
A Dynamic Allocation Scheme for a Multi–agent Nash Equilibrium

M. EROL SEZER
Bilkent University

Dept. of Electrical and Electronics Eng.
06800 Ankara

TURKEY
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Abstract: A multi–agent game, in which each one of theN agents allocates its fixed resource against others to
achieve dominance, results in a Nash equilibrium in a staticgame under perfect information. When an agent has
knowledge only of his own allocations and allocations of theothers against itself, then the only way to achieve a
Nash equilibrium is to dynamically update its own allocations in time. This paper provides a formal scheme which
is guaranteed to converge to a Nash equilibrium under the aforementioned information structure. This result has
applications in the theory of balance of power in an international political systems, as well as in the analysis of
piece–wise linear multi–model dynamical system.
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1 Introduction and Formulation

Consider a systemS that consists ofN ≥ 2 subsys-
tems (agents)Si, i ∈ N = {1, 2, . . . ,N}. EachSi

has a resourceri > 0 which it uses to allocate against
the remaining subsystems. Without loss of generality,
we assume that

r1 ≥ r2 ≥ · · · ≥ rN

The allocation of resources can be described by a non-
negative allocation matrixA = [ aij ], whereaij de-
notes the allocation ofSi againstSj . Thus theith row
of A

a
T
i = [ ai1 ai2 · · · aiN ]

describes the allocation of the resource ofSi, and the
ith column ofA

ci = [ a1i a2i · · · aNi ]
T

describes the allocations againstSi. The whole re-
sourceri of Si is distributed among the remainingSj ’s
so thataij ’s satisfy

aii = 0 , 0 ≤ aij ≤ ri , ∀ i 6= j ∈ N (1)

and
∑

j∈Ni

aij = ri , ∀ i ∈ N (2)

whereNi = N − {i}.

The systemS may be interpreted as the world,
with Si representing the states, andri their economi-
cal or military resources or as a swarm, withSi rep-
resenting the individuals, andri their forces or pow-
ers, etc. In any case, the subsystemsSi allocate their
available resources against each other to achieve dom-
inance or balance. In the rest of this section, we sum-
marize the results obtained in [1], which have been
applied to the theory of international political systems
of Waltz, [2].

A set of allocationsA is called abalanced equi-
librium, or a B-equilibrium in short, if

aij = aji , ∀ i 6= j ∈ N (3)

Clearly, a set of allocations is a B-equilibrium if an
only if the corresponding allocation matrixA is sym-
metric. If S has a B-equilibrium, then it is said to be
balanced. We are concerned with the following ques-
tions:

Q1. When isS balanced?

Q2. What allocations yield a B-equilibrium whenS
is balanced?

Q3. If S is not balanced, is there an optimal set of
allocations that is close to a B-equilibrium with
respect to a meaningful measure?

Q4. How can a B-equilibrium (an optimal allocation)
be achieved whenS is balanced (unbalanced)?

The following result by [1] provides conditions for ex-
istence and uniqueness of a B-equilibrium:
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Lemma 1 S is balanced if and only if

r1 ≤ R =
N

∑

j=2

rj (4)

in which case there is a unique B-equilibrium if and
only if eitherN ≤ 3 or equality holds in (4).

The condition in (4) simply requires that no subsystem
controls more than half of the total resources, that is,
there is no hegemon.

Let sij = aij−aji denote the excess allocation of
Si overSj, which can be interpreted as the “security”
of Si againstSj . Thus

si = ai − ci = [ si1 si2 · · · siN ]T

describes the securities ofSi against other subsys-
tems. Clearly, ifS is balanced andA∗ is a B-
equilibrium, thens∗ij = 0 for all (i, j). If S is not
balanced, then we can conveniently use

min
A

J(A) (5)

as a measure of imbalance, where

J(A) = max
i,j

{ | sij | } (6)

Let

D = max { 0 ,
r1 − R

N − 1
}

Clearly, D = 0 whenS is balanced, andD > 0,
otherwise. The significance ofd is that it measures the
degree of imbalance as stated by the following result
of [1]:
Lemma 2

J∗ = min
A

J(A) = d

The minimum is achieved atA = A∗ where
• if D = 0, thenA∗ is any B-equilibrium
• if D > 0, thenA∗ is uniquely given as

a∗1j = rj + d , j 6= 1

a∗j1 = rj , j 6= 1

a∗ij = 0 , i 6= 1 6= j

An interesting property of the solutions of the op-
timization problem in (5) is that each solution (if not
unique) is a Nash equilibrium (N-equilibrium),[3], of
a game amongSi, in which eachSi tries to maximize
its minimum security

Ji(si) = min
j∈Ni

{ sij } , i ∈ N (7)

by choosing its own allocationsai based on the locally
available informationsi.

We illustrate these concepts with an example.
Example 1We consider three systems:

(a) A system withN = 3 subsystems having the
resources

(r1, r2, r3) = (40, 30, 20)

is balanced. The unique B-equilibrium is given
by the allocation matrix

A∗ =







0 25 15
25 0 5
15 5 0







(b) A system withN = 4 subsystems having the
resources

(r1, r2, r3, r4) = (50, 40, 30, 10)

is also balanced. B-equilibria are characterized
parametrically as

a∗12 = a∗21 = 25 + α
a∗13 = a∗31 = 15 + β
a∗14 = a∗41 = 10 − α − β
a∗23 = a∗32 = 15 − α − β
a∗24 = a∗42 = β
a∗34 = a∗43 = α

whereα, β ≥ 0 andα + β ≤ 10.

(c) On the other hand, a system withN = 3 subsys-
tems having the resources

(r1, r2, r3) = (50, 30, 10)

is not balanced. Optimum allocation of resources
is unique, and is given by

A∗ =







0 35 15
30 0 0
10 0 0







which results in

J∗ = J∗
1 = 5 , J∗

2 = J∗
3 = −5

Note that, in this case, the hegemon distributes
its excess resources evenly against the remain-
ing subsystems. Note also that,A∗ is an N-
equilibrium: Withaj = a

∗
j andak = a

∗
k,

max
ai

Ji(A)

is achieved atai = a
∗
i for all {i, j, k} =

{1, 2, 3}.
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2 Dynamic Resource Allocation
We now turn to the question of achieving the optimal
allocation starting from an arbitrary initial allocation
of resources, in which the main contribution of this
study lies. The constraints are that

• (1) and (2) must hold at all times,

• Si has access only toai andsi, and therefore,ci

in the process of updating its own allocationsai

We note that there are many attempts of setting
up dynamic games which converge to Nash equilibria
whenever one exists (see e.g., [5], [6], [7]. Our ap-
proach differs from those in the sense that we search
among all possible dynamic update schemes those that
yield a Nash equilibrium in the long run, rather than
setting up a “dynamic game” by imposing further mo-
tives and preferences on agents.

2.1 A Discrete Update Scheme
The simplest approach is to update the allocations
ai of eachSi iteratively by making use of the N-
equilibrium property of the optimal allocation: With
ai(k) andsi(k) denoting the allocation and security
vectors ofSi at thekth step of iterations, we simply
choose

ai(k + 1) = a
∗
i (k) = arg max

ai(k)
Ji(si(k)) (8)

subject to (1) and (2). Unfortunately, it is shown
(see e.g. [4]) that this approach may fail to converge
to an optimal allocation due to possible oscillations.
However, we have observed that a modified iterative
scheme