

User Adjustable Process Scheduling Mechanism for a Multiprocessor
Embedded System

SLO-LI CHU, CHIH-CHIEH HSIAO, PIN-HUA CHIU, HSIEN-CHANG LIN
Department of Information and Computer Engineering

Chung-Yuan Christian University
200, Chung Pei Rd., Chung Li, 32023, TAIWAN

Abstract: The multiprocessor computer systems become more popular for the improvement of the processor’s design and
fabrication’s evolution. In the past, the multiprocessors systems are usually adopted in server systems. Nowadays, the
configurations of multiprocessor are also adopted in the personal computers or embedded systems. But we cannot achieve
the optimal performance of the multiprocessor systems efficiently because task-scheduling mechanism cannot be adjusted
for the real performing situation. Even the task-scheduler of the operating system cannot handle this problem. Also, the
parallel program is hard to develop for the specific system to improve performance. In this paper, we provide a tool, called
MONOPOLY, for users to adjust the scheduling policies of OS dynamically. It can improve the utilization of the multiple
processors’ resources by allowing user to occupy a processor to make the specified program execute solely. In our
experiment, the results show that the program will finish faster by using MONOPOLY. When the system is fully loaded,
the execution time of the program with MONOPOLY will be much shorter then the program without this tool.

Key-word: MONOPOLY, Multiprocessor, User Adjustable Process Scheduling, Operating System, Embedded System

1 Introduction
Embedded Systems become more popular, such as the
mobile phone, MP3/MP4 player, and industrial computers.
As we know the embedded systems, which are design for
some specific applications. Accordingly, the designers
usually want to reduce the costs by limiting system
resources. However, the embedded applications become
more complex. So the performance of the embedded
system should be enhanced by some techniques, even by
adopting SMP architectures.
 Symmetric Multiprocessor, or SMP, is a multiprocessor
computer architecture where two or more identical
processors are connected to a single shared main memory.
Most common multiprocessor systems today use SMP
architecture. SMP systems allow any processor to work on
any task no matter where the data for that task is located in
memory; with proper operating system support, SMP
systems can easily move tasks between processors to
balance the workload efficiently. However, the increasing
of processors are not always bring large performance
enhancement. If we observe the task execution in the SMP
system, the workload of each processor is not always
balanced; some processor will go into idle. However, if we
try to fully utilize the processors the program must be
designed in parallel. When develop the parallel program,
we need to consider the programming style of parallel
processing or adopt some parallelizing compiler to transfer
program. In fact, the software industries are lake of

standard tools to optimize the program for each
multiprocessor system automatically. By the way, the
operating system generally use first processor to handle
interrupts, so the scheduler will schedule the process to the
first processor generally, only when the workload of
processors are very imbalanced. This will causes the
imbalanced workload and reduce system utilization.
 Today, the trends of processor’s design have been
moved from developing higher frequency to reduce power
consumption. In order to achieve high performance and
low power consumption, the system architecture obviously
change from higher frequency to multi-core processor,
even in embedded computing. In many applications of
embedded systems, more and more applications focus
multimedia encoding/decoding, like 3G mobile phone and
video camera with MPEG-4 features. They need powerful
computation capability with small scale, high performance,
low-power consuming, and reliable computation.
According to these requirements, the multi-core or chip
multiprocessor architectures seem to be the best answer.
Therefore we develop a tool, called MONOPOLY, to fully
utilize the capability of multiprocessor system according to
actual user requirement. It allows user to adjust the
scheduling mechanism of operating system for the specific
program so the program can be performed solely and finish
faster on the multiprocessor system

The organization of this paper is as follows. In section 2,
the previous scheduling mechanism of Linux kernel and

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 346

related study are reviewed. Section 3 presents the
implementation of our MONOPOLY system in detail. In
section 4 we demonstrate the experimental results and the
speedup obtained when MONOPOLY is used. Finally,
section 5 and section 6 give the conclusion and future
works respectively.

