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Summary: - The paper presents a method to determine maximal implicants in a multivalued logic. The method 
is used to minimize multivalued functions, complete or incomplete specified. In present, for bivalent functions 
are used Karnaugh diagrams or  Quine-McCluskey method, and for multivalued functions are used software 
tools like Espresso, MVSIS2, BOOM II witch uses properties of binary decision diagrams (BDD) or SAT. The 
method presented here starts from a few remarks over the problem and transposes it into an equivalent problem 
having the computability proportional with the solution complexity. 
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1 Introduction 

Multivalued logic synthesis is used in logical 
structures optimization of algorithms and digital 
circuit’s synthesis [1]. 

Until now, there are well known software tools 
witch solve this kind of problems. Known methods, 
like: 

1. diagram Veitch-Karnaugh; 
2. method Quine McCluskey [2]; 
3. Espresso [3]; 
4. MVSIS [4]; 
5. discrimination method [5] 

use total generative methods or  heuristics to 
generate „almost optimal” solutions, without 
guarantee that thing. 

Method 5 [5] uses a discrimination technique 
to generate all possible variants. 

First two methods are exclusive binary. 
Method Espresso touches multivalued tables using 
a binary representation of multivalued values. 

Method MVSIS is a multivalued method 
where every single variable could have its own 
domain and could handle even multiple outputs 
specifications. Variables are handled with binary 
coding.  

Discrimination method is a multivalued 
method where variables are handled directly as 
multivalued entries and treats either simple, or 
multiple, as well as array outputs.  

The method introduced in this paper uses a 
construction system of solutions, its complexity 

depending of formal complexity of minimal solutions 
for every output. System is a pure multivalued one 
and gives optimal solutions.  

In principle, a constructive method has reduced 
computing complexity, in respect to generative 
methods. 

Presented method is applied after the entrance 
specification (the value table) is analyzed from the 
point of view of its consistency. 

This method results are used as input data for a 
next step witch completes the multivalued 
minimization, witch will be presented in a future 
paper. 

2 Multivalued minimization 

Presented method computes a set of maximal 
implicants group for a complete or an incomplete 
multivalued specification. 

For example let’s considerate specification given 
in Tab. 1: 

 
 I1 I2 O 

R1 1 1 0 
R2 1 4 0 
R3 3 3 0 
R4 4 0 0 
R5 4 5 0 
R6 2 0 1 
R7 4 2 1 
R8 0 3 2 

Tab. 1 Specification example 
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I have chosen especially this example because 

it has two inputs and could be graphically 
represented easily in two dimensions. Let consider 

 axis associated to  and Ox  axis associated 
to . A two dimensional representation of this 
specification could be shown in 

Oy 1I

2I
Fig. 1. 

 
 0 1 2 3 4 5 
0 - - - 2 - - 
1 - 0 - - 0 - 
2 1 - - - - - 
3 - - - 0 - - 
4 0 - 1 - - 0 

Fig. 1 2D representation for Tab. 1
 
In  a 2D representation (Fig. 1) I have used the 

symbol „-” for unspecified zones. In every zone is 
placed the output value for that combination of 
inputs.  

A minimization is composed of specified 
values and „-” (unspecified values). Unspecified 
values are also named DC - „don’t care”. In the 
measure a minimization result contains more DC 
and less rows, it is considered a better one. Every 
specified position involves an equivalence operator 
that could be implemented with a circuit 
component in hardware or with a new test (“if”) in 
software. 

Because our specification is simple one, a 
good minimization could be handled manually. 
Tab. 2  contains an appropriate set of coverage 
primes for 0 value of the function. 

 
 I1 I2 C 
1 1 - R1, R2 
2 3 - R3 
3 - 5 R5 
4 4 0 R4 

Tab. 2 Possible coverage set 
 
This solution has been easily obtained, because 

the input table (initial specification) has a lower 
grade of complexity, and the dimension number of 
graphic representation is small (2 in that case), so 
the problem could be geometrically transposed. 
What happened, if dimension grows (higher than 3) 
and we could not give a geometrical interpretation? 
In that case we use one special tool like Espresso; 
MVSIS2; BOOM II witch uses properties of 
adjacent, binary decision diagrams (BDD) or SAT. 
Methods like this have a good time response for 
almost optimal solutions.  

