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Abstract: - The specifications analysis for an MVB (Multifunction Vehicle Bus) bus administrator showed that 
system-on-a-chip strategies should be adopted to cope with its great complexity. Particularly, a new 
hardware/software codesign methodology has been followed. Its main concept is that the MVB devices (the bus 
administrator itself and the less complex devices) constitute a “progressive family”. This notion establishes a 
functional partition that helps to generate the behavioral design: 14 operational blocks and a special memory for 
the communication data. The whole architecture has been coded in SystemC, not only for verification purposes, 
but also to set the start point in hardware/software partitioning. After validating this executable description by 
simulation, estimations about cost and performance in both, hardware and software, have been made. From 
these, an optimum hardware-software architecture has been obtained. As a result, the electronic platform for the 
Master device has been generated on an FPGA. 
 
Key-Words: - Electronic Design methodology, hardware/software partitioning, Train Communication Network, 
Multifunction Vehicle Bus. 
 

1   Introduction 
In order to cope with designing a complex digital 
system [1-2], some strategies are: 

• Abstraction and top-down design [3-4]. 
• Architecture exploration [5-6]. 
• Core-based system, on-chip bus and design 
for reuse [7-8]. 
• Platform-based design [2, 9-10]. 
• Hardware/software codesign [11-12].  

     Fig. 1 shows an electronic design flow including 
hardware/software codesign steps [13]: cosimulation, 
system description in a unified approach language, 
hardware/software partitioning and estimation. 
     The traditional design flow for electronic complex 
systems including an embedded microprocessor 
encouraged to perform as soon as possible the 
hardware/ software partition [14], so that behavior 
parts implemented in hardware and in software were 
established in the beginning of the creation process 
and no interaction beneficiated both parts. This 
methodology has been overcome by the codesign 
approach, which performs the hardware/software 
partition as late as possible in the design flow [11-
12]. 
     However, that partitioning step is based on a 
complete functional description of the system. That 
is, a behavioral arrangement of operational blocks 
interacting among them must be created before that 
partition. Designers have usually generated this 

functional design from the specifications in a quite 
straightforward way but always guided by their 
experience. Few criteria have been provided in order 
to perform the behavioral description in a systematic 
way. 
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Fig. 1. Design flow for an electronic system 
 
     In addition, no guide has been reported to 
establish the functional blocks in the specific case of 
a set of devices composing an “ordered family”, as it 
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will be presented in this paper. Such a progressive 
device family lets determine some first order 
partitions that will be useful to accomplish the 
functional description. For that purpose, a unified 
representation of the whole system behavior is used 
to model functional blocks, regardless of their final 
implementation, hardware or software [14]. In fact, 
several design teams have proposed the platform 
SystemC in order to use the C/C++ programming 
language as an efficient way to describe the highest 
level model [5, 15]. 
     The remainder of this paper is organized as 
follows. Section 2 describes the Train 
Communication Network (TCN) and give details 
about the Multifunction Vehicle Bus (MVB). Section 
3 explains which methodology has been followed in 
the design. The functional architecture to realize the 
bus administrator behavior, how all the modules can 
be interconnected and the executable model in 
SystemC are presented in Section 4, including some 
details about the software files arrangement. Section 
5 is concerned with the hardware/software 
partitioning, the cost function and algorithm used. 
The results and the final partition obtained are 
mentioned in Section 6. Finally, some conclusions are 
presented in Section 7. 
 

