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Abstract: A model for Chemical Vapor Infiltration is analyzed. Consider a cylindrical pore with a reacting gas and
a non-reacting carrier gas flowing in on the left. The gas reacts with the interior of the pore and the result is a solid
matrix. The model assumes that the flux due to binary diffusion is negligible. The model also assumes that the
reactions are first order. The results yield mathematical estimates for the concentration and void including upper
and lower bounds for the void fraction.
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1 Introduction
Consider a porous preform, (e.g. fibers, or particles)
and a vapor flowing into the preform on one side. The
fluid consists of a carrier gas that is non-reacting and
a reactant that bonds with the interior surfaces of the
preform. The result of the reaction is the deposition
of a solid matrix phase that decreases the void of the
preform. The void of the preform may continuously
decrease until the void at the inlet is zero and no more
fluid can enter the solid. At this time the process ends.
It is usually desirable that the voids in the preform are
minimized and the solid is uniform before the process
ends. Since Chemical Vapor Infiltration (CVI) often
takes an extremely long time, it is also important to
choose parameters that achieve the requisite amount
of solid formation in the minimum amount of time.

The process involves several parameters: temper-
ature, pressure, initial void of the preform, chemical
composition, chemical concentration etc. An accurate
mathematical model is necessary to inexpensively and
effectively optimize the process.

A process is successful if the remaining voids in
the matrix are within some tolerance. The tolerance
is determined by the application of the material. The
conclusions that follow can be used to choose the val-
ues of the parameters that will yield a successful pro-
cess. Specifically, the individual processing the com-
posite material can use these results to adjust the con-
trols on a CVI reactor and produce a successful prod-
uct.
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In the research presented here the parameters α2

(proportional to the reaction rate divided by the diffu-
sion rate) and β (proportional to the reaction rate) are
constant during each process. The reaction and diffu-
sion rates are assumed to be a fuction of temperture
and pressure. Thus, constant α and β corresponds to
an isothermal-isobaric process.

The formulation yields a coupled system of Par-
tial Differential Equations (PDEs) for the void fraction
of the preform and the concentration of the reacting
gas. Mathematical analysis is used to give approxi-
mate solutions to the PDEs as a function of space and
time. The properties of the solutions, the void fraction
and the concentration, are derived and are in ageement
with intuition and experiment. These results can be
used to determine sufficient conditions for a success-
ful process.

2 Formulation†

A mathematical description of infiltration requires
one or more partial differential equations which de-
scribe the evolution of the matrix (i.e., the solid
phase), and at least one additional partial differential
equation for each chemical species in the fluid phase.
For a simple pore structure, the continuity equation
for species i is

−∂(εCi)
∂t

= ∇ ·Ni −
nr∑
r

νirRr (1)

where t is time, ε is the void fraction of the media,
Ci is the concentration of species i, nr is the number
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of the gaseous species, νir is the stoichiometric coef-
ficients for the ith gaseous species in the rth reaction,
and Rr represents the volumetric reaction rate of re-
action r.

The basic partial differential equation(s) which
describe reaction and mass transport in porous me-
dia (i.e., the fluid phase) are well established [Aris
(1975);Dullien (1979)]. The Dusty-Gas model [Ma-
son and Malinauskas (1983)] describes multicompo-
nent diffusion and convection. Neglecting thermal dif-
fusion, the relationship between the molar fluxes, Ni,
is given by [Jackson (1977)]:

Ni

DKi

+
RT

P

∑
j 6=i

CjNi − CiNj

DMij

= −∇Ci−
CiBe

µDKi

∇P

(2)

where Be is the permeability of the porous media, µ
is the viscosity of the mixture, and P is the total pres-
sure. DMij and DKi are the effective binary diffu-
sivity for species i and j and the effective Knudsen
diffusivity of species i, respectively.