3 Problem statement 

3.1 Theoretical aspects 
Let’s try to look from another angle over the 

problem. We must build biggest n-dimensional 
„volumes” witch could cover all inputs witch 
generate an output value, without including a set of 
coordinates witch involve another function value. In 
Fig. 2 it is shown an example of how could be 
eliminated the coordinate set (2,2) out of the entire 
space presented in Fig. 1. The coordinate set (-,-) 
represents all space and is equivalent with coordinate 
set ({0,1,2,3,4},{0,1,2,3,4,5}). DC has distinctive 
values for each dimension. DC represents all possible 
values for a given dimension, where it appears. 

  

 
Fig. 2 Elimination 

 
Elimination operation figured in Fig. 2 

generates, by construction, 4 distinct zones named 
C1, C2, C3 and C4. They could be represented like 
coordinate spaces as: 

 
1. C1=(-,{0,1}) 
2. C2=(-,{3,4,5}) 
3. C3=({0,1},-) 
4. C4=({3,4},-) 

Rel. 1 Coordinate sets for C1, C2, C3 and C4 
 
The values {0,1,2,3,4} for  and {0,1,2,3,4,5} 

for  are not fixed in their positions. We have used 
digits symbols, ignoring the fact they have associated 
values that could be sorted. Thus, if we change the 
elements order inside the set, then 

Oy
Ox

Fig. 1 is converted 
into an equivalent representation given in Fig. 3. As 
we could see, Cx and Cy zones could be represented 
as coordinate spaces as follows:  

 
1. Cx = (-,{0,1,3,4,5}) = C1+C2 
2. Cy = ({0,1,3,4},-) = C3+C4 
Rel. 2 Coordinate sets for Cx and Cy 
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Fig. 3 Equivalent representation for Fig. 2

 
Practically Cx and Cy could be directly 

obtained by using an „elimination”, implemented in 
a formal manner. If we eliminate (2,2) out of initial 
zone (-,-), that means we have to build zones witch 
doesn’t intersect with (2,2).  

Definition. Two zones doesn’t intersect if each 
one of the effectuated intersection over the 
coordinates for every dimension of work space is a 
void set. 

 

 
Fig. 4 Zones example 

 
For example, in Fig. 4, zone A=({1,4},{0,5}) 

and zone B=({0,1},{3,5}) have zone (1,5) as an 
intersection, because it is common for both of 
them, and zone A doesn’t intersect with 
C=({0,1},{1,2}), because over the dimension Cx 
the sets {0,5} and {1,2} doesn’t intersect each 
other and  generate  disjoint zones. 

Elimination operation that we need has to 
extract for every initial zone dimension, wherever it 
is possible, elements that are not part of the zone 
we want to discard. As there are two dimensions in 
this example, it means that we could obtain 
maximum two zones representing the result (Rel. 
3). 

 
(-,-) – (2,2) =  
= ({0,1,2,3,4},{0,1,2,3,4,5}) - (2,2)= 
= ({0,1,3,4},-)+ (-,{0,1,3,4,5})=Cy+Cx 

Rel. 3 Elimination operation 

3.2 Method description  
An extract operation shown in Error! 

Reference source not found. could be used to 
extract such more zones. After first zone it was 
extracted in this example, we take the next zone to be 
extracted and apply the previous operation to each 
zone of the previous result. Out of the new obtained 
zones we keep the distinct elements only.  

Applying the method over the example of Tab. 
1, there is obtained the result presented in Tab. 3. 

 
C Z  (

-  (
0 0 -,-) 

R6 2,0) 
Z (1 {0,1,3,4},-) C
Z Z (

 -  (

1 
2 0-R6 -,{1,2,3,4,5}) 

R7 4,2) 
Z (3 {0,1,3},-) 
Z Z (
Z (

4 1-R7 {0,1,3,4},{0,1,3,4,5}) 
5 {0,1,2,3},{1,2,3,4,5}) C

Z Z (
 -  (

2 

6 2-R7 -,{1,3,4,5}) 
R8 0,3) 
Z7 ({1,3},-) 
Z Z (
Z (

8 3-R8 {0,1,3},{0,1,2,4,5}) 
9 {1,3,4},{0,1,3,4,5}) 

Z Z (
Z (

10 4-R8 {0,1,3,4},{0,1,4,5}) 
11 {1,2,3},{1,2,3,4,5}) 

Z Z (
Z (

12 5-R8 {0,1,2,3},{1,2,4,5}) 
13 {1,2,3,4},{1,3,4,5}) 

C

Z Z (

C Z (
- (

3 

14 6-R8 -,{1,4,5}) 
Tab. 3 Example with 3 eliminations 

 
We could see that Z4, for example, could be 

reduced, because Z3 already contains a part of it. Z4 
may be replaced, after C2 coverage was determined 
with (4,{0,1,3,4,5}). Also Z6 contains a part of Z4, 
witch allow replacement of  Z4=(4,{0,1,3,4,5}) with 
(4,0). Zones Z3 and Z6 could be determined 
analyzing the DC positions number. It has a position 
with DC, confronted with Z4 and Z5 witch doesn’t 
contain even one DC position. 

