
Design Methodology for Multifunction Vehicle Bus Devices

JAIME JIMÉNEZ, JAGOBA ARIAS, JON ANDREU, CARLOS CUADRADO, IÑIGO
KORTABARRIA

Departamento de Electrónica y Telecomunicaciones
Universidad del País Vasco

Alameda Urquijo s/n, 48.013 Bilbao
ESPAÑA

 http://det.bi.ehu.es/~apert

Abstract: - The specifications analysis for an MVB (Multifunction Vehicle Bus) bus administrator showed that
system-on-a-chip strategies should be adopted to cope with its great complexity. Particularly, a new
hardware/software codesign methodology has been followed. Its main concept is that the MVB devices (the bus
administrator itself and the less complex devices) constitute a “progressive family”. This notion establishes a
functional partition that helps to generate the behavioral design: 14 operational blocks and a special memory for
the communication data. The whole architecture has been coded in SystemC, not only for verification purposes,
but also to set the start point in hardware/software partitioning. After validating this executable description by
simulation, estimations about cost and performance in both, hardware and software, have been made. From
these, an optimum hardware-software architecture has been obtained. As a result, the electronic platform for the
Master device has been generated on an FPGA.

Key-Words: - Electronic Design methodology, hardware/software partitioning, Train Communication Network,
Multifunction Vehicle Bus.

1 Introduction
In order to cope with designing a complex digital
system [1-2], some strategies are:

• Abstraction and top-down design [3-4].
• Architecture exploration [5-6].
• Core-based system, on-chip bus and design
for reuse [7-8].
• Platform-based design [2, 9-10].
• Hardware/software codesign [11-12].

 Fig. 1 shows an electronic design flow including
hardware/software codesign steps [13]: cosimulation,
system description in a unified approach language,
hardware/software partitioning and estimation.
 The traditional design flow for electronic complex
systems including an embedded microprocessor
encouraged to perform as soon as possible the
hardware/ software partition [14], so that behavior
parts implemented in hardware and in software were
established in the beginning of the creation process
and no interaction beneficiated both parts. This
methodology has been overcome by the codesign
approach, which performs the hardware/software
partition as late as possible in the design flow [11-
12].
 However, that partitioning step is based on a
complete functional description of the system. That
is, a behavioral arrangement of operational blocks
interacting among them must be created before that
partition. Designers have usually generated this

functional design from the specifications in a quite
straightforward way but always guided by their
experience. Few criteria have been provided in order
to perform the behavioral description in a systematic
way.

Hardware/software partitioning

System
specifications

VHDLC/C++

Software
compilation

Hardware
synthesis

System implementation

Verification

Estimation

Verification

C
O

SIM
U

L
A

T
IO

N

System
description

Unified approach
language (SystemC)

Hardware/software partitioning

System
specifications

VHDLC/C++

Software
compilation

Hardware
synthesis

System implementation

Verification

Estimation

Verification

C
O

SIM
U

L
A

T
IO

N

System
description

Unified approach
language (SystemC)

Fig. 1. Design flow for an electronic system

 In addition, no guide has been reported to
establish the functional blocks in the specific case of
a set of devices composing an “ordered family”, as it

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 352

will be presented in this paper. Such a progressive
device family lets determine some first order
partitions that will be useful to accomplish the
functional description. For that purpose, a unified
representation of the whole system behavior is used
to model functional blocks, regardless of their final
implementation, hardware or software [14]. In fact,
several design teams have proposed the platform
SystemC in order to use the C/C++ programming
language as an efficient way to describe the highest
level model [5, 15].
 The remainder of this paper is organized as
follows. Section 2 describes the Train
Communication Network (TCN) and give details
about the Multifunction Vehicle Bus (MVB). Section
3 explains which methodology has been followed in
the design. The functional architecture to realize the
bus administrator behavior, how all the modules can
be interconnected and the executable model in
SystemC are presented in Section 4, including some
details about the software files arrangement. Section
5 is concerned with the hardware/software
partitioning, the cost function and algorithm used.
The results and the final partition obtained are
mentioned in Section 6. Finally, some conclusions are
presented in Section 7.

