

TOWARD AGENT ORIENTED SOFTWARE ENGINEERING FOR
DISTRIBUTED SCHEDULING

ANA MADUREIRAα JOAQUIM SANTOSα NUNO GOMESβ ILDA FERREIRAχ

GECAD – Knowledge Engineering and Decision Support Group
Institute of Engineering – Polytechnic of Porto

Porto, Portugal

Abstract – Software engineers have derived a progressively better understanding of the complexity characteristics in software. It is
now widely recognised that interaction is probably the most important single characteristic of complex software. Agent-based com-
puting can be considered as a new general purpose paradigm for software development, which tends to radically influence the way a
software system is conceived and developed, and which calls for new agent specific software engineering approaches. This paper
addresses distributed manufacturing scheduling and describes an architecture following Agent Oriented Software Engineering
(AOSE) guidelines trough specification defined by Ingenias methodology. This architecture is based on a Multi-Agent System
(MAS) composed by a set of autonomous agents that cooperates in order to accomplish a good global solution.

Keywords: AOSE Paradigm, Distributed Scheduling, Multi-Agent Systems, Meta-Heuristics.

1. INTRODUCTION
A major challenge in the area of global market econ-

omy is the development of new techniques for solving
real world scheduling problems. Indeed, any industrial
organization can only be economically visible by maxi-
mizing customer services, maintaining efficient, low
cost operations and minimizing total investment.

Traditional scheduling methods, encounter great dif-
ficulties when they are applied to some real-world situa-
tions. The interest in optimization algorithms for dy-
namic optimization problems is growing and a number
of authors have proposed an even greater number of new
approaches, the field lacks a general understanding as to
suitable benchmark problems, fair comparisons and
measurement of algorithm quality [1][2][7][14].

Current practices and newly observed trends lead to
the development of new ways of thinking, managing and
organizing in enterprises, where autonomy, decentraliza-
tion and distribution are some of the challenges. In
manufacturing, a new class of software architectures,
and organizational models appeared to give form to the
Distributed Manufacturing System concept [5].

Since the 1980s, software agents and multi-agent sys-
tems have grown into what is now one of the most active
areas of research and development activity in computing
generally. There are many reasons for the current inten-
sity of interest, but certainly one of the most important is

that the concept of an agent as an autonomous system,
capable of interacting with other agents in order to sat-
isfy its design objectives, is a natural one for software
designers. Different proposals in the field of Agent Ori-
ented Software Engineering (AOSE) try to integrate
results from agent research with engineering practices,
some from the perspective of agent theory, some as an
evolution of object-oriented systems, other as task exe-
cution models, or from a knowledge-based systems
approach.

In the recent years, the characteristics and expecta-
tions of software systems have changed dramatically
having as result that a variety of new software engineer-
ing challenges have arisen [3][23][24].

In this work we have two main purposes, first the
resolution of more realistic scheduling problems in the
domain of manufacturing environments, known as Ex-
tended Job-Shop Scheduling Problems [15-16], combin-
ing Multi-Agent Systems (MAS) and Meta-Heuristics
technologies. The second is to demonstrate that is im-
portant for MAS development the integration of Soft-
ware Engineering concepts like the AOSE paradigm.

The proposed Team-based architecture is rather dif-
ferent from the ones found in the literature; as we try to
implement a system where each agent (Machine Agent)
is responsible to achieve a near optimal solution to
schedule operations related with one specific machine

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 1

through Tabu Search or Genetic Algorithms. After local
solutions are found, each Machine Agent is required to
cooperate with other Machine Agents in order to
achieve a global optimal schedule.

The remaining sections are organized as follows: Sec-
tion 2 summarizes some related work and the research
on the use of multi-agent technology for dynamic sched-
uling resolution. In Section 3 are introduced some terms
and definitions like coordination, negotiation, coopera-
tion in Multi Agent Systems. This section presents some
Agent-Oriented Methodologies and describes some
considerations regarding Software Architectures and
Multi-Agent Systems. In section 4 the scheduling prob-
lem under consideration is defined. Section 5 presents
the Team-Work based Model for Dynamic Manufactur-
ing Scheduling and a proposal by Ingenias methodology.
Finally, the paper presents some conclusions and puts
forward some ideas for future work.

