basis functions and detailed frequency anal-
ysis is allowed by long low frequency ones (Fig. 5b).
The FT employs sine and cosine basis functions only,
whereas the set of wavelet transforms is infinite.

2.3 Families of Wavelets
There is a large variety of wavelet functions avail-

able. Various wavelet families differ by the compro-
mise between their spatial compactness and smooth-
ness. Some of particular interest in neuroimaging data
analysis are presented hereafter (Fig. 6).

The Daubechies family of wavelets are only one
of a number of wavelet families. Remarkably, the
wavelet function (mother wavelet) is orthogonal to all
functions which are obtained by shifting the mother
right or left by an integer amount. Furthermore, the
mother wavelet is orthogonal to all functions which
are obtained by dilating or stretching the mother by
a factor of 2j and shifting by multiples of 2j units.

Due to the orthonormality of the Daubechies wavelets,
any continuous function is uniquely projected onto the
wavelet basis functions and expressed as a linear com-
bination of the basis functions.

Symmlets are wavelets within a minimum size
support for a given number of vanishing moments,
but they are as symmetrical as possible, as opposed
to the Daubechies filters which are highly asymmet-
rical. They are indexed by the number of vanish-
ing moments, which is equal to half the size of the
support. Fractional splines of a real-valued degree
were proposed to produce wavelet bases [26], such
as symmetric and causal, orthogonal, and biorthog-
onal. A reasonable trade-off seems to lead to sym-
metric, orthonormal cubic spline wavelets. Though
symmetric, orthonormal, smooth wavelet basis func-
tions cannot have compact support, they exhibit ex-
ponential decay [3]. Symmetric basis functions do
not introduce phase distortions, hence a better local-
ization of the signal is achieved in the wavelet do-
main. Orthogonal spline wavelets were selected be-
cause of the following: (i) orthogonality is required
by the subsequent statistical analysis; (ii) the result-
ing family of transforms use symmetric basis func-
tions; (iii) the use of splines reduces spectral overlap
between resolution channels by increasing the degree
of spline n [20]. Nevertheless, small spectral overlap
increases data decorrelation [21], which raises the de-
tection sensitivity. The decorrelation ability of orthog-
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Figure 5: Tile coverage of the time-frequency plane: (a) by the Fourier basis functions; (b) by the S8 symmlet.

Figure 6: Various types of wavelets and their scaling functions: (a,b) Haar wavelet; (c,d) Nearly symmetric S8
symmlet with 8 vanishing moments, (e,f) Daubechies 4 wavelet, and (g,h) Meyer wavelet.

onal spline wavelets stems from the fact that splines
with degree n yield L = n + 1 vanishing moments.
The uncertainty principle limits the level of decorre-
lation across scale since the correlation suppression
comes at the expense of a loss in spatial localization
expressed in the decay rate of the filter coefficients.
Besides, selecting the degree of splines depends to
some extent on the assumed smoothness of the sig-
nal to be detected. Smooth wavelet bases are asymp-
totically near-optimal for estimating signals that may
contain some points of discontinuity [8].

Donoho and Johnstone [7] proposed a method
to find the threshold that minimizes the estimate of
the mean squared error (MSE). The approach equates
to applying a soft thresholding nonlinearity, with the

threshold selected by the Stein’s unbiased risk esti-
mate (SURE) in the interval [0,

√
2log(n)], where

n = 2J is data number and J is the number of scales.
This was proved to posses various optimality proper-
ties for the MSE estimation. The WT was performed
using nearly symmetric wavelet with 8 vanishing mo-
ments (S8). The coefficients in an S8 wavelet ex-
pansion decay with scale more rapidly than the corre-
sponding Haar coefficients. The SURE shrinkage car-
ried out the best reconstruction of the original signal
both in terms of noise suppression and sharp struc-
ture preservation in the neighborhood of the highly-
variable spatial components.

When applying the ”MiniMax” thresholding rule
to the noisy signal, the reconstruction suppresses al-
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most entirely the noise, while preserving its sharp
structural details . The soft thresholding nonlinear-
ity has the threshold set to the magic number λn. In
the case of ”Visu” shrinkage thresholding , the re-
construction looks even better. The difference is due
to the soft thresholding nonlinearity, which has the
threshold set to

√
2 log(n) [6].