The change in the solid structure is equivalent to
considering the change in the void fraction, ε (i.e., the
volume fraction of gas inside of the porous solid). The
evolution of ε is given by:

∂ε

∂t
= −uSv(ε) (3)

where u is the rate at which the solid product grows
(volume/area/time) and Sv(ε) is the surface area per
unit volume of the porous solid.

The simplest formulation for the fluid phase is
obtained by considering one reacting species and no
pressure gradient. That is, we assume i = j and
∇P = 0 in (1.1.2). Thus, for highly diluted reac-
tant systems in one dimension, the Dusty-Gas model
can be simplified to give the following approximate
expression for the flux:

N = −DK
∂Ci

∂Z
(4)

where C is the concentration of diluted species and Z
is the distance into the preform. The effective diffu-
sivity of the diluted species, D, can be expressed as

D =
ε

θ
DMm [1 + Nk(ε)]

−1 (5)

where m refers to the bulk species, DMm is the bi-
nary diffusion coefficient for M in m, Nk is the ratio
of the Knudsen diffusion coefficient and DMm, and
θ is the tortuosity factor. For a diffusion-limited pro-
cess in one spatial dimension, using Eq. (4), Eq. (1)
becomes:

∂(εCi)
∂t

=
∂

∂Z

[
DK

∂C

∂Z

]
− uSv(ε)

VM

(6)

where VM is the molar volume of the solid product.
The last term in Eq. (6)

uSv(ε)
VM

=
nr∑
r

νirRr

describes the rate at which the gas-phase precur-
sor is consumed or created by chemical reactions in-
side of the pores with the assumption that there are no
homogeneous gas-phase reactions.

Are assumption, that there are no gas phase re-
actions is based on the following. If the gas inlet is
a large distant from the sample many gas phase reac-
tions will occur before the gas reaches the first pore.
We assume that the gas that reaches the pore is in equi-
librium with 44 species of hydrocarbons. The reaction
rate of the gas with the surface is taken to be the aver-
age of the reaction rates of 44 gasses.

A specific CVI model requires expressions for u,
Sv, and D. Our objective in this work is to use simple
formulations for each, as a basis for assessing the gen-
eral behavior of infiltration problems. As an example,
consider the formation of carbon matrix composites
using a hydrocarbon in an argon carrier gas, where
the following net reaction occurs:

Cm Hn (g)−→ m C(s) + 1
2 n H2(g) (7)

The form of Eq. (6) is based on the assumption that
the hydrocarbon concentration, Cr, is dilute (i.e., the
reactant concentration is much smaller than the car-
rier gas concentration). If the carbon growth rate is
proportional to the precursor concentration, then:

u = kCr (8)

where k is the reaction rate constant.
The preforms used for CVI typically have a com-

plex porous structure. However, a cylindrical pore is
used to formulate simple models. The following ex-
presses the surface area of a circular cylinder Sv as a
function of the void fraction:

Sv(ε) =
2
√

εo
√

ε

ro
(9)

where r0 is the initial pore radius and εo is the initial
void fraction of the preform.

We neglect the change in the number of molecules
in the gas phase

∂(εCi)
∂t

This is assumed because solids are much denser
than gases, so that the time-scale for changes in the
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gas profile is much shorter than the time scale asso-
ciated with changes in the solid structure. The tem-
poral change is given by (3). For gas-solid reac-
tion processes such as CVI, this is sometimes referred
to as the pseudo-steady-state approximation [Chang
(1995)]. Transforming ε to η simplifies equation (10).
Since η is proportional to Sv, it is also possible to view
η as a dimensionless surface area per volume.

Substituting Eqs. (8) and (9) into Eqs. (3) and (6)
gives the following forms:

∂η

∂t
= −1

2
βc (10)

∂

∂z

[
η2

θ
[1 + Nk(η)]−1 ∂c

∂z

]
= α2ηc (11)

where:
η =

√
ε

c =
Cr

Co
and z =

Z

L

α2 =
2k
√

εoL
2

VM roDMm

β =
2k
√

εoCo

ro
= α2 VM CoDMm

L2

where L is the thickness of the preform and Co is the
concentration of the reactant species in the bulk gas-
phase (i.e., outside of the preform). The expression
for α is based on the assumption that u is determined
by a first order reaction, where k is the rate constant
(i.e., u = kCr). Note that α2 is dimensionless and
that β has units of inverse time.