2. RELATED WORK
Dynamic scheduling is one that is receiving increas-

ing attention amongst both researchers and practitioners.
In spite of all previous contributions the scheduling
problem still known to be NP-complete [2]. This fact
incites researchers to explore new directions. Multi-
Agent technology has been considered as an important
approach for developing industrial distributed systems.

In [19] Shen and Norrie presented a state-of-the-art
survey referencing a number of publications that at-
tempted to solve distributed dynamic scheduling prob-
lems. According to these authors, there are two distinct
approaches in the mentioned work. The first is based on
an incremental search process that may involve back-
tracking. The second approach is based on systems in
which an agent represents a single resource and is there-
fore responsible for scheduling that resource. Agents
then negotiate with other agents in order to accomplish a
feasible solution.

For further works developed on MAS for dynamic
scheduling, see for example, [7][15].

The characteristics and expectations of software sys-
tems have changed dramatically in the last few years,
with the result that a range of new software engineering
challenges have arisen [3][23]. First, most software
systems are concurrent and distributed, and are expected
to interact with components and exploit services that are
dynamically found in the network. Second, software
systems are becoming “always-on” entities that cannot
be stopped, restored, and maintained in the traditional
way. Finally, current software systems tend to be open,
because they exist in a dynamic operating environment
where new components can join and existing compo-
nents can leave the system on a continuous basis, and
where the operating conditions themselves are likely to
change in unpredictable ways.

From the literature we can conclude that Agent-based
computing is a promising research approach for devel-
oping applications in complex domains. However, de-
spite the great research effort [14][24][25], there still

exist a number of challenges before making agent-based
computing a widely accepted paradigm in software en-
gineering practice. In order to realize an engineering
change in agent oriented software engineering, it is
necessary to turn agent oriented software abstractions
into practical tools for facing the complexity of modern
application areas.

3. MULTI-AGENT SYSTEMS
Agents and multi-agent systems (MAS) have recently

emerged as a powerful technology to deal with the com-
plexity of current Information and Communication
Technologies environments. In this section we will de-
scribe some issues and considerations regarding the
developing of the MAS following a software engineer-
ing perspective.

A. Terms and Definitions
The development of multi-agent systems requires

powerful and effective modelling, architectures, meth-
odologies, notation techniques, languages and frame-
works. Agent-based computing can be considered as a
new general purpose paradigm for software develop-
ment, which tends to radically influence the way a soft-
ware system is conceived and developed, and which
calls for new, agent specific, software engineering ap-
proaches [23].

The main term of Multi-Agent based computing is an
Agent. However the definition of the term Agent has not
common consent. In the last few years most authors
agreed that this definition depends on the domain where
agents are used. In Ferber [10] is proposed a definition:
“An agent is a virtual or physical autonomous entity
which performs a given task using information gleaned
from its environment to act in a suitable manner so as to
complete the task successfully. The agent should be able
to adapt itself based on changes occurring in its envi-
ronment, so that a change in circumstances will still
yield the intended result."

An agent can be generally viewed as a software entity
with the some characteristics [21] like:

• Autonomy - where an agent has its own internal
thread of execution, typically oriented to the
achievement of a specific task, and it decides for
itself what actions it should perform at what time.

• Situatedness - agents perform their actions while
situated in a particular environment.

• Proactivity - in order to accomplish its design ob-
jectives in a dynamic and unpredictable environ-
ment the agent may need to act to ensure that its set
goals are achieved and that new goals are opportu-
nistically pursued whenever appropriate.

• Sociability - agents interact (cooperate, coordinate
or negotiate) with one another, either to achieve a
common objective or because this is necessary for
them to achieve their own objectives.