The rule is: the intermediary result are sorted  in 
a decreasing order of the DC number and it is tried to 
reduce them out of the zones having a les number of 
DC. 

The next table contains an example treating the 
particularity of the problem. 

 
0 0  -,-) 

R6  2,0) 
Z (1 {0,1,3,4},-) C
Z Z (

 - (

1 
2 0-R6 -,{1,2,3,4,5}) 

R7  4,2) 
Z3 ({0,1,3},-) 
Z Z (
Z (

4 1-R7 {0,1,3,4},{0,1,3,4,5}) 
5 {0,1,2,3},{1,2,3,4,5}) C

Z Z (

2 

6 2-R7 -,{1,3,4,5}) 
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Z3 ({0,1,3},-) 
Z Z (
Z (

4 1-R7 4,0) 
5 2,2) C

Z Z (
 -  (

2’ 

6 2-R7 -,{1,3,4,5}) 
R8 0,3) 
Z (7 {1,3},-) 
Z Z (
Z Z (

8 3-R8 {0,1,3},{0,1,2,4,5}) 
9 4-R8 4,0) 

Z10 Z (5-R8 2,2) 
Z11 ({1,2,3,4},{1,3,4,5}) 

C

Z

Z (

3 

Z12 6-R8 (-,{1,4,5}) 
7 {1,3},-) 

Z Z

Z Z (
8 3-R8 (0,{0,2}) 
9 4-R8 4,0) 

Z10 Z (5-R8 2,2) 
Z11 ({2,4},3) 

C

Z

3’ 

Z12 6-R8 (-,{1,4,5}) 
Tab. 4 Exemplu de extragere îmbunătăţit 

 
 C3’ zones are useless in this format because 

they have many redundancies. To eliminate this, 
every zone is divided in zones that contains on each 
dimension a value only, or a DC. Such zones are 
named primary zones. The results of the operation 
are presented in Tab.5. 

 
Z13 (1,-) R1, R2 Z7 ({1,3},-)  Z14 (3,-) R3 
Z15 (0,0) - Z8 (0,{0,2})  Z16 (0,2) - 

Z9 (4,0)    R4 
Z10 (2,2)    - 

Z17 (2,3) - Z11 ({2,4},3)  Z18 (4,3) - 
Z19 (-,1) R1 
Z20 (-,4) R2 

C3’ 

Z12 (-,{1,4,5})  
Z21 (-,5) R5 

Tab. 5 Primary zones  
 
In the folloing, primary zones are compared 

with zones which they had to in Tab. 1. The last 
column of Tab. 5 shows the covered zones for 
every primary zone. 

Finally, we take zones Z9, Z10 and Z13, Z14, 
Z15 and so on to Z21, but from those are usable, 
according to the coverage presented by last column, 
Z9, Z13, Z14, Z19, Z20 and Z21 only. The 
minimization proposed in Tab. 2 referrs to  Z13, 
Z14, Z21, Z9 zones.  

 
Z13 (1,-) R1, R2 
Z14 (3,-) R3 
Z9 (4,0) R4 

Z19 (-,1) R1 
Z20 (-,4) R2 
Z21 (-,5) R5 

Tab. 6 Set of maximal implicouldts 

 

3.3 Sufficiency 
Suppose that a primary zone Z is part of 

maximal implicants set for which the function takes 
the value O. I will show the zone above will be found 
in the obtained result, using the presented method in  
3.2 and it is not included in other primary zone 
having a larger coverage of the result. 

The fact that is not included in a primary zone 
having a wider coverage is obviously, otherwise zone 
Z is not a maximal one. 

The effectuated operation according ti the 
method has to eliminate the zones in which the 
function could not have O value. Let’s consider U a 
zone that includes zone Z out of which we have to 
eliminate zone V (from input table). U is represented 
as a list of subsets of input value domains: 
( )nuuuU ...21 . Although Z is represented as subsets 

of input domains ( )nzzzZ ...21  with property that 
subsets are created by a single value or contain the 
entire sub domain. Like Z, V is represented as 
( )nvvvV ...21 . 

