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Abstract: - Dynamical response in closed form is always a major goal when one wants to analyze the behaviour of a  
dynamical system. Nowadays, as is well known, we are able to calculate analytical response of mechanical systems only in a 
limited number of classes. So it is highly relevant to develop powerful methodologies which can help us in the dynamic 
analysis or in the non-linear identification processes of those systems. In this paper we present a direct and elegant procedure 
for calculating an approximate response of a large class of evolutionary equations which are of primary importance by the 
viewpoint  of physics and engineering people. For instance this method could be used for identification of damping parameter 
of rotors, friction parameters in sliding process, and so on.  The procedure consists of four steps: a Taylor transform, the use 
of a Lie operator followed by a linearization and finally the application of the corresponding Taylor’s inverse transform. A 
peculiarity of this method is that the Lie operator can be directly built by the Taylor transformation of the assigned 
evolutionary equation. 
The most important characteristic of this method is that it allows to calculate the response including,  in explicit  form,  the 
whole  parameters system. Consequently, this feature allows one to use very simple algorithms, as the Least Square Method  
for example, in order to develop quick  non-linear identification processes. 
 
Key-Words: -  Non-linear identification processes, Mechanical systems, PDEs, Lie Series, KdV.  
 
1 Introduction 
We describe, from an operative point of view, a procedure 
for solving in an easy and direct way some linear or 
nonlinear PDEs we can find in the Classical or Quantum 
Mechanics [1-11]. From a mathematical point of view, we 
are highly interested in the solution of Cauchy problems 
relevant in the field of dynamical systems. 
In this paper, after describing in some details, how the 
method works, we choose to find the solution to a 
Korteweg-de-Vries equation: an equation which is very 
important in many scientific fields, both classical and 
modern, both physics and engineering. In particular, so to 
cite a few, in fluid dynamics and in the supersymmetric 
quantum mechanics. 
The method (already successfully applied by us to simpler 
cases) needs four steps to be operative: 

    1) a Taylor transformation of the starting Cauchy 
problem. 
    2) the construction of a suitable Lie operator, both in the 
autonomous and non-autonomous case. 
    3) a linearization of the transformed system in order to 
obtain the propagator. 
    4) and a Taylor inverse transformation, at the end. 
    Let us start with a nonlinear evolutionary  equation, 
simbolically written as follows: 
 

(1.1)       ( )μPPPPtxA
t
P ,...'',',,,=
∂
∂

 

 
where A is a differential operator generally depending on: 
x,t,P and the first μ derivatives of P w.r.t. x. 
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The basic hypothesis is the analyticity of A w.r.t. its 
arguments in a bounded region R of 3+μE . Our task is to 
find out the function solution of the (Cauchy's) problem: 
 
i) P solves eq.(1) when x and t are in R; 
ii) P(x,0) ≡ Po(x) is an assigned analytical function 

when x is in R and t=0. 
 

In preceding papers [1, 5] we thoroughly studied this initial 
value problem. We showed the problem is well posed: the 
solution exists and is unique if x and t are in R, and depends 
continuously upon the initial data.  Generally speaking, it is 
representable by a double series, i.e. a power series in x, 
whose coefficients are Lie series of t. [1-9]. 
 
2 Procedure 
We introduce a one-to-one application, , between 
F and S.    F is the linear space of infinitely many 
differentiable functions f (good functions), w.r.t. x, with 
domain 

),( 1−TT

R∈Ω . They are supposed developable in 
absolutely convergent power series at an initial point, e.g. 
x=0.  S is the linear space of sequences whose terms are 
functions depending on t and convergent to zero on the 
complex field: 
 

(2.1)     ( ) ( ) ( )( )( ) StxfTf
T

T
Ftxf nnnn ∈≡↔∈ ∞

=
∞
=

−
00

1
,,

 
 
More in details: 
T, directly maps F in S, as the Taylor transformation which 
associates every point of F to the sequence of its Taylor 
series coefficients: 
 

(2.2)       
0!

1

=
⎥
⎦

⎤
⎢
⎣

⎡
=

x
n

n

n dx
fd

n
f  

  
 1−T , inverse of T, maps S in F, as the operator which starts 
from any sequence of S and associates to it the sum, 
let us say f(x,t), of the Taylor series whose coefficients are 
the correspondent terms of the starting sequence. 

( )∞=0nnf

The operator T can be utilized as a first step towards the 
linearization of the assigned problem. 
 
2.1   First step: Taylor transform 
The application of T  to eq. (1.1) gives (at the (n+1) step): 
 

(2.1.1)         ( )n
n ppp

dt
dp

+−Θ= μ,...,, 01  

 
 being 

 
(2.1.2)      ( ) ( )APTppp nn ≡Θ +− μ,...,, 01  
 
In this procedure, time t can be considered, just as one as 
the other μ+n+1 functions involved. So we put: 

(2.1.3)      tp =−1      obtaining       11 =−p
dt
d

 

  
We note that by just adding this last simple differential 
equation we make autonomous the equivalent initial value 
problem. By this means it is always possible to change the 
evolution operator A into an autonomous one. 
In compact  form system (2.1.1) and (2.1.3) can be written: 
 

(2.1.4)         ( )p
dt
dp

Θ=  

 
 With            ( ) ( )( ),...,, 101 PTPTpp −=  
 
      ( ) ( ) ( )( ),...,,1 10 APTAPTp =Θ  
 
2.2   Second step: Lie operator 
Now we construct the Lie exponential operator: 
 

(2.2.1)            ν
π

ν

ν
π D

v
tetD ∑

+∞

=

=
0 !