A Multi-Agent System (MAS) can be defined as “a
system composed by population of autonomous agents,

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 2

which cooperate with each other to reach common
objectives, while simultaneously each agent pursues
individual objectives" [10]. According to Russell and
Norving [18] multi-agent systems “[...] solve complex
problems in a distributed fashion without the need for
each agent to know about the whole problem being
solved”.

We can see MAS like a society of agents that cooper-
ates to work in the best way possible. With this we gain
the ability of solve complex problems like dynamic and
distributed scheduling. Considering the complexity
inherent to the manufacturing systems, the dynamic
scheduling is considered an excellent candidate for the
application of agent-based technology. In many imple-
mentations of multi-agent systems for manufacturing
scheduling, the agents model the resources of the system
and the tasks scheduling is done in a distributed way by
means of cooperation and coordination amongst agents
[23]. There are also approaches that use a single agent
for scheduling (centralized scheduling algorithm) that
defines the schedules that the resource agents will exe-
cute [21][23]. When responding to disturbances, the
distributed nature of multi-agent systems can also be a
benefit to the rescheduling algorithm by involving only
the agents directly affected, without disturbance to the
rest of the community that can continue with their work.

The main advantages of a Multi-Agent system are the
abilities of coordination and cooperation in order to
accomplish a common objective.

B. Coordination, Negotiation and Cooperation
The development of MAS must consider some impor-

tant organizational issues, like Coordination, Negotia-
tion and Cooperation. These kinds of issues perform an
important role, because the set of autonomous agents
can only act like MAS if they can communicate in a
flexible and trustable way.

Coordination is defined in the literature like “the act
of working like a group in an harmonious way”[12].
This means that autonomous agents must be an active
part of the system despite of all their own goals. A coor-
dinated system is needed in order to allow pursuit objec-
tives independently of their individual or global.

Cooperation is the act of combining efforts in order
to pursue common objectives that can not be reached
individually. To allow this cooperation, autonomous
agents must be gifted with a certain social ability that
will allow interaction with other agents, trough a com-
munication protocol [17][23].

Negotiation can be defined as the process in which at
least two operators, a sender and a receiver, communi-
cate across a communication protocol in order to ac-
complish an agreement.

MAS must implement a set of mechanisms that can
differ with systems objectives. If autonomous agents are
intended to work like a team, a cooperation mechanism
should be considered, instead of that, if they are in-
tended to pursue their own individual goals a negotiation
mechanism is probably the best option to consider.

The above definitions are not absolute neither have
not common consent, but in our opinion this can be
considered a good way, because it allow a clarification
in which mechanism is advised for what system.

4. AGENT-ORIENTED SOFTWARE METHODOLOGIES
Software agents and multi-agent systems have grown

into what is now one of the most active areas of research
and development activity in computing generally. There
are many reasons for the current intensity of interest, but
certainly one of the most important is that the concept of
an agent as an autonomous system, capable of interact-
ing with other agents in order to satisfy its design objec-
tives, is a natural one for software designers.

Several methodologies for the analysis and design of
MAS have been proposed in the literature, however only
few of them focus on organizational abstractions.

MASE Methodology [20] provides guidelines for de-
veloping MAS based on a multi-step process. In analy-
sis, the requirements are used to define use-cases and
application goals and sub-goals, and eventually to iden-
tify the roles to be played by the agents and their inter-
actions. In design, agent classes and agent interaction
protocols are derived from the outcome of the analysis
phase, leading to a complete architecture of the system.

MESSAGE methodology [4] exploits organizational
abstractions that can be mapped into the abstractions
identified by Gaia. In particular, MESSAGE defines an
organization in terms of a structure, determining the
roles to be played by the agents and their topological
relations (i.e., the interactions occurring among them).
In addition, in MESSAGE, an organization is also char-
acterized by a control entity and by a workflow struc-
ture.