2 Related Works

2.1 Introduction to Linux kernel scheduler
There is a brand new schedule mechanism in Linux kernel
2.6[1][2][4][5][6], which can finds the most suitable task
to execute in the most situations. When a program is
executing and entering the scheduling, this task will be
putting in the corresponding priority’s runqueue. In a
period of time, timer interrupt will trigger schedule() to
check the time slice of current tasks is running out or not. If
yes, schedule() will find the next executing tasks from
runqueue. According a normal queue, if there is a task
running out its time slice, it will be removed from the head
of queue to the tail of queue. Cause at least O(n) time
complexity, for the needs of decreasing re-calculate loops.
The scheduler maintains two priority arrays: active and
expired for each processor. The active array keeps the
tasks that haven’t run out of its time slice. And in expired
array, includes the tasks that have run out of its time slice.
Time slice will re-calculate when a task runs off its time
slice before moving to expired array. Active array and
expired array will be exchanged while all of the tasks in
active array run out its time slice.

The structure of the priority array

And schedule() can easily find next highest priority tasks

by the statements below.

The Fig.1 shows how the scheduling mechanism works.
First, schedule() calls sched_find_first_set() to find the
first bit in active array, and this bit corresponds to highest
priority and executable task. Then this task will be
executed by processor. Executing time of these statements
doesn’t influence on the number of tasks in the system –
it’s O(1).

While Linux kernel manages a SMP system, every
processor has its own runqueue. Besides, within fix latency,
the kernel has to check amount of tasks running on each
processor is balance. If not, load_balanced() will move
tasks between processors to make balanced workload.

2.2 ARTiS
ARTiS is a real-time Linux extension that targets SMP.
The goal of ARTiS (Asymmetric Real-Time Scheduling)
Project [3] is accelerating real-time tasks’ response
latencies. RT0 means hard real-time which needs to be
done as soon as possible, and RTn is soft real-time. When
ARTiS is booting, all of the processors will be partitioned
into two parts — RT and NRT. RT processors are
specialized to execute real-time tasks, and NRT processors
are specialized to execute non real-time tasks. The Fig.2
and Fig.3 show the difference between the real-time
scheduling policies of Linux and ARTiS

struct runqueue{
 …
 struct task_struct *curr; //current array
 struct task_struct *active; //active array
 struct task_struct *expired; //expired array
 …
};

struct task_struct *prev, *next;
struct list_head *queue;
struct prio_array array;
int idx;

prev = current;
array = rq->active;
idx = sched_find_first_bit(array->bitmap);
queue = array->queue + idx;
next = list_entry(queue->next, struct task_struct, run_list);

Processor 0 Processor 1 Processor 2 Processor 3

NRT Task

RT Task

NRT Task NRT Task

NRT Task

NRT Task

NRT Task

NRT Task

RT Task

NRT Task NRT Task

NRT Task

RT Task

Fig. 2. The original scheduling mechanism of Linux kernel.

Priority 30

Priority 11

Priority 9

schedule()

sched_find_first_set()

bit-0 : Priority 0

bit-139 : Priority 139

bit-7 : Priority 7

...

..

.

Priority 7

140-bit Priority Array

...

..

.

Priority 7

First process
in runqueue

The processes
of priority 7

Fig. 1. The schedule mechanism of Linux kernel 2.6

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 347

When ARTiS is started, all of the RT tasks will be
arranged to RT processor, and NRT tasks will be moved to
NRT processor. When there is a free RT processor, NRT
tasks will be moved to RT processor. In other condition,
while the number of RT tasks is larger than RT processors,
those RT tasks that haven’t occupied processor will be
arranged to NRT processor by ARTiS load balancer. And
Linux will follow the original mechanism when executing
NRT tasks.

ARTiS, using a task FIFO to save the moving tasks
in stead of locking two runqueues to diminish latencies
during moving tasks between NRT processor and RT
processor. If RT processor is fully loaded and there is a RT
task waiting for execution, the RT task will be moved to
NRT processor. When there is free RT processor, the RT
task will move to RT processor through the task fifo. So
that two runqueues do not need to wait for spin lock. Make
the arrangement for RT tasks more efficiently in
multiprocessor system.