The parameters α2 and β depend on the three key
process variables: T (temperature), P (pressure), and
Co (initial concentration). T, P do not appear explic-
itly in the espressions for α and β, however, k typ-
ically obeys an Arrhenius-type exponential tempera-
ture dependence, and DMm varies with both tempera-
ture and pressure.

The boundary conditions that are most often used
for CVI models are to fix the concentration at the left
surface (the inlet) of the preform at Co:

c(0, t) = 1

and to assume that the flux at the right surface
(i.e., at z = 1) is proportional to the concentration:

cz(1, t) = −Ac(1, t)

where A is the constant of proportionality.
The initial condition is given by:

ε(z, 0) = εo

During CVI, the infiltration kinetics are controlled by
diffusion and the deposition reaction. To achieve rel-
atively uniform infiltration, diffusion must be fast rel-
ative to the deposition rate. This is typically accom-
plished by choosing processing conditions that result
in a slow deposition rate, which usually leads to long
infiltration times. Thus, a key processing objective
is to obtain the desired amount of infiltration in the
shortest possible time. The total amount of infiltration
in the preform is given by integrating over z:

ε̄(t) =
∫ 1

o
ε(z, t)dz

Since it is important to obtain the desired density
(i.e., void fraction), εf , in the shortest possible time,
the optimization problem of interest corresponds to
determining the shortest time where ε(t) = εf , for val-
ues of εf that are significantly smaller than εo.

3 Mathematical Analysis
If f(η) = η2

θ [1 + Nk(η)]−1 then equations (10) and
(11) become

∂η(z, t)
∂t

= −β

2
c(z, t) (12)

∂

∂z

{
f [η(z, t)]

∂c(z, t)
∂z

}
= α2η(z, t)c(z, t) (13)

We subject (12) and (13) to the boundary conditions

c(0, t) = 1 (14)

∂c

∂z
(1, t) = −Ac(1, t) (15)

and the initial condition

η(z, 0) = η0 (16)

where η0, the initial value of the square root of the
void fraction, is constant in space

f [η(z, t)] =
η2

θ
[1 + Nk(η)]−1 and

f(η)
η

are both C∞ monotonically increasing functions of η,
and η(z, t) is positive for a cylindrical pore

θ = 1 and f(η) =
1
3

ρη3

ρη + 1.5410−5T
.

That is the diffusivity (cf equ 5)is a function of
the shape of the pore, θ, the size of the pore, η and the
temperature T .
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Assume that α and β are positive and constant
with time and space. Physically, this corresponds to
an isobaric-isothermal process.

Throughout the process the concentration of the
reactants will be held constant on the left-hand surface
of the matrix, i.e. c(0, t) = 1.

∂c

∂z
(1, t)

is proportional to the flux of reactants out of the
porous solid. Previously [1], the analysis was done
for the case when A = 0, i.e. the net flux leaving
the region [0,1] was negligible. It will be shown that
the case when A = 0, is optimum for minimizing the
infiltration time.

This paper introduces the case when A > 0. The
solid is not sealed on the right-hand surface so that
the carrier gas can escape the matrix. We assume that
some of the reactant is going to escape with the car-
rier gas. Hence A > 0 more accurately models the
physical flow for this type of process.

The following notation is employed:

γ2(z, t) =
η(z, t)

f [η(z, t)]
α2

and the subscript zero will denote initial time, e.g.

η0 = η(z, 0).