GAIA methodology described in Zambonelli [25] is
an extension of the version described in Wooldridge et
al. [22]. The first version of GAIA, provided a clear
separation between the analysis and design phases.
However, as already noted in this paper, it suffered from
limitations caused by the incompleteness of its set of
abstractions. The objective of the analysis phase in the
first version of GAIA was to define a fully elaborated
role model, derived from the system specification, to-
gether with an accurate description of the protocols in
which the roles will be involved. This implicitly as-
sumed that the overall organizational structure was
known a priori (which is not always the case). In addi-
tion, by focusing exclusively on the role model, the
analysis phase in the first version of GAIA failed to
identify both the concept of global organizational rules
(thus making it unsuitable for modelling open systems
and for controlling the behaviour of self-interested
agents) and the modelling of the environment (which is
indeed important, as extensively discussed in this pa-
per). The new version of GAIA overcomes these limita-
tions.

The TROPOS methodology first proposed in [9],
adopt the organizational metaphor and an emphasis on
the explicitly study and identification of the organiza-

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 3

tional structure. TROPOS recognizes that the organiza-
tional structure is a primary dimension for the develop-
ment of agent systems and that an appropriate choice of
it is needed to meet both functional and non-functional
requirements.

PASSI (Process for Agent Societies Specification and
Implementation) [6] is a methodology to MAS develop-
ing, that integrates the definition of MAS philosophy,
modelling and the orientation to objects using UML.
This is composed by five models that address different
visions and twelve steps during the development process
(http://mozart.csai.unipa.it/passi/).

INGENIAS is an agent oriented software engineering
methodology for Multi-Agent Systems development. It
combines agent research results with concepts and
methods established in MESSAGE/UML. The result is a
development process in the line of conventional soft-
ware engineering processes, like object oriented soft-
ware development paradigm or structured paradigm.
INGENIAS defines deliverables and default activities to
help in planning effort along a project. INGENIAS also
provides with tools that facilitate the production of these
deliverables (http://grasia.fdi.ucm.es/ingenias/).

The described methodologies have different propos-
als to model agents and MAS, however they share some
characteristics. All of them model agents like an
autonomous entities and addresses the interaction be-
tween agents in an agent society. A comparative study
can be found in [13].

MESSAGE, MaSE, PASSI and Ingenias are more
adaptable to industrial scenarios, because they are evo-
lutions of UML that is a common standard in this kind
of environments.

Research in the area of agent-oriented software engi-
neering has expanded significantly in the past few years.
Several groups have started addressing the problem of
modelling agent systems with appropriate abstractions
and defining methodologies for MAS development
[13][24][25].

Traditional object-based computing promotes a per-
spective of software components as functional or ser-
vice-oriented entities that directly influences the way
that software systems are architected.

Usually, the global design relies on a rather static ar-
chitecture that derives from the decomposition and
modularisation of the functionalities and data required
by the system to achieve its global goals and on the
definition of their inter-dependencies [24].

5. PROBLEM DEFINITION
Most real-world multi-operation scheduling problems

can be described as dynamic and extended versions of
the classic or basic Job-Shop scheduling combinatorial
optimization problem. The general Job-Shop Scheduling
Problem (JSSP) can be generally described as a deci-
sion-making process on the allocation of a limited set of
resources over time to perform a set of tasks or jobs.
Most real-world multi-operation scheduling problems
can be depicted as dynamic as already described before.

In this work we consider several extensions and addi-
tional constraints to the classic JSSP, namely: the exis-
tence of different job release dates; the existence of
different job due dates; the possibility of job priorities;
machines that can process more than one operation in
the same job (recirculation); the existence of alternative
machines; precedence constraints among operations of
different jobs (as quite often, mainly in discrete manu-
facturing, products are made of several components that
can be seen as different jobs whose manufacture must be
coordinated); the existence of operations of the same
job, on different parts and components, processed simul-
taneously on different machines, followed by compo-
nents assembly operations (which characterizes the
Extended Job-Shop Scheduling Problem (EJSSP)[15-
16]).

Moreover, in practice, scheduling environment tend
to be dynamic, i.e. new jobs arrive at unpredictable
intervals, machines breakdown, jobs are cancelled and
due dates and processing times change frequently.