 

2   The Multifunction Vehicle Bus 

(MVB) 
The general architecture of the Train Communication 
Network (TCN) includes two bus types (Fig. 2) [16]: 
•MVB (Multifunction Vehicle Bus), which is used for 
attaching the electronic equipment inside a train 
vehicle. 
•WTB (Wired Train Bus), which is used for 
interconnecting the different vehicles of a train. 
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Fig. 2. Train Bus and Vehicle Bus 
 
 
     Both bus types have a Master-Slave architecture to 
control the access to the network. The Master is a 
device which spontaneously sends information, a 
Master_Frame, to a number of Slave devices. It may 

give a Slave the permission to transmit one 
Slave_Frame only within a limited time. In MVB 
bus, different classes of devices can be used in order 
to carry out various functions and services both for 
the vehicle and for the bus itself. Table 1 shows all 
the MVB device classes and the capabilities offered 
by each one. For instance, class 1 devices play the 
Slave role, receive Master and Slave Frames and, 
when polled, send a Slave Frame. 
     This table reveals that the MVB devices constitute 
a “progressive family”, i.e., each one has all the 
capabilities of the previous class and, in addition, 
some other ones. This notion will be exploited to 
create the functional design of the class 4 device, the 
bus administrator. 
 

Table 1. MVB device classes and corresponding 
capabilities 
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Class 0        

Class 1 ● ●      

Class 2 ● ● ● ●    

Class 3 ● ● ● ● ●   

Class 4 ● ● ● ● ○ ●  

Class 5 ● ● ● ● ○ ○ ● 

●: Compulsory cap.    ○: Optional cap. 
 
2.1 The Master device 
One bus administrator must play the Master role in 
the MVB network. It is in charge of periodically 
polling all the Slave devices in order to: 
• Give permission to interchange Process Data. 
• Know their Device Status and capability to be the 
new Master. 
• Request some Message Data. 
     In addition, this bus administrator will inquire 
whether there is any unresolved event and try to 
transfer the Mastership to another ready bus 
administrator. 
 
 

3   The Design Methodology 
Our proposed design methodology is depicted in fig. 
3. Its two main innovations are that the start point is 
the specifications of the whole family, instead of a 
particular device; and, second, a behavioral platform 
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for the most complex device is designed not only 
from functional considerations but also from the 
specific family framework –the “progression” notion. 
     This latter concept means that any device of the 
set offers all the capabilities of the previous less 
complex one in the family, plus some additional 
functions (fig. 4). This is the case in the MVB node 
classes, as table 1 shows. Such a feature is exploited 
in the following way: the additional capabilities of a 
device, not common to the simpler ones, must be 
assigned to functional blocks isolated from the 
modules that constitute the less complex devices. For 
instance, the functional blocks required to perform 
the Message data capability cannot be none of those 
ones used to implement the Process data, as the 
former is particular to class 2 devices and the latter is 
common to class 1, too.  
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Fig. 3. Design methodology 

     So, an initial, basic but useful partition of the 
whole behavior is obtained from these family 
considerations. This lets the designer start the 
functional design not from the scratch, but from a 
first arrangement. In this way, our approach allows to 
generate a simpler device from a more complex one 
by just deleting the spare blocks in the functional 
design and repeating the subsequent steps only for the 
remaining ones. It must be taken into account that 
this last implementation process had been already 
performed for the complex device, so it will be 
straightforward, since all the functional modules will 
be implemented in circuits attached to the on-chip 
bus by means of a particular interface –the Wishbone 
bus, in our case. So, removing a block means 
disconnecting that module from the on-chip bus. 
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Fig. 4. Functions in a progressive family 
 
     Starting the design from the most complex device, 
before creating the simpler ones, is a crucial point 
because of the consequences on the design of the 
common blocks. These ones would be different if 
created specifically for a simpler device, so they 
could not be used for the more complex one. 
However, the reverse way is feasible indeed: a block 
designed for a complex device can compose a simpler 
one, just by fixing some inputs and ignoring some 
outputs, if needed. The remaining steps in the design 
flow of the fig. 3 are quite conventional. 
Nevertheless, they will be illustrated in next sections. 
 
 

4.   The Functional Model in SystemC 
A behavioral architecture was deduced for the MVB 
master device, following both ideas previously 
introduced. In this way, all the tasks concerned with it 
were bound to a specific and well defined functional 
module. This process resulted in the blocks listed in 
fig. 5, where it can be seen that tasks of a capability 
are always independent from those ones of a simpler 
class –Message data and Message data polling, for 
example. It must be emphasized that, for the moment, 
9 of these 17 blocks may be implemented in hardware 
or in software. 