3.1 Properties
In Lemma (2.1), we show that there is an explicit so-
lution for the initial concentration.

Lemma 1 The initial concentration, c(z, 0), is given
by

c(z, 0) =
γ0 cosh γ0(1− z) + A sinh γ0(1− z)

γ0 cosh γ0 + A sinh γ0

Proof
When t = 0, equation (13) becomes

d

dz

{
f [η0]

dc0

dz

}
= α2η0c0

since η0, the square root of the initial void fraction, is
constant in z. After rearrangement, this becomes

d2c0

dz2
− γ2

0c0 = 0

Subjecting this equation to the above boundary condi-
tion yields the desired result.

In our second Lemma we show that the void func-
tion, η(0, t) can be determined explicitly at the inlet
(i.e., left-hand boundary) for all time. This is signifi-
cant because when the void function is zero, at z = 0,
no more fluid can enter the solid and hence, the pro-
cess ends.

Lemma 2 When z = 0, the square root of the void
fraction is given by

η(0, t) = η0 −
1
2
βt

Proof
From equations (12) and (14) it follows that

dη(0, t)
dt

=
−β

2
c(0, t) =

−β

2

Integrating from 0 to t yields the desired result.

Since η is intrinsically positive, t cannot exceed
2η0

β . We define tβ ≡ 2η0

β to be the terminal time.
Specifically, when t = tβ , the void η2 is zero and
no more gas can enter the pore.

Assumption
There exists a unique, positive, C2 solution

η(z, t), of equations (12) – (16) for all (z, t) ∈ [0, 1]×
[0, tβ). It follows that there exists a C2 solution,
c(z, t), on the same rectangle. Lemma 2.3 investigates
the behavior of the concentration function. Here we
show that the concentration is a positive function that
decreases with z.

Lemma 3 If

∂

∂z

{
f [η(z, t)]

∂c(z, t)
∂z

}
= α2η(z, t)c(z, t) (13)

and c(0, t) = 1 then

c(z, t) > 0 and
∂c(z, t)

∂z
< 0 ∀(z, t) ∈ [0, 1]× [0, tβ]

This follows from equation (13) and that η(z, t0),
f [η(z, t0)] and A are positive.

Lemma 4 η(z, t) is an increasing function of z.
Moreover,

η(0, t) ≤ η(z, t) < η0
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Proof
From equation (2.0.1) it follows that

η(z, t) = η0 −
β

2

∫ t

0
c(z, τ)dlτ

Since c(z, t) is monotonically decreasing in z,
η(z, t) is monotonically increasing in z. The upper
bound is a consequence of the non-negativity of β and
c.

Lemma 2.5 provides an upper bound for the con-
centration as a function of space. It shows that for
each point z, the initial concentration is an upper
bound for the concentration at that point.

Lemma 5 If c(z, t) satisfies (2.1), (2.2), ∂c
∂z < 0 and

c(z, 0) =
γ0 cosh γ0(1− z) + A sinh γ0(1− z)

γ0 cosh γ0 + A sinh γ0

where γ0 = γ(z, 0) = γ(0, 0) = η0

f(η0)α then

c(z, t) ≤ c(z, 0)

The proof is long and is omited for brevity.

Lemma 6 From Lemmas 2.2, 2.4 and 2.5 it follows
that

η(z, t) = η0 −
β

2

∫ t

0
c(z, τ)dlτ

≥ η0 −
β

2

∫ t

0
c(z, 0)dlτ

= η0 −
β

2
c(z, 0)t ≥ η0 −

β

2
c(z, 0)tβ

= η0[1− c(z, 0)]

These inequalities provide lower bounds for the
void fraction.

In summary
η(z, t) decreases with time and increases with space.
Moreover,

η0 ≥ η(z, t) = η0 −
β

2

∫ t

0
c(z, τ)dlτ

≥ η0 −
β

2

∫ t

0
c(z, 0)dlτ = η0 −

β

2
c(z, 0)t

≥ η0 −
β

2
c(z, 0)tβ = η0 [1− c(z, 0)] .