6. MULTI-AGENT SYSTEM FOR DISTRIBUTED
MANUFACTURING SCHEDULING WITH GENETIC
ALGORITHMS AND TABU SEARCH

This section describes the architecture proposed for
dynamic and distributed scheduling and proposes a
methodology trough Ingenias for its specification.

A. MASDScheGATS Architecture
Distributed environment approaches are important in

order to improve scheduling systems flexibility and
capacity to react to unpredictable events. It is accepted
that new generations of manufacturing facilities, with
increasing specialization and integration, add more
problematic challenges to scheduling systems. For that
reason, issues like robustness, regeneration capacities
and efficiency are currently critical elements in the de-
sign of manufacturing scheduling system and encour-
aged the development of new architectures and solu-
tions, leveraging the MAS research results. The work
described in this paper is a system where a community
of distributed, autonomous and often conflicting behav-
iours, cooperating and asynchronously communicating
machines tries to solve scheduling problems. A global
system behaviour can emerge with requested abilities of
reactivity and flexibility to accomplish all the external
perturbations.

The main purpose of MASDScheGATS (Multi Agent
System for Distributed Manufacturing Scheduling with
Genetic Algorithms and Tabu Search) is to create a
Multi-Agent system where each agent represents a re-
source (Machine Agents) in a Manufacturing System.
Each Machine Agent is able to find an optimal or near
optimal local solution trough Genetic Algorithms or
Tabu Search meta-heuristics, to change/adapt the pa-
rameters of the basic algorithm according to the current
situation or even to switch from one algorithm to an-
other.

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 4

Figure 2 - MASDScheGATS System Architecture

In our case the dynamic scheduling problem is de-

composed into a series of Single Machine Scheduling
Problems (SMSP)[15-16]. The Machine Agents obtain
local solutions and cooperate in order to overcome inter-
agent constraints and achieve a global schedule.

Agents agree to work together in order to solve a
problem that is shared by all agents in the team. Such
approach allows for the resolution of large-scale prob-
lems that a single agent would not be able to solve.
Moreover, Team-based architecture has the ability to
meet global constraints given the capability that agents
possess to act in concert. As we shall see later, this char-
acteristic is critical for the problem treated in this work.

The proposed architecture (Figure 2) is based on
three different types of agents. In order to allow a seam-
less communication with the user, a User Interface
Agent is implemented. This agent, apart from being
responsible for the user interface, will generate the nec-
essary Task Agents dynamically according to the num-
ber of tasks that comprise the scheduling problem and
assign each task to the respective Task Agent.

Figure 3 – Use Case Diagram for MASDScheGATS

Task Agent will process the necessary information

regarding the task. That is to say that this agent will be
responsible for the generation of the earliest and latest
processing times, the verification of feasible schedules
and identification of constraint conflicts on each task
and the decision on which Machine Agent is responsible
for solving a specific conflict. Finally, the Machine
Agent is responsible for the scheduling of the operations
that require processing in the machine supervised by the

agent. This agent will implement meta-heuristic and
local search procedures in order to find best possible
operation schedules and will communicate those solu-
tions to the Task Agent for later feasibility check (Fig-
ure 3).

B. Proposal methodology trough Ingenias

The development cycle that is proposed by
INGENIAS (����������	
���

������	�
����
�	�) methodol-
ogy sees MAS like a computational representation of a
set of models. Each of these models has a partial view of
the system: definition of the autonomous agents that
compose the system, interaction between agents, system
organization, domain, tasks and objectives.

In order to specify how must be these models, the
definition of meta-models is needed. One meta-model is
a representation of all types of entities that can exist in a
model, their relations and application restrictions.

The meta-models used in this methodology are an
evolution of MESSAGE methodology work [4].

This methodology uses five different kinds of meta-
models that describe the correspondent diagrams:

1. Organization meta-model: defines groups of
agents, system functionality and restrictions to agent’s
behaviour. Is equivalent to system architecture in MAS.
The important value for these models is the definition of
workflows.