3 Implementation
In this paper, we bring up a mechanism. When the
mechanism started, the program, which is selected by user,
can occupy the selected processor. The Fig. 4 and 5 show
the mechanism we want to implement.

When mechanism started, the tasks will be removed
from processor 2 to processor 1, then put task ‘K’ to
processor 2 as Fig. 5. From now on, every task can’t be
arranged to the runqueue of processor 2. But processor 2
follows Linux mechanism while our mechanism isn’t
started.

This tool needs to move tasks between processors. So
we need to modify the kernel to meets our requirements.
According to our code tracing, we get the following
situations that kernel will move tasks between processors.

Processor 0 Processor 1 Processor 2 Processor 3

Task 0

Task 1

Task 2

Task 3

Task 4

Task 5Task K

Tasks migrate
to CPU 0

only
Task K on
this CPU

Task 3

Task 4

Fig. 4 A snapshot of a typical task scheduling

Processor 0 Processor 1 Processor 2 Processor 3

Task 0

Task 1

Task 2 Task 3

Task 4

Task 5

Fig. 5. When the Task ‘K’ is executing via our tool

Processor 0 Processor 1 Processor 2 Processor 3

NRT Task

NRT Task

RT Task RT Task RT Task

NRT Task

NRT CPU RT CPU

Fig. 3. The scheduling mechanism of ARTiS

scheduler_tick()

schedule()

idle_balance()

idle_balance_newidle()

move_tasks()

pull_task()

rebalance_tick()

load_balance()

move_tasks()

pull_task()

migraion_thread()

active_load_balance()

move_tasks()

pull_task()

__migrate_task()

Move task off current
CPU to destination CPU

Fig. 6. The call graph of tasks’ movements

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 348

In scheduler_tick(), if schedule() found that if a
processor is going into idle, the scheduler will call
idle_balance() to pull the tasks from other processors to
prevent from unbalanced situation. And the
rebalance_tick() will check the load-balance between
processors via rebalance_tick(), if the the load is not
balance, the load-balancer will adjust the loading to be
balancing.

The migration_thread() is a special kernel thread, every
processors have such kernel thread. In the Linux 2.6
systems, we can find this process exists with the name
“migration/n”. It is used to move threads between
processors.

If we want the loading be unbalanced. We must try to
prevent the tasks’ movements in these load balance
functions. And try to occupy one of the processor. These
cause lots of code modify to the linux kernel. But in
Related Works, we mentioned there’s a research about
enhance the Real-Time performance of the system, ARTiS.

The tool used in this paper is based on ARTiS Project
that mentioned in Related Works. User only needs to select
a program and which processor will execute this program.
This tool will modify the attribute of the task to meet
ARTiS’s requirement. To make the task to be RT0 priority
to occupy specific processor, we can set task as RT0 by the
statements below.

Besides, use the following statement to set which

processor will be occupied by the task.

The two setting procedures transfer the selected

program to RT0 – i.e. it will occupy a selected processor.
And the other tasks will be arranged to other processors.

And this characteristic is perfectly meets our needs.
Making the users can adjust processes’ scheduling
mechanism easily via our tool.

4 Experimental Results
We verify our first version of tool on x86 platform. We use
Fedora Core 3 (Linux kernel 2.6.11 with ARTiS) as
operating system and GCC 3.4 as compiler. The hardware
settings are Pentium D 2.8GHz, 1GB DDR SDRAM with
Intel 945G chipsets. The software to exam execution time
is the MP3 converter “LAME” and MPEG
encoder/decoder “MPlayer”. We use LAME to convert
wave file to mp3, MPlayer to convert MPEG-1 video to
H.263+ MPEG-4 Video. When the test is running, we will
also run some applications to ensure there are some
loadings on the system. Note that the wave files in the test
are 16-bit 44.1KHz format and the MPEG-1 video file is in
320x240 resolution with 29FPS.