If Z is a part of maximal implicants set, it means 
that Z doesn’t intersect V, otherwise would be at 
least a sub zone from Z, even the entire zone, where 
the function has for V a value different of O. That 
means the Z is not an implicant for this value of the 
function. 

We conclude that exist at least an integer i  from 
[1...n] interval for which   φ=∩ ii vz . Knowing that   
Z is included in U zone, we could say that  

jjj zuz =∩ , for any j  from [1...n]. 
When we eliminate V out of U, at step i  the 

obtained zone will is: 
( )niiii uuduuuU ,...,,,,..., 1121 +− , where  contains 
.  contains value , and  making difference 

between  and  , there have been eliminated  the 
values of , because 

id

iz iu iz

iu iv

iz φ=i∩i vz . As a conclusion, 

iii zzd =∩ . As the other zone elements are 
identical which those of zone U, that means 

iii ZZU =∩ .  
As we have at least a zone that contains Z, we 

could say that Z will be found in the result of the 
presented method. 

From what we have presented in  3.3 we could 
say that the method is enough to generate a maximal 
implicants set . 
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4 Method complexity estimation 

Suppose that we have an input table with n 
rows and k input columns. Operations to compute a 
set of maximal implicants involve maxim n 
operation of elimination. At each step the result 
could grow by maxim k times. So, in worst case, 
the complexity is equal with ( )nkO . 

This complexity could be further reduced, if 
there is used the method presented in 3.2, which 
simplify the result at each step. 

5 Conclusions 

The method presented here gives an exact 
determination of the set of maximal implicants. 

The computability complexity has a value les 
than ( )nkO .  

The method uses a constructive system of 
solutions, which has a complexity depending only 
on the formal complexity of a minimal solution of 
each output value. The system is a pure 
multivalued one and leads to an optimal solution. 

Each input or output variable can have its on 
value domain, there are allowed multiple outputs, 
and the input variables, as well the output ones, 
have either single or vectorial components. 

A constructive method, as it is the one 
presented here, has the advantage of a reduced 
computability complexity, in respect to the 
generative methods. 

The method is applicable after a consistency 
check is done over the input value table. Such a 
check is presented in (ref. 6). 

In case of a great number of inputs, the method 
is less efficient, if the number of rows is very large. 
In such a case, a heuristic method represents a more 
convenient approach. Anyway, such a problem is 
inherent to the other known methods, too. 

6 Future work 

This method, combined with other techniques 
developed to manipulate this kind of matrix, is used 
to create a system for minimization of multivalued 
functions with multiple outputs. To compute one 
solution for each output could be inefficient, 
because this approach does not allow correlations 
between the variants of output solutions. This 
correlation is needed to compute an optimal global 
solution. 

Next algorithms to compute appropriated 
solutions for each output in a compact form is 

designed such the number of common implicant 
vectors is maximum or as great as possible. Thus, an 
optimal global implementation of the specified 
system is attained.  

Considering a multivalued function 
(representing a conversion of decimal digits from Z3 
to Z5) and its solutions, there is obvious that its 
implementation is using 12 input configurations only, 
because some of them are common for both outputs. 

 
Function S

f
o

S
s
o

olution 
or first 
utput 

olution for 
econd 
utput 

0
0
0
0
0
0
0
0
0
1

 0 0/0 0 
 0 1/0 1 
 0 2/0 2 
 1 0/0 3 
 1 1/0 4 
 1 2/1 0 
 2 0/1 1 
 2 1/1 2 
 2 2/1 3 
 0 0/1 4 

- 1 1 / 0 -
0

-
-

-
-

-

-
0
 1 0 / 0 
 0 - / 0 

 
1 - - / 1 
-
-
 1 2 / 1 
 2 - / 1 

 

 1 2 / 0 
 0 0 / 0 

 
 2 0 / 1 
 0 1 / 1 

 
 2 1 / 2 
 0 2 / 2 

 
 2 2 / 3 

- 1 0 / 3 
 

1 - - / 4 
- 1 1 / 4 

Tab. 7 A multivalued function and its solutions 
 
An independent implementation of the function 

involves 6 input configurations for first input and 10 
input configurations for second outputs (a total of 16 
input configurations). 