Figure 4 - Organization meta-model

2. Interaction meta-model: details how agents coordi-

nate and communicates among them. The definition of
systems interaction allows identifying dependencies
among components.

3. Agent meta-model: describes agents, excluding in-
teractions with other agents, and the mental states that
they have in their life cycle. This meta-model is centred
in agent functionality and in is control drawing. It gives
information about the responsibilities or tasks that an
agent is able to perform.

4. Tasks and Objectives meta-model: is used to attach
an agent mental state to the task that executes. Is used to
collect MAS motivations, to define the identified actions
in organization, interaction or agents models, and like it
assigns actions.

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 5

5. Environment meta-model: Defines everything that
is present is the environment and the way in that each
agent understands it. Is main function is identify all
environment elements and define a relation with the
other entities.

It seems a promising tool for the generic modelling of
the system. We have noted that this approach has par-
ticular drawbacks for the specification of negotiation
mechanism and for self-parameterization behaviour of
the agents.

7. CONCLUSIONS AND FUTURE WORK
The Team-Work based architecture for distributed

scheduling that we propose in this paper seems to be a
good way to solve real world scheduling problems,
because a good global solution may emerge from a set
of autonomous agents that cooperates to a communica-
tion mechanism to accomplish a common goal. Coordi-
nation seems to be the edge in MAS, because it is not
possible for all autonomous agents to work together in a
effective way if even one intervenient in the system is
not like an active part of the system. In our opinion
depending of MAS objectives, agents can cooperate in
two distinct ways like cooperation if the global goal is
considered more important that all the individual ones.
If an agent pursues first an individual goal instead of the
global, the system probably must incorporate a negotia-
tion mechanism to improve system performance.

We consider that the AOSE paradigm can perform an
important role when a MAS in being developed, because
with this definition it becomes easier to find problems
observing global system structure. When a structure
problem is discovered is the middle of systems imple-
mentation, most of the times it signifies an important
lost of time.

Work still to be done in the MASDScheGATS sys-
tem includes the testing of the system and negotiation
mechanisms under dynamic environments subject to
several random perturbations.

The proposed AOSE approach needs to be refined in
order to support dynamic environments with unexpected
disruptions that can not be strictly considered in the
modelling because they can happen without any specific
warning. Despite of this, in our opinion this kind of
work can be very significant in order to turn MAS de-
velopment a structured process that doesn’t go from
modelling to implementation without any intermediate
test and validation.

ACKNOWLEDGEMENTS
The authors would like to acknowledge FCT, FEDER,

POCTI, POCI 2010 for their support to R&D Projects and
GECAD Unit.

REFERENCES
[1] Aytug, H., Lawley, M.A., McKay, K., Mohan, S.& Uzsoy, Reha
(2005). Executing production schedules in the face of uncertainties: A
review and some future directions. European Journal of Operational
Research .Volume 16 (1). 86- 110.