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006       354



Encoder
Redundancy

control

Process

data

Timing

control
Decoder

Lower link layer functions

Wishbone

decoder
Arbiter

Wishbone bus arbitration

and decoding functions

Message
data

Supervision data

(events, status & 
mastership)

Master
control and 

timing

Process data

polling

Device 
status 
polling

Event
management

Mastership 
transfer

Traffic

store

(interface
between link and

application layers)

Upper link layer functions

Wishbone

PHYSICAL LAYER

APPLICATION LAYER

Master functionsSlave functions

Encoder
Redundancy

control

Process

data

Timing

control
Decoder

Lower link layer functions

Wishbone

decoder
Arbiter

Wishbone bus arbitration

and decoding functions

Message
data

Supervision data

(events, status & 
mastership)

Master
control and 

timing

Process data

polling

Device 
status 
polling

Event
management

Mastership 
transfer

Traffic

store

(interface
between link and

application layers)

Upper link layer functions

Wishbone

PHYSICAL LAYER

APPLICATION LAYER

Master functionsSlave functions

 
 

Fig. 5. Functional block diagram of the MVB link layer 
 
     The encoder, decoder, redundancy control, timing 
control, Master control and timing, Traffic Store, 
(Wishbone) arbiter and Wishbone decoder have to be 
implemented in hardware by nature. In section 6 the 
final partition between hardware and software will be 
detailed. 
     In order to cope with the great complexity of the 
class 4 device, a core-based design strategy was 
adopted [7]. So that all the functional blocks had to 
be provided with the particular interface to a specific 
on-chip bus, the Wishbone. In this way, once all the 
electronic modules were produced, generating the 
whole system would be just a matter of attaching all 
of them to the on-chip bus. This is a natural process 
to design a system-on-a-chip. 
 

4.1 The File Arrangement of the Executable 

SystemC Model 
Apart from the SystemC libraries, the software 
arrangement of all the files needed to simulate a real 
MVB bus scenario is represented in fig. 6. The file 
class_4_n.h collects all the modules indicated by fig. 
5 for the n-th bus administrator. In this particular 
example, an MVB bus is composed of two class 4 
devices and a monitor entity to display useful 
information about the network working. The 
main.cpp file collects all the previous entities and 
when executed by a common C++ compiler produces 
the results in graphical and text files. In addition, 
display messages are shown by the SystemC kernel. 
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Fig. 6. File structure of the bus administrator model and test workbench 
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5.   Hardware/Software Partition 
After validating the functional design, we proceeded 
to the hardware/software partitioning, i.e., determine 
which functional blocks would be turned into specific 
electronic circuits and which ones into routines in one 
of the general purpose processors. For this object, 
estimations were done about silicon area and 
performance when implemented in hardware, and 
about program memory occupancy and running time 
when in software. From them, the following 
algorithm, reported by Lee, Hsiung, and Chen, was 
performed to partition the system [12]. 
     First of all, an horizontal one-dimensional array 
named “Movable Linear Array” (MLA) (fig. 7) is 
used to store objects that can be implemented either 
as hardware or software. Each component in a system 
under partition is associated with a metric called 
Cost-Performance Difference (CPD) ratio, which 
takes into account both the physical resources 
consumed by synthesizing it and the associated 
processing time. The latter includes not only the 
operation time but also the communication one 
because of the on-chip bus. 
     A great value of the CPD ratio means that the 
software implementation is more effective than the 
hardware one and vice versa. All modules are sorted 
in an ascending order of their CPD ratios and placed 
in the MLA from left to right. The partitioning 
method sets the initial divider somewhere around the 
middle of the sorted sequence of objects in the MLA. 
As fig. 7 shows, all objects to the right of the divider, 
including itself, are implemented in software and the 
rest, at the left of the divider, are implemented in 
hardware. 