Moreover, the solutions of each output value 
could be helpful to compute a better global solution. 
For example, a classical bivalent function solution 
given in Tab. 7 (a BCD to 7 segment decoder) has 14 
implicants, either for first, or second canonical form. 

 
BCD Converter 

0
0
0
0
0
0
0
0
1
1

 0 0 0 / 1 1 1 1 1 1 0 
 0 0 1 / 0 1 1 0 0 0 0 
 0 1 0 / 1 1 0 1 1 0 1 
 0 1 1 / 1 1 1 1 0 0 1 
 1 0 0 / 0 1 1 0 0 1 1 
 1 0 1 / 1 0 1 1 0 1 1 
 1 1 0 / 0 0 1 1 1 1 1 
 1 1 1 / 1 1 1 0 0 0 0 
 0 0 0 / 1 1 1 1 1 1 1 
 0 0 1 / 1 1 1 0 0 1 1 

Tab. 8 BCD 7 segments 
 
In table Tab. 9 there are shown solutions for 

each segment. Segments 0 and 6 have two equivalent 
solutions for output 1. Implicant are counted from 1 
to 22. For example, implicant 02 appear in five 
places. The remark could be used to select an optimal 
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global solution. In the table, marked vectors have 
more than one apparition.  

 
Seg 0 Seg 1 Seg 2 Seg 3 

01)- 0 - 0 / 1 
02)1 - - - / 1 
03)- 0 1 - / 1 
04)- 1 - 1 / 1 

 
01)- 0 - 0 / 1 
02)1 - - - / 1 
04)- 1 - 1 / 1 
05)- - 1 1 / 1 

 
06)- 1 - 0 / 0 
07)0 0 0 1 / 0 

08)- - 0 0 / 1 
09)- 0 - - / 1 
05)- - 1 1 / 1 

 
10)- 1 0 1 / 0 
11)- 1 1 0 / 0 

 

12)- - - 1 / 1 
13)- - 0 - / 1 
14)- 1 - - / 1 

 
15)- 0 1 0 / 0 

 

16)- - 1 0 / 1 
03)- 0 1 - / 1 
01)- 0 - 0 / 1 
10)- 1 0 1 / 1

 
17)- 1 0 0 / 0
18)- 1 1 1 / 0
19)- 0 0 1 / 0 

 
Seg 4 Seg 5 Seg 6 

16)- - 1 0 / 1 
01)- 0 - 0 / 1 

 
12)- - - 1 / 0 
20)- 1 0 - / 0 

08)- - 0 0 / 1 
02)1 - - - / 1 
20)- 1 0 - / 1 
06)- 1 - 0 / 1 

 
05)- - 1 1 / 0 
03)- 0 1 - / 0 
21)0 0 - 1 / 0 

18_- 1 1 1 / 0
22)0 0 0 - / 0 

 
06)- 1 - 0 / 1 
02)1 - - - / 1 
20)- 1 0 - / 1 
03)- 0 1 - / 1 

 
02)1 - - - / 1 
16)- - 1 0 / 1 
20)- 1 0 - / 1 
03)- 0 1 - / 1 

Tab. 9 Solutions for each segment 
 
Considering a solution that combine the first, 

as well the second canonical form, the general 
solution is reduced to 11 implicants, which means 
21% amelioration of previous solutions of the 
examined multiple output function. 

 
Seg 0 Seg 1 Seg 2 Seg 3 

01)- 0 - 0 / 1 
02)1 - - - / 1 
03)- 0 1 - / 1 
04)- 1 - 1 / 1 

10)- 1 0 1 / 0 
11)- 1 1 0 / 0 

15)- 0 1 0 / 0 
 

16)- - 1 0 / 1 
03)- 0 1 - / 1 
01)- 0 - 0 / 1 
10)- 1 0 1 / 1 

 
Seg 4 Seg 5 Seg 6 

16)- - 1 0 / 1 
01)- 0 - 0 / 1 

08)- - 0 0 / 1 
02)1 - - - / 1 
20)- 1 0 - / 1 
06)- 1 - 0 / 1 

06)- 1 - 0 / 1
02)1 - - - / 1 
20)- 1 0 - / 1
03)- 0 1 - / 1 

Tab. 10 Optimal solution for BCD 7 segments 
 

Such an approach is allowed by the global 
presentation of each output solution, containing all 
equivalent solution versions for each value, let it be 
binary, or multivalued.  
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