Since the void function is intrinsically positive, de-
creases with time, and

η(0, t) = η0 −
1
2
βt

the process cannot proceed after time tβ ≡ 2η
β because

the void at the inlet is zero.
The concentration decreases with z. Moreover,

c(1, t) ≤ c(z, t) ≤ c(z, 0)

3.2 Successful Process
We will consider a definition of a successful process.
In CVI, it is usually desirable to fill the porous solid as
completely as possible before the time tβ . The solid is
almost completely filled if the sum of the void fraction
over space is small.

To investigate the completeness of the process, we
define the average value of the void fraction

ε̄(t) ≡
∫ 1

0
η2(z, t)dlz

The process will be L2 − successful if ε̄(t) is
less than some tolerance before the time tβ .

Let us clarify the difference between the final time
tf and the time tβ . For L2-success, the time tf , is the
time that you assume the solid is filled within a given
tolerance, that is, you think the void in the solid is as
small as you want it to be, and you elect to stop the
process. The time tβ , is the time when the void at
the inlet is zero so fluid can no longer enter the solid.
For a successful process tf < tβ . For the successful
numerical trials that we ran, tf was more than 90% of
tβ .

In the following section we will estimate the L2−
success of the process as the values α and A vary.
First, we will get an upper bound on ε̄(tβ).

3.3 L2-success
Lemmas 2.7-2.11 and Theorem 2.1 describe the prop-
erties ε̄(t).

An expression for the average value of the void
fraction and that it is decreasing with time is the con-
tent of

Lemma 7 If ε̄(t) ≡
∫ 1
0 η2(x, t)dlx then

dε̄

dt
=

β

α2

{
f [η(0, t)]

∂c(0, t)
∂z

+ Af [η(1, t)]c(1, t)
}
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and ε̄(t) is decreasing with time.

Proof

dε̄

dt
=

d

dt

∫ 1

0
η2(x, t)dlx

= 2
∫ 1

0
η(x, t)

∂η(x, t)
∂t

dlx

= −β

∫ 1

0
η(x, t)c(x, t)dlx

(2.3.1)

= − β

α2

∫ 1

0

∂

∂x

{
f [η(x, t)]

∂c(x, t)
∂z

}
dlx

=− β

α2

{
f [η(1, t)]

∂c(1, t)
∂z

−f [η(0, t)]
∂c(0, t)

∂z

}
The third and fourth equalities follow from equa-

tions (12) and (13) respectively.
Noting that

∂c

∂z
(1, t) = −Ac(1, t)

yields the desired equality.
That ε̄(t) is decreasing follows from equation

(2.3.1) and the fact that β, η and c are all positive.

Lemma 2.8 provides an upper bound for the aver-
age value of void fraction as a function of time.

Lemma 8

ε̄(t) ≤ ε̄0 − β

α

∫ t

0

(√
η(0, τ)f [η(0, τ)]

γ1 sinh γ1 + A cosh γ1

γ1 cosh γ1 + A sinh γ1

)
dlτ

+
β

α2
A

∫ t

0
f [η(1, τ)]c(1, τ)dlτ

Where γ1 = γ(0, t) =
√

η(0,t)
f [η(0,t)]α

The proof is omited for brevity.

Lemmas 2.9 and 2.10 prove inequalities that are
useful in the proof of Theorem 2.1.

Lemma 9

ε̄0 −
β

α

∫ tβ

0

√
η(0, τ)f [η(0, τ)] tan γ1dlτ → 0

as α → 0

(Note that if A=0 then

ε̄(tβ) = ε̄0 −
β

α

∫ tβ

0

√
η(0, τ)f [η(0, τ)] tan γ1dlτ

so ε̄(tβ)→ 0 as α → 0)

Lemma 10 If γ1 < 1 then

1
A + 1

γ1 sinh γ1 + A cosh γ1

γ1 cosh γ1
≤ γ1 sinh γ1 + A cosh γ1

γ1 cosh γ1 + A sinh γ1

Lemma 11 We assert that if z,A ∈ [0, 1] then, for
small values of γ0, the initial concentration c(z, 0) has
a maximum at γ0 = 0.