4.1 The system with light loading
We’re running X-Windows (GNOME 3.x) and MPlayer to
play an MPEG-1 video. Compare the execution time of
compressing different sizes of wave files by LAME.
(Arguments of LAME: -b 320)

 From Table 1, we can find if the program execute via
our plug tool, the execution time is obviously decreasing.
We can convert the wave file to mp3 files faster, as the file
become larger the increments of execution time is more and
more obvious. When the file size comes to 100MB, the
improvement of execution time can reach 10%.
 Next, we compare the execution time of the compressing
MPEG-1 video file to H.263+ MPEG-4 video file via
MEncoder in MPlayer. We use the 2-pass encoding mode,
to convert the MPEG-1 file to H.263+ MPEG-4 file.

#include <sched.h>

//declarate of scheduling policy
sched_param schp;

//get maximum priority (RT0)
schp.sched_priority =

sched_get_priority_max(SCHED_FIFO);

 //set scheduling policy for the process
sched setscheduler(0, SCHED FIFO, &schp);

#include <sched.h>

//declarate of specific CPU
unsigned int spec_cpu;

//set the CPU affinity for the process
sched_setaffinity(0, sizeof(unsigned long),

0x1UL << spec cpu);

Table 1. Using LAME to convert wave to mp3.
Wave file to test

Execution
Time (sec) 40MB 100MB 400MB

Linux 47.43 127.37 497.02

With Tool 44.42 113.75 443.50

Difference 3.31 13.62 53.52
Improvemen

t
6.8 % 10.1 % 10.8 %

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 349

 From the Table 2 & 3, we can find when the program
executes via our tool. The execution time of the programs
is improved a lot.

4.2 The system with higher loading
 As above, the X-Windows and the MPlayer to play an
MPEG-1 video, we also open another MPlayer to play an
MPEG-4 (H.263+) video in X-Windows system.

 Comparing the results above and the results with the
system of light loading, we can find that the improvements
of execution time are increased more than before. Take
LAME for example, the execution time of this result can
improve more about 8% and the converting of H.263+ is
about 6%.

Table 2. Convert 50MB MPEG-1 Video file to
MPEG-4 (H.263+)

The pass of MPEG-4 encoding
Execution

Time (sec) Pass-1 Pass-2 Total

Linux 42.79 43.00 85.79

With Tool 32.22 31.13 63.35

Difference 10.57 11.87 22.44
Improvemen

t
24.7 % 24.7 % 26.1 %

Table 3. Convert 350MB MPEG-1 Video file to
MPEG-4 (H.263+)

The pass of MPEG-4 encoding
Execution

Time (sec) Pass-1 Pass-2 Total

Linux 282.31 285.35 567.66

With Tool 198.32 196.05 394.37

Difference 83.99 89.30 173.29
Improvemen

t
29.7 % 29.7 % 30.5 %

Table 4. Using LAME to convert wave to mp3.
Wave file to test

Execution
Time (sec) 40MB 100MB

Linux 54.15 141.10

With Tool 46.11 115.33

Difference 8.04 25.77
Improvemen

t
14.8 % 18.3 %

Table 5. Convert 50MB MPEG-1 video file to
MPEG-4 (H.263+)

The pass of MPEG-4 encoding
Execution

Time (sec) Pass-1 Pass-2 Total

Linux 47.75 46.62 94.37

With Tool 33.12 31.08 64.20

Difference 14.63 15.54 30.17
Improvemen

t
30.6 % 30.6 % 32.0 %

Table 6. Convert 350MB MPEG-1 video file to
MPEG-4 (H.263+)

The pass of MPEG-4 encoding
Execution

Time (sec) Pass-1 Pass-2 Total

Linux 309.83 310.72 620.55

With Tool 197.61 199.31 396.92

Difference 112.22 111.41 223.63
Improvemen

t
36.2 % 36.2 % 36.0 %

Execution Time of Light Loading System

47. 43

127.3 7

8 5.79

567.66

44.42

113.75

6 3.35

394.3 7

0

100

200

300

400

500

600

40MB W
ave

100MB W
ave

50MB MPEG-1

350MB MPEG-1

Testing Files

sec

Linux

With Tool

Fig. 7. Experimental results (Light loading system)

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 350

 Fig. 7 and Fig. 8 compare the experimental results. As
we can find in the bar charts, the execution time is
significantly decreased with our tool. All the results
showed that if a program executed with our tool, the
execution time would be less then the original OS
scheduling mechanism.