[2] Blazewicz, J., Ecker, K. H., Pesch, E., Smith, G. Weglarz,
J.(2001). Scheduling Computer and Manufacturing Processes.
Springer. 2nd edition. New York.
[3] Bresciani, P., Perini,A., Giorgini, P., Giunchiglia, F., and
Mylopoulos, J. (2001). A knowledge level software engineering
methodology for agent oriented programming. In Proc. of the 5th
Int.Conf.on Autonomous Agents, pp 648–655. ACM Press, Montreal .
[4] Caire, G.; Leal, F.; Chainho, P.; Evans, R.; Gomez, J.; Garijo, F.;
Juan Pavon, G.; Kearney, P.; Stark, J.; Massonet, P. (2001). Agent
Oriented Analysis using MESSAGE/UML. In Proceedings of the 2nd
International Workshop on Agent-oriented Software Engineering
(AOSE 2001), Montreal.
[5] Committee on Visionary Manufacturing Challenges(1999).
Visionary Manufacturing Challenges for 2020. National Research
Council. National Academic Press.
[6] Cossentino, M.; Potts, C. (2002). PASSI: a Process for Specifying
and Implementing Multi-Agent Systems Using UML.
[7] Cowling, P. & Johansson, M. (2002). Real time information for
effective dynamic scheduling. European Journal of Operational
Research,139 (2). 230-244.
[8] De Maria, Beatriz.(2005).Usando uma abordagem MDA no
desenvolvimento de sistemas multi-agente. Tese de Mestrado, Pontifi-
cia Universidade Catolica do Rio de Janeiro,(in portuguese).
[9] DeLoach, S. (1999). Multiagent Systems Engineering: A
Methodology And Language for Designing Agent Systems, Agent-
Oriented Information Systems (AOIS 1999).
[10] Ferber, J. (1995). Les Sístemes multi-agents: versune intelligence
collective. Interedition.
[11] Horling, B., Lesser, V. (2005). A Survey of Multi-Agent Organ-
izational Paradigms, University of Massachusets.
[12] Jennings N. R.(1996). Coordination Techniques for Distributed
Artificial Intelligence , in Foundations of Distributed Artificial Intelli-
gence(eds. G. M. P. O'Hare and N. R. Jennings), Wiley, 187-210.
[13] Lindoso, Alisson. (2006). “Uma Metodologia baseada em
Ontologias para a Engenharia de Aplicações Multiagente”. Tese de
Mestrado, Universidade Federal do Maranhão, Brasil.
[14] Lind , Jurgen (1999). A Process Model for the Design of Multi-
Agent Systems, Research Report TM- 99-03, German Research
Center for AI (DFKI).
[15] Madureira, Ana M. (2003). Meta-Heuristics Application to
Scheduling in Dynamic Environments of Discrete Manufacturing.
PhD Dissertation. University of Minho, Portugal(in portuguese).
[16] Madureira, Ana, Ramos, Carlos & Silva, Sílvio (2004). Toward
Dynamic Scheduling Through Evolutionary Computing. WSEAS
Transactions on Systems. Issue 4. Volume 3. 1596-1604.
[17] Mao, Xinjub; Yu, Eric (2004). “Organizacional and Social
Concepts in Agent Oriented Software Engineering”. AOSE2004, New
York, USA, pages 1-15.
[18] Russel, S. and Norvig, P. (2003). Artificial Intelligence: A
Modern Approach, Prentice Hall/Pearson Education Intern.: Engle-
wood Cliffs (NJ), (2nd Ed).
[19] Shen, W. and Norrie, D. (1999). Agent-based systems for
intelligent manufacturing: a state of the art survey, Int. J. Knowl.
Inform. Syst., vol. 1, no. 2, pp. 129– 156.
[20] Wood, M., DeLoach, S. A., and Sparkman, C. (2001). Multi-
agent system engineering. International Journal of Software Engineer-
ing and Knowledge Engineering, 11(3):231–258.
[21] Wooldridge, M. (2002). An Introduction to Multiagent Sys-
tems, John Wiley and Sons.
[22] Wooldridge, M.; Jennings, N. R.; Kinny, D.b(2000). The Gaia
Methodology for Agent-Oriented Analisys and Design, Journal of
Autonomous Agents and Multi- Agent Systems 15.
[23] Wooldridge, M.J. e Jennings, N. R. (1994). Agent Theories,
Architectures, and Languages: A Survey”. Workshop on Agent Theo-
ries, Architectures and Languages, 11th European Conf. on Artificial
Intelligence, Amsterdam, The Netherlands.
[24] Zambonelli, F. and Parunak, H.V.D.(2004). Toward a change
of paradigm in computer science and software engineering: A synthe-
sis, Knowl. Eng. Rev., 18.
[25] Zambonelli, F.; Jennings, N.; Wooldridge, M. (2003). Develop-
ing Multiagent Systems: The Gaia Methodology, ACM Transactions
on Software Engineering and Methodology Vol. 12(3):317–370.

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 6