Theorem 12 The void fraction is bounded below by

1
3

(
A

1 + A

)2

ε0

In Lemma 2.6 we showed that:

η(z, t) ≥ η0[1− c(z, 0)]

It follows that

ε̄(t) ≡
∫ 1

0
η2(z, t)dlz ≥

∫ 1

0
η2
0[1− c(z, 0)]2dlz

(2.1.6)
Substituting c(z, 0) from equation (2.1.5) and in-

tegrating gives:

ε̄(t) ≥ η2
0

[
1− 2

γ0

A cosh γ0+γ0 sinh γ0 −A

γ0 cosh γ0+A sinh γ0
+

(γ2
0 +A2) sinh 2γ0+2γ0(γ2

0 −A2)−2aγ0(1−cosh 2γ0)
4γ0(γ0 cosh γ0+A sinh γ0)2

]

It follows that ε̄(t) is bounded from below as a
function of γ0 = γ0(α0), if A is fixed and A > 0.
α ≡ (reaction rate)/(diffusion rate). Intuitively, if the
diffusion rate increases and the reaction rate decreases
a thin uniform coating of reactant will be deposited in
the pores of the preform. Thus, as the ratio of the dif-
fusion rate to the reaction rate decreases the final void
fraction decreases. Rigorously, since 0 ≤ c(z, 0) ≤ 1,
and c(z, 0) has a maximum at γ0 = 0, [1 − c(z, 0)]
has a minimum at γ0 = 0.

Again, as α0 → 0, ε̄(t) goes to a minimum. Since
γ0 → 0 as α → 0 we will take the limit as γ0 goes to
zero to find a lower bound for ε̄(t).
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From equation 2.1.5 and the Monotone Conver-
gence Theorem it follows that

lim
α0→0

ε̄(t) = lim
γ0→0

∫ 1

0
η2
0[1− c(z, 0)]2dlz

≥
∫ 1

0
η2
0[1− lim

γ0→0
c(z, 0)]2dlz

From equation 2.1.5 and L’Hopital’s Rule it fol-
lows that

lim
γ0→0

c(z, 0) = 1− A

1−A
z

Thus, the void fraction has the following lower
bound

ε̄(t) ≥ 1
3

(
A

1 + A
η0

)2

=
1
3

(
A

1 + A

)2

ε0

Note that the lower bound for the void fraction
increases with A. That is, increasing the flux of the
reactant across the right-hand boundary (opposite the
inlet) decreases the amount of pore filling that is pos-
sible.

The inequality of Theorem 2.1 tells us that the
more uniform the flow, i.e. the less η and c vary with
space, the smaller ε̄(tβ) is. It provides an upper bound
for the void fraction for small values of α.

Theorem 13 If ε̄(t) ≡
∫ 1
0 η2(z, t)dlz and A is pro-

portional to α2 then

lim
α→0

ε̄(tβ) ≤ A0β

∫ tβ

0
{f [η(1, t)]c(1, t)

−f [η(0, t)]c(0, t)} dt

where A = A0α
2.

Proof
From Lemmas 2.8 and 2.10 it follows that

ε̄(t) ≤ ε̄0 −
β

α

∫ t

0

(√
η(0, τ)f [η(0, τ)]×

γ1 sinh γ1 + A cosh γ1

γ1 cosh γ1 + A sinh γ1

)
dt

+
β

α2
A

∫ t

0
f [η(1, τ)]c(1, τ)dτ

≤ ε̄0 −
β

α

∫ t

0

(√
η(0, τ)f [η(0, τ)]