Divider

Block 1 Block 2 Block m/2-1 Block m-1 Block m

Hardware Software

... ...

Divider

Block 1 Block 2 Block m/2-1 Block m-1 Block m

Hardware Software

... ...

 
 

Fig. 7. Movable linear array (MLA) and divider 
 
 

6.   Resulting Partition 
Table 2 indicates the CPD values of all the blocks in 
the MLA and their places in the array. These have 
been obtained from estimations about how many 
logic cells or how much program memory is needed 
to implement every module and about how fast they 
run in each case. Initially the module in the 4th place 
of the array was chosen as the divider, so that the 3 
first functions were to be implemented in hardware 
and the others in software. 
     However, the initial partition obtained must be 
tested for feasibility under the given system 

constraints on cost and performance. Four cases are 
encountered during feasibility testing. First, if the 
performance specifications are satisfied but cost ones 
are not, then the software part has to be increased by 
selecting a new divider towards the left of the current 
one along the linear array of sorted objects. Second, if 
the cost constraints are satisfied but performance ones 
are not, then the hardware part must be increased by 
selecting a new divider towards the right of the 
current one along the MLA. Third, if both cost and 
performance specifications are satisfied, then, 
depending on whether preference is given to 
minimizing cost or to maximizing performance, we 
move towards the left or right, respectively. Finally, 
if either both cost and performance specifications are 
not satisfied or one of them cannot be satisfied, then 
no feasible partition can be found for the given 
system under the given constraints. 
 
Table 2. Functional blocks ordered in the Movable 
Linear Array (MLA) 

 

Module CPD MLA place 

Process data 140 1 
Message data 146 2 
Event supervision 352 3 
Device status supervision 378 4 
Mastership supervision 389 5 
Device status polling 550 6 
Mastership transfer 620 7 
Event management 1637 8 
Process data polling 1825 9 

 
     In the case of the bus administrator, there was no 
specific constraint about hardware cost, as it 
depended upon the final selected electronic platform. 
Nevertheless, the standard imposes two timing 
constraints; first, the response time for a Slave 
module to send the answering Slave Frame from the 
moment in which the requesting Master Frame was 
decoded cannot be greater than 6 ms. Second, the 
Master cannot send a Master Frame later than 1.3 ms 
from the previous one. 
     In order to cope with these two constraints at no 
risk, two more iterations had to be realized from the 
initial partition, towards the right. In this way, the 
final partition showed in table 3 was established. 
 

7   Conclusions 
The MVB devices constitute an ordered or 
“progressive” family. This feature lets determine 
some first order functional partitions that will be 
useful to accomplish the behavioral design of the 
most complex device. The additional capabilities of a 
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device, not common to the simpler ones, must be 
assigned to functional blocks isolated from the 
modules that constitute the less complex devices. 
 
Table 3. Hardware/software partition 
 

Module Implementation 

Process data HW 
Message data HW 
Event supervision HW 
Device status supervision HW 
Mastership supervision HW 
Process data polling SW 
Device status polling SW 
Mastership transfer SW 
Event management SW 

HW: Hardware    SW: Software 
 
     Our approach allows to generate a simpler device 
from a more complex one by just deleting the spare 
blocks in the functional design and repeating the 
subsequent steps only for the remaining ones. The 
functional design for the MVB Master device could 
be arranged in 14 operational blocks. So that system-
on-a-chip strategies are needed to design such a 
complex device. A core-based architecture, modules 
attached to an on-chip internal bus and codesign 
philosophies have been followed. 
     The whole architecture has been coded in 
SystemC. After validating this executable description 
by simulation, the hardware/software partition has 
been performed following a specific algorithm. 
Estimations about silicon area consumed, hardware 
response time, program memory occupied and 
software execution time have been made in order to 
calculate a cost function for each functional block: 
the cost-performance difference. As a result, the 
electronic platform for the Master device has been 
generated on an FPGA. The final implementation 
contains a soft processor as the main component, a 
ROM memory, a RAM one, some internal registers 
and the Traffic Store. 
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