Cycle-spinning is proposed by Coifman to re-
move artifacts from wavelet thresholding. Fully
translation-invariant denoising, using the stationary
WT is a method of removing artifacts from wavelet
thresholding associated with discontinuities and sin-
gularities. It entails a hard thresholding nonlinearity,
with threshold also set to

√
2log(n).

3 Wavelet Basis as Fractals
Functional features of the brain signals are com-

plex, largely unknown, and difficult to mathemati-
cal modeling, so that optimal basis functions can-
not be specified in advance. Wavelet MRA circum-
vents this problem by detecting and extracting the key
signal features over many scales. Fractals [14] de-
fine a class of objects with the characteristic prop-
erty of self-similarity (or self-affinity), meaning that
the statistics describing the structure in time or space
of a fractal process remain the same as the process is
measured over a range of different scales (or scale in-
variant). Fractals are complex, patterned, statistically
self-similar or self-affine, scaling or scale-invariant
structures with non-integer dimensions, generated by
simple iterative rules widespread in real and synthetic
systems (Fig. 7). A wavelet basis is fractal (Fig. 8)
and so a natural choice of basis for analysis of frac-
tal data. Wavelet methods are particularly adequate
in brain imaging data analysis due to broadly fractal
properties exhibited by the brain in space and time.
Hence wavelets may be more than just another basis
for analysis of fMRI data (Fig. 11) [2].

Specific wavelet applications in neuroimaging in-
clude: (i) resampling (up to 4D); (ii), smoothing by
wavelet shrinkage [7] (which allows locally adaptive
bandwidth so that the power to detect spatial fea-
tures of varying extent is not constrained by the ar-
bitrary choice of a single kernel size [16]); (iii) esti-
mation (robust and informative models); (iv) hypoth-
esis testing (multiresolution and enhanced false de-
tection rate control) [18]. Wavelet-based statistical
analysis of fractal processes benefits are: (i) wavelet-
based methods perform a multiresolution decompo-
sition suitable for scale-invariant processes analysis;
(ii) wavelet analysis is optimally whitening and pro-
vide Karhunen-Loève (KL) expansions [25] for long-
memory (1/f -like) processes, which is the case in

Figure 7: Brain images and fractal model counter-
parts.

fMRI; and (iii) wavelets provide good estimators for
the noise process parameters.

Figure 9: The CWT of fractal fMRI time series (after
Bullmore [2]).

4 Conclusion
In image denoising, the aim is to suppress noise

while preserving as much as possible of the image fea-
tures. Thresholding in the wavelet domain is on the
assumption of white Gaussian noise. In the orthonor-
mal wavelet domain, most image information is con-
tained in a few largest wavelet coefficients, while the
noise is uniformly spread out across all coefficients.
Thus thresholding mostly affects the noise rather than
the signal. This behavior is in contrast with traditional
linear methods of smoothing, which perform noise
suppression at the expense of significantly broadening
the signal features by spatial Gaussian filtering with
a single kernel. The risk of missing to detect spa-
tial features of the smoothing kernel size or lower is
alleviated by wavelets, which allow locally adaptive
bandwidth, so that the power to detect spatial features
of varying extent is not constrained by the arbitrary
choice of a single kernel size [9]. Virtually for all
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Figure 8: The fractal self-similarity of Daubechies 4 mother wavelet generated by WaveLab802 [1].

wavelet-based denoising methods, the output SNR is
a linear function of the input SNR, that is, the wavelet
methods, contrarily to Gaussian smoothing, improve
the SNR of the input images that already have a high
SNR. Wavelet methods perform as well as Gaussian
smoothing for low SNR’s, and better than Gaussian
smoothing for higher SNR’s.

Wavelet-based denoising methods, by introduc-
ing less smoothing, preserve the sharpness of images
and retain the original shapes of the active regions.

Wavelet analysis is also computationally efficient:
the DWT plays a similar role for computational time-
scale analysis in MRA as the FFT does in spectral
analysis.

Wavelet analysis is optimal in terms of detecting
transients events in data and adapts well to conditions
where responses change significantly in amplitude
during experiments. Simple nonlinear wavelet meth-
ods outperform the traditional linear methods such as
splines, Fourier series, and kernel-based smoothers.
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