2 The Multifunction Vehicle Bus

(MVB)
The general architecture of the Train Communication
Network (TCN) includes two bus types (Fig. 2) [16]:
•MVB (Multifunction Vehicle Bus), which is used for
attaching the electronic equipment inside a train
vehicle.
•WTB (Wired Train Bus), which is used for
interconnecting the different vehicles of a train.

Wired Train Bus

M
u

lt
if
u

n
c
ti
o

n
 V

e
h
ic

le
 B

u
s

N
od

es

Gateway

M
u
lt
if
u
n

c
ti
o

n
 V

e
h

ic
le

 B
u

s

N
od

es

Gateway

M
u

lt
if
u

n
c
ti
o

n
 V

e
h
ic

le
 B

u
s

N
od

es

Gateway

Fig. 2. Train Bus and Vehicle Bus

 Both bus types have a Master-Slave architecture to
control the access to the network. The Master is a
device which spontaneously sends information, a
Master_Frame, to a number of Slave devices. It may

give a Slave the permission to transmit one
Slave_Frame only within a limited time. In MVB
bus, different classes of devices can be used in order
to carry out various functions and services both for
the vehicle and for the bus itself. Table 1 shows all
the MVB device classes and the capabilities offered
by each one. For instance, class 1 devices play the
Slave role, receive Master and Slave Frames and,
when polled, send a Slave Frame.
 This table reveals that the MVB devices constitute
a “progressive family”, i.e., each one has all the
capabilities of the previous class and, in addition,
some other ones. This notion will be exploited to
create the functional design of the class 4 device, the
bus administrator.

Table 1. MVB device classes and corresponding
capabilities

 D
ev

ic
e
_
S

ta
tu

s

 P
ro

ce
ss

_
D

a
ta

 M
es

sa
g

e_
D

a
ta

 U
se

r_
C

o
n

fi
g
u

ra
b

le

 U
se

r_
P

r
o
g

ra
m

a
b

le

 B
u

s_
A

d
m

in
is

tr
a
to

r

 T
C

N
_
G

a
te

w
a
y

Class 0

Class 1 ● ●

Class 2 ● ● ● ●

Class 3 ● ● ● ● ●

Class 4 ● ● ● ● ○ ●

Class 5 ● ● ● ● ○ ○ ●

●: Compulsory cap. ○: Optional cap.

2.1 The Master device
One bus administrator must play the Master role in
the MVB network. It is in charge of periodically
polling all the Slave devices in order to:
• Give permission to interchange Process Data.
• Know their Device Status and capability to be the
new Master.
• Request some Message Data.
 In addition, this bus administrator will inquire
whether there is any unresolved event and try to
transfer the Mastership to another ready bus
administrator.

3 The Design Methodology
Our proposed design methodology is depicted in fig.
3. Its two main innovations are that the start point is
the specifications of the whole family, instead of a
particular device; and, second, a behavioral platform

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 353

for the most complex device is designed not only
from functional considerations but also from the
specific family framework –the “progression” notion.
 This latter concept means that any device of the
set offers all the capabilities of the previous less
complex one in the family, plus some additional
functions (fig. 4). This is the case in the MVB node
classes, as table 1 shows. Such a feature is exploited
in the following way: the additional capabilities of a
device, not common to the simpler ones, must be
assigned to functional blocks isolated from the
modules that constitute the less complex devices. For
instance, the functional blocks required to perform
the Message data capability cannot be none of those
ones used to implement the Process data, as the
former is particular to class 2 devices and the latter is
common to class 1, too.