 

 
by means of, what we could name, the Groebner-Lie 
operator: 
 

(2.2.2)     ( )
nn

nnD
π

ππππ
π μπ ∂

∂
Θ+

∂
∂
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=
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101
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,...,,  

 
Notice that it has inside it the same function nΘ  but with 
the arguments jπ instead of the . In other words here the jp

nΘ  depend on parameters which take the place of the 

unknown functions.   The coefficient 1 of 
1−∂

∂
π

 in is a 

consequence of the coefficient we found in the r.h.s. of eq 
(2.1.3).  

πD

 
2.3   Third step: Linearization 
Now we are able to linearize Cauchy problem (1.1) and ii). 
In fact we can write a linear problem [1-9]: 
 

(2.3.1)  pD
dt
dp

π=  
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with      ( ) ( ) ( )( )xPTaapp nnnn 01    ,0   ,00 ===−

which is equivalent to (2.1.4), since: 
 
(2.3.2)              [ ][ ] ( ).pDpD p Θ== =πππ π  

  
By symbol [[ ]] we want to stress that we have to substitute 
p to π only at the end and just on the image given by  πD
 
2.4   Forth step: Taylor anti-transform 
Having proved in [1-9] that: 
 
(2.4.1)                    ( ) [ ][ ]

an
tD

n etp
=
=−=

π
ππ 01  

 
we can, finally, perform the inverse transform of p and 
obtain the searched solution: 
 

(2.4.2)   ( ) ( ) (∑
∞

=

−≡=
0

1,
n

n
n pTxtptxP )

     
3   Example: Korteweg - de Vries equation 
In order to give a flash on the functioning of the method we 
are going to apply it to a well known non linear equation 
relevant in the fluid dynamic field as well as in modern 
physics (supersymmetric quantum mechanics) [12]: a 
Korteweg-de Vries equation.  
 
(3.1)          06 =++ xxxxt PPPP
 
First step: Taylor transform 
By applying the operator 
 

(3.2)             
0

0

!
1

=

≡
x

n

n

n dx
d

n
T  

 
 we obtain the Taylor transform of equation (3.1): 
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in which: 
 

(3.4)         ( ) ( )txPTtxP
dx
d

n
p n

x
n

n

n ,,
!

1 0

0

≡≡
=

 

 
Eq. (3.3)  written in normal form, becomes: 
 

(3.5)         ( 3110 ,,...,, ++Θ= nnnn ppppp
dt
d )  

 

Second step: Lie operator 
Lie exponential  operator is, now:         πtDe
  
being: 
 

(3.6) ( )∑
∞

=
++ ∂

∂
Θ≡

0
3110 ,,...,,

n n
nnnD

π
πππππ  

 
where nΘ functions are now depending on parameters π 
instead of  p. 
 
Third step: Linearization 
 We can rewrite the eq.(3.5)  in a linearized form,[1-6], i.e.: 
 

(3.7)    nn pDp
dt
d

π=  

 
 since: 
  
(3.8)     [ ][ ] ( )3110 ,,...,, ++= Θ== nnpnn ppppDpD πππ π  

 
 with              ( ) ( ∞

=
∞
= == 00              nnnn ppππ )  

 
The Lie operator is a propagator for eqs. (3.7)  because it is 
able to give the set of all components of the solution, 
 

(3.9)                            ( ){ }∞

=0nn
tDe ππ  

 
In fact as a propagator it acts on the initial function, here a 
parametric sequence, and gives the components of the 
solution at time t. 
Therefore, for our initial value problem, we have the 
solution: 
 

(3.10)  
( ) [ ][ ]

( ) ( )( )( )∞=∞
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=
∞
=

≡=

=

00
0

0

0

nnnn

an
tD

nn

xPTaa

ep πππ
 

 
Forth step: Taylor’s  inverse transform 
Finally, the Taylor anti-transform gives the searched 
solution . 

(3.11)               ( ) ( ) n

n
n xptxPpT ∑

∞

=

==
0

1_ ,

  
for the Cauchy problem with 

(3.12)   ( ) ∑
∞

=

==
0

0 0,
n

n
n xaxPP

Summarizing, we have: 
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being an the Taylor coefficients of the initial function 
and Θ the Taylor transform of the r.h.s. of the starting 

eq, after having written it in normal form and with 
parameters

( )xP0

jπ  as its arguments: 
 

( ) ( )∑
=

−++ −+−−=Θ
n

k
knknn knk

0
13 16 πππ  

 
4   Conclusion 
In this paper we propose a methodology for calculating the 
dynamic response of dynamical systems  based on the Lie 
series. As a result of the general forms of the solutions, the 
applicability of this approach is not restricted to certain 
types of non-linearity and/or certain number of degrees of 
freedom. This seems to be a distinctive feature of the 
approach, since many well-known analytical methods of 
non-linear dynamics are sensitive to both the degree of 
nonlinearity and the number of degrees of freedom. This 
method, in addition, allows one to set up quick algorithms 
in order to identify one or more parameters of non-linear 
systems such as damping parameter of rotors, friction 
parameters in sliding processes, stiffness in beams, plates, 
etc… 
In order to give a flash on the functioning of the method we 
applied it to a well known non linear equation relevant in 
the fluid dynamic field as well as in modern physics 
(supersymmetric quantum mechanics) [11] Korteweg-de 
Vries equation.  
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