1
A + 1

×

γ1 sinh γ1 + A cosh γ1

γ1 cosh γ1

)
dτ

+
β

α2
A

∫ t

0
f [η(1, τ)]c(1, τ)dτ

≤ ε̄0 −
β

α

1
A + 1

∫ t

0

√
η(0, τ)f [η(0, τ)] tan γ1dτ

− β

α

A

A + 1

∫ t

0

1
γ1

√
η(0, τ)f [0, τ ]dτ

+
β

α2
A

∫ t

0
f [η(1, τ)]c(1, τ)dτ

Noting that
1

A + 1
≈ 1− A, γ1 =

√
η(0, t)

f [η(0, t)]
α

and c(0, t) = 1 tells us that

−β

α

1
A + 1

∫ t

0
γ1

√
c(0, τ)f [η(0, τ)]dτ ≈

−A
β

α2

∫ t

0
f [η(0, τ)]c(0, τ)dτ

+A2 β

α2

∫ t

0
f [η(0, τ)]c(0, τ)dτ

and

β

α

1
A + 1

√
η(0, τ)f [η(0, τ)] tan γ1dτ ≈

β

α

∫ t

0

√
η(0, τ)f [η(0, τ)] tan γ1dτ

−A2 β

α2

∫ t

0

√
η(0, τ)f [η(0, τ)] tan γ1dτ

Thus,

ε̄(t) ≤ ε̄0 − β

α

∫ t

0

√
η(0, τ)f [η(0, τ)] tan γ1dτ

+A0β

∫ t

0
{f [η(1, τ)]c(1, τ)− f [η(0, τ)]c(0, τ)} dτ

+A2
0α

2β

∫ t

0

{
f [η(0, τ)]c(0, τ)−

√
η(0, τ) tan γ1

}
dτ (2.3.3)

The conclusion follows from Lemma 2.9.

QED

We conclude this section with some interpreta-
tions of the last estimate. Recall that

f [η(1, t)] ≤ f(η0)

η(0, t) = η0 −
β

2
t
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c(1, t) ≤ c(z, t)

c(z, t) ≤ c(z, 0)

c(0, t) ≡ 1

From equation 2.3.3 it follows that

ε̄(t) ≤ ε̄0 − β

α

∫ t

0

√
η(0, τ)f [η(0, τ)] tan γ1dτ

+A
β

α2

∫ t

0
{f(η0)c(1, 0)− f [η(0, τ)]} dτ

+ A2α2
∫ t

0
{f [η(0, τ)]c(0, τ)−√

η(0, τ) tan γ1

}
dτ (2.3.4)

Note that every term on the RHS of equation
(2.3.4) is known or measurable. So, if you know how
long you want to run the process you can compute a
sharp upper bound on ε̄. Or, if you know the desired
void fraction, the time, and the relation between α and
β you can use (2.3.4) to attain an upper bound for α.

Finally, as α → 0 and t = tβ

ε̄(tβ) ≤ A0β

{
f(η0)c(1, 0)tβ−

∫ tβ

0
f

[
η0 −

β

2
t

]
dlt

}
(2.3.5)

= 2A0η0

{
f(η0)c(1, 0)−A0β

∫ tβ

0
f

[
η0 −

β

2
t

]
dlt

}

4 Conclusion
Recall that α and β can be determined from the

initial conditions, reaction rates, diffusion rates, and
molar volume (c.f. 1.2.16). The void at the inlet
is a function of β and time (c.f. Lemma 2.2) γ1

is a function of the void at the inlet times α (c.f.
Lemma2.8) Finally, A can be determined from the ra-
tio of the concentration gradient to the concentration

and f(η) =
1
3

ρη3

ρη + 1.5410−5T
. Thus, using Theo-

rem 2.1, the maximum amount of pore filling can be
determined.

An upper bound for the void fraction as a function
of time can be calculated using equation 2.3.4. Note
that if the reaction rate is very small compared to the
diffusion rate then the deposition is of solid is uniform
along the axis of the pore. Under these ideal condi-
tions (limα0→0 ε̄(t)) one can use the afore mentioned
equation to calculate an upper bound for the void.

When the inlet is closed and all subsequent mass
gain is on the surface of the material (c.f. Lemma 2.2).

Thus, these estimates can be used to adjust pa-
rameters and determine the outcome of experiments
for the production of CVI composites.

† This formulation is a modification of the formu-
lation given in the first reference.
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