1. Family
specifications

2. Most
complex device
specifications

3. System
bus

selection

4. Platform
functional

design

5. Blocks upon:
a) Autonomy

b) Progression

6. Executable
functional model

in SystemC

8. Architecture
exploration

7. Simulation

9. Hardware
estimations

10. Software
estimations

11. Hardware/
software partition

12. System
constraints:

area and delay

13. Platform
architecture
definition

14. Refinement

15. Refined
model

in SystemC
16. Simulation

17. Hardware
description

18. Software
code

19. Synthesis 20. Compilation

21. System integration

1. Family
specifications

2. Most
complex device
specifications

3. System
bus

selection

4. Platform
functional

design

5. Blocks upon:
a) Autonomy

b) Progression

6. Executable
functional model

in SystemC

8. Architecture
exploration

7. Simulation

9. Hardware
estimations

10. Software
estimations

11. Hardware/
software partition

12. System
constraints:

area and delay

13. Platform
architecture
definition

14. Refinement

15. Refined
model

in SystemC
16. Simulation

17. Hardware
description

18. Software
code

19. Synthesis 20. Compilation

21. System integration

Fig. 3. Design methodology

 So, an initial, basic but useful partition of the
whole behavior is obtained from these family
considerations. This lets the designer start the
functional design not from the scratch, but from a
first arrangement. In this way, our approach allows to
generate a simpler device from a more complex one
by just deleting the spare blocks in the functional
design and repeating the subsequent steps only for the
remaining ones. It must be taken into account that
this last implementation process had been already
performed for the complex device, so it will be
straightforward, since all the functional modules will
be implemented in circuits attached to the on-chip
bus by means of a particular interface –the Wishbone
bus, in our case. So, removing a block means
disconnecting that module from the on-chip bus.

Device 1 Device 2 Device 3
function a

function k

function b
function c

function d

function e
function ffunction g

function l function j

function i

function h

Device 1 Device 2 Device 3
function a

function k

function b
function c

function d

function e
function ffunction g

function l function j

function i

function h

Fig. 4. Functions in a progressive family

 Starting the design from the most complex device,
before creating the simpler ones, is a crucial point
because of the consequences on the design of the
common blocks. These ones would be different if
created specifically for a simpler device, so they
could not be used for the more complex one.
However, the reverse way is feasible indeed: a block
designed for a complex device can compose a simpler
one, just by fixing some inputs and ignoring some
outputs, if needed. The remaining steps in the design
flow of the fig. 3 are quite conventional.
Nevertheless, they will be illustrated in next sections.

4. The Functional Model in SystemC
A behavioral architecture was deduced for the MVB
master device, following both ideas previously
introduced. In this way, all the tasks concerned with it
were bound to a specific and well defined functional
module. This process resulted in the blocks listed in
fig. 5, where it can be seen that tasks of a capability
are always independent from those ones of a simpler
class –Message data and Message data polling, for
example. It must be emphasized that, for the moment,
9 of these 17 blocks may be implemented in hardware
or in software.

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 354

Encoder
Redundancy

control

Process

data

Timing

control
Decoder

Lower link layer functions

Wishbone

decoder
Arbiter

Wishbone bus arbitration

and decoding functions

Message
data

Supervision data

(events, status &
mastership)

Master
control and

timing

Process data

polling

Device
status
polling

Event
management

Mastership
transfer

Traffic

store

(interface
between link and

application layers)

Upper link layer functions

Wishbone

PHYSICAL LAYER

APPLICATION LAYER

Master functionsSlave functions

Encoder
Redundancy

control

Process

data

Timing

control
Decoder

Lower link layer functions

Wishbone

decoder
Arbiter

Wishbone bus arbitration

and decoding functions

Message
data

Supervision data

(events, status &
mastership)

Master
control and

timing

Process data

polling

Device
status
polling

Event
management

Mastership
transfer

Traffic

store

(interface
between link and

application layers)

Upper link layer functions

Wishbone

PHYSICAL LAYER

APPLICATION LAYER

Master functionsSlave functions

Fig. 5. Functional block diagram of the MVB link layer

 The encoder, decoder, redundancy control, timing
control, Master control and timing, Traffic Store,
(Wishbone) arbiter and Wishbone decoder have to be
implemented in hardware by nature. In section 6 the
final partition between hardware and software will be
detailed.
 In order to cope with the great complexity of the
class 4 device, a core-based design strategy was
adopted [7]. So that all the functional blocks had to
be provided with the particular interface to a specific
on-chip bus, the Wishbone. In this way, once all the
electronic modules were produced, generating the
whole system would be just a matter of attaching all
of them to the on-chip bus. This is a natural process
to design a system-on-a-chip.