5 Conclusions
In the paper, we provide a mechanism for user to adjust
scheduling mechanism of the operating system, which
allow a selected task to increase executing speed by occupy
a processor solely.
 From experimental result, we can make great speed
enhance by letting a task occupy a processor. While the
system is high loaded, a RT processor can concentrate on
executing the selected task instead of serving many tasks
with context switching. Otherwise the selected task will be
scheduled with other tasks and waste time contest
switching, and then the selected task needs more time to be
finish.
 Today, the multiprocessor architecture becomes more
and more popular, but it’s still a difficult topic to fully
utilize the resources of processors effectively. Also, the
operating system cannot assign the resources properly and
it’s hard to design a parallel program. So develop a user
adjustable dynamic scheduling mechanism that can assign
a task to a specified processor and execute solely is very
helpful, not only accelerate executing speed of the selected
task, but also increase the utilization of processors.
 Multi-processor becomes mainstream in the territories
of server and personal computer. But embedded systems
do not have rapid computational ability as servers and
personal computers. So the resources of processor are
more precious in embedded systems. We can utilize

resources more effective in embedded system by user
adjustable scheduling to enhance efficacy.

6 Future Works
The tools used in the paper, included MONOPOLY and
ARTiS, are only for x86 machines. They can’t be used in
most embedded systems such as ARM and PowerPC
platforms. In the future, we will plan to port MONOPOLY
to the selected embedded system, Xilinx ML310
Development Platform, which includes two PowerPC 405
processors that connected with IBM CoreConnect on-chip
bus.
 In Linux 2.6, there are 250 times timer interrupt in one
second by default. That means it costs quite a few
resources for scheduling and deciding to context switch or
not. Accordingly, we also plan to design a hardware
scheduler to reduce the workload of software scheduler
between two processors on FPGA, to accelerate the
performance of the presented user adjustable dynamic
scheduler in this paper.

7 Acknowledgement
This work is supported in part by the National Science
Council of Republic of China, Taiwan under Grant NSC
95-2221-E-033 -022 -

Reference:
[1] J. Aas, “Understanding the Linux 2.6.8.1 CPU

Scheduler”, 2005 Silicon Graphics, Inc, Feb. 2005.
[2] R. Love, “Linux Kernel Development”, SAMS,

Developer Library Series, 2003.
[3] E. Piel, P. Marquet, J. Soula, J.L. Dekeyser,

“Asymmetric Real-Time Scheduler on
Multi-Processor Architecture”, 20th International
Parallel and Distributed Processing Symposium,
2006 (IPDPS 2006), pp. 25-29, Apr. 2006.

[4] G. E. Allen and B. L. Evans. “Real-time sonar
beamforming on workstations using process
networks and POSIX threads”, IEEE Transactions
on Signal Processing, pp. 921-926, Mar. 2000.

[5] K. Morgan, “Preemptible Linux: A reality check”,
White paper, MontaVista Software, Inc., 2001.

[6] J. D. Valois. Implementing lock-free queues. In
Proceedings of the Seventh International Conference
on Parallel and Distributed Computing Systems, Las
Vegas, NV, Oct. 1994.

Execution Time of Heavy Loading System

54 .15

1 41. 1

94.37

620.55

46.11

115.33

64 .2

396 .92

0

100

200

300

400

500

600

700

40MB W
ave

100MB W
ave

50MB M
PEG-1

350MB M
PEG-1

Testing Files

sec

Linux

With Tool

Fig. 8. Experimental results (Heavy Loading System)

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 351

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (Emulate Acrobat 4 CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Emulate Acrobat 4)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 /CHT ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