4.1 The File Arrangement of the Executable

SystemC Model
Apart from the SystemC libraries, the software
arrangement of all the files needed to simulate a real
MVB bus scenario is represented in fig. 6. The file
class_4_n.h collects all the modules indicated by fig.
5 for the n-th bus administrator. In this particular
example, an MVB bus is composed of two class 4
devices and a monitor entity to display useful
information about the network working. The
main.cpp file collects all the previous entities and
when executed by a common C++ compiler produces
the results in graphical and text files. In addition,
display messages are shown by the SystemC kernel.

SystemC

main.cpp

class_4_2.h
class_4_1.h

monitor.h

monitor.cpp

decoder.h
decoder.cpp

mastership_supervision.h
mastership_supervision.cpp

arbiter.h
arbiter.cpp

decoder_wishbone.h
decoder_wishbone.cpp

ts1_loader.h
ts1_loader.cpp

traffic_store.h
traffic_store.cpp

master_control.h.
master_control.cpp.

process_data_polling.h.
process_data_polling.cpp.

event_polling.h
event_polling.cpp.

message_data.h
message_data.cpp

event_supervision.h
event_supervision.cpp

device_status_supervision.h
device_status_supervision.cpp

device_status_polling.h
device_status_polling.cpp

...
The same as class_4_1 except.
ts1_loader which turns into ts2_loader

system_constants.hsystemc.h

timing_ control.h
timing_ control.cpp

encoder.h
encoder.cpp

mastership_transfer.h
mastership_transfer.cpp

process_data.h
process_data.cpp

iostream.h

fstream.h

C/C++

Results
class_4_1.vcd

class_4_2.vcd

monitor_log.txt

GTKWave waveform viewer Text file viewer

SystemC

main.cpp

class_4_2.h
class_4_1.h

monitor.h

monitor.cpp

decoder.h
decoder.cpp

mastership_supervision.h
mastership_supervision.cpp

arbiter.h
arbiter.cpp

decoder_wishbone.h
decoder_wishbone.cpp

ts1_loader.h
ts1_loader.cpp

traffic_store.h
traffic_store.cpp

master_control.h.
master_control.cpp.

process_data_polling.h.
process_data_polling.cpp.

event_polling.h
event_polling.cpp.

message_data.h
message_data.cpp

event_

SystemC

main.cpp

class_4_2.h
class_4_1.h

monitor.h

monitor.cpp

decoder.h
decoder.cpp

mastership_supervision.h
mastership_supervision.cpp

arbiter.h
arbiter.cpp

decoder_wishbone.h
decoder_wishbone.cpp

ts1_loader.h
ts1_loader.cpp

traffic_store.h
traffic_store.cpp

master_control.h.
master_control.cpp.

process_data_polling.h.
process_data_polling.cpp.

event_polling.h
event_polling.cpp.

message_data.h
message_data.cpp

event_supervision.h
event_supervision.cpp

device_status_supervision.h
device_status_supervision.cpp

device_status_polling.h
device_status_polling.cpp

...
The same as class_4_1 except.
ts1_loader which turns into ts2_loader

system_constants.hsystemc.h

timing_ control.h
timing_ control.cpp

encoder.h
encoder.cpp

mastership_transfer.h
mastership_transfer.cpp

process_data.h
process_data.cpp

iostream.h

fstream.h

C/C++

Results
class_4_1.vcd

class_4_2.vcd

monitor_log.txt

GTKWave waveform viewer Text file viewer

Fig. 6. File structure of the bus administrator model and test workbench

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 355

5. Hardware/Software Partition
After validating the functional design, we proceeded
to the hardware/software partitioning, i.e., determine
which functional blocks would be turned into specific
electronic circuits and which ones into routines in one
of the general purpose processors. For this object,
estimations were done about silicon area and
performance when implemented in hardware, and
about program memory occupancy and running time
when in software. From them, the following
algorithm, reported by Lee, Hsiung, and Chen, was
performed to partition the system [12].
 First of all, an horizontal one-dimensional array
named “Movable Linear Array” (MLA) (fig. 7) is
used to store objects that can be implemented either
as hardware or software. Each component in a system
under partition is associated with a metric called
Cost-Performance Difference (CPD) ratio, which
takes into account both the physical resources
consumed by synthesizing it and the associated
processing time. The latter includes not only the
operation time but also the communication one
because of the on-chip bus.
 A great value of the CPD ratio means that the
software implementation is more effective than the
hardware one and vice versa. All modules are sorted
in an ascending order of their CPD ratios and placed
in the MLA from left to right. The partitioning
method sets the initial divider somewhere around the
middle of the sorted sequence of objects in the MLA.
As fig. 7 shows, all objects to the right of the divider,
including itself, are implemented in software and the
rest, at the left of the divider, are implemented in
hardware.

Divider

Block 1 Block 2 Block m/2-1 Block m-1 Block m

Hardware Software

... ...

Divider

Block 1 Block 2 Block m/2-1 Block m-1 Block m

Hardware Software

... ...

Fig. 7. Movable linear array (MLA) and divider

6. Resulting Partition
Table 2 indicates the CPD values of all the blocks in
the MLA and their places in the array. These have
been obtained from estimations about how many
logic cells or how much program memory is needed
to implement every module and about how fast they
run in each case. Initially the module in the 4th place
of the array was chosen as the divider, so that the 3
first functions were to be implemented in hardware
and the others in software.
 However, the initial partition obtained must be
tested for feasibility under the given system

constraints on cost and performance. Four cases are
encountered during feasibility testing. First, if the
performance specifications are satisfied but cost ones
are not, then the software part has to be increased by
selecting a new divider towards the left of the current
one along the linear array of sorted objects. Second, if
the cost constraints are satisfied but performance ones
are not, then the hardware part must be increased by
selecting a new divider towards the right of the
current one along the MLA. Third, if both cost and
performance specifications are satisfied, then,
depending on whether preference is given to
minimizing cost or to maximizing performance, we
move towards the left or right, respectively. Finally,
if either both cost and performance specifications are
not satisfied or one of them cannot be satisfied, then
no feasible partition can be found for the given
system under the given constraints.

Table 2. Functional blocks ordered in the Movable
Linear Array (MLA)

Module CPD MLA place

Process data 140 1
Message data 146 2
Event supervision 352 3
Device status supervision 378 4
Mastership supervision 389 5
Device status polling 550 6
Mastership transfer 620 7
Event management 1637 8
Process data polling 1825 9

 In the case of the bus administrator, there was no
specific constraint about hardware cost, as it
depended upon the final selected electronic platform.
Nevertheless, the standard imposes two timing
constraints; first, the response time for a Slave
module to send the answering Slave Frame from the
moment in which the requesting Master Frame was
decoded cannot be greater than 6 ms. Second, the
Master cannot send a Master Frame later than 1.3 ms
from the previous one.
 In order to cope with these two constraints at no
risk, two more iterations had to be realized from the
initial partition, towards the right. In this way, the
final partition showed in table 3 was established.

7 Conclusions
The MVB devices constitute an ordered or
“progressive” family. This feature lets determine
some first order functional partitions that will be
useful to accomplish the behavioral design of the
most complex device. The additional capabilities of a

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 356

device, not common to the simpler ones, must be
assigned to functional blocks isolated from the
modules that constitute the less complex devices.

Table 3. Hardware/software partition

Module Implementation

Process data HW
Message data HW
Event supervision HW
Device status supervision HW
Mastership supervision HW
Process data polling SW
Device status polling SW
Mastership transfer SW
Event management SW

HW: Hardware SW: Software

 Our approach allows to generate a simpler device
from a more complex one by just deleting the spare
blocks in the functional design and repeating the
subsequent steps only for the remaining ones. The
functional design for the MVB Master device could
be arranged in 14 operational blocks. So that system-
on-a-chip strategies are needed to design such a
complex device. A core-based architecture, modules
attached to an on-chip internal bus and codesign
philosophies have been followed.
 The whole architecture has been coded in
SystemC. After validating this executable description
by simulation, the hardware/software partition has
been performed following a specific algorithm.
Estimations about silicon area consumed, hardware
response time, program memory occupied and
software execution time have been made in order to
calculate a cost function for each functional block:
the cost-performance difference. As a result, the
electronic platform for the Master device has been
generated on an FPGA. The final implementation
contains a soft processor as the main component, a
ROM memory, a RAM one, some internal registers
and the Traffic Store.

References:

[1] R. Rajsuman, System–on-a-chip. Design and test,
Artech House Publishers, 2000, pp. 9-12, 34-36.

[2] R. E. Bryant, “Limitations and Challenges of
Computer-Aided Design Technology for CMOS
VLSI”, Proceedings of the IEEE, vol. 89, n. 3, pp.
341-363, Mar. 2001.

[3] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-level

synthesis. Introduction to chip and system design,
Kluwer Academic Publishers, 1992, pp. 313-314.

[4] A. Tsuchiya, T. Shiota, and S. Kawashima, “A 0.9
V low-power 16-bit DSP based on a top-down

design methodology”, Fujitsu Scientific and

Technical Journal, vol. 36, n. 1, pp. 63-71, Jun.
2000.

[5] P. Lieverse, P. Van der Wolf, K. Vissers, and E.
Deprettere, “A methodology for architecture
exploration of heterogeneous signal processing
systems”, Journal of VLSI signal processing, vol.
29, n. 3, pp. 197-207, 2001.

[6] A. D. Pimentel, L. O. Hertzberger, P. Lieverse, P.
van der Wolf, and E. F. Deprettere, “Exploring
embedded-systems architectures with Artemis”,
Computer, pp. 57-63, Nov. 2001.

[7] R. K. Gupta and Y. Zorian, “Introducing Core-
Based System Design”, IEEE Design and Test of

Computers, vol. 14, n. 4, pp. 15-25, 1997.
[8] A. M. Rincon, G. Cherichetti, J. A. Monzel, D. R.

Stauffer and M.T. Trick, “Core Design and
System-on-a-Chip Integration”, IEEE Design and

Test of Computers, vol. 14, n. 4, pp. 26-35, 1997.
[9] J. A. J. Leijten, J. L. Van Meerbergen, A. H.

Timmer, and J. A. G. Jess, “Prophid: a platform-
based design method". Design Automation for

Embedded Systems, vol. 6, pp. 5-37, 2000.
[10] D. MacMillen, M. Butts, R. Camposanto, D.

Hill, and T. W. Williams, “An industrial view of
Electronic Design Automation”, IEEE

transactions on computer-aided design of

integrated circuits and systems, vol. 19, n. 12, pp.
1428-1448, Dec. 2000.

[11] R. Ernst, “Codesign of embedded systems:
Status and trends”, IEEE Design & Test of

Computers, vol. 15, n. 2, pp. 45-54, 1998.
[12] T. Y. Lee, P. A. Hsiung, and S. J. Chen,

“DESC: a hardware-software codesign
methodology for distributed embedded systems”,
IEICE transactions on information and systems,
vol. E84-D, n. 3, pp. 326-339, 2001.

[13] Y. Kim, et al. “An integrated cosimulation
environment for heterogeneous systems
prototyping”, Design Automation for Embedded

Systems, vol. 3, pp. 163-186, 1998.
[14] S. Kumar, J. H. Aylor, B. W. Johnson, and

WM. A. Wulf, The codesign of embedded

systems. A unified hardware/software

representation. S. Kumar, Ed. Kluwer Academic
Publishers, 1996, pp. 2-5, 39-50.

[15] V. Carchiolo, M. Malgeri, and G. Mangioni,
“Hardware/software synthesis of formal
specifications in codesign of embedded systems”,
ACM transactions on design automation of

electronic systems, vol. 5, n. 3, pp. 399-432, 2000.
[16] H. Kirrmann, and P. A. Zuber, “The

IEC/IEEE Train Communication Network”, IEEE

Micro, vol. 21, n. 2, pp. 81-85, 87-92, Mar.-Apr.
2001.

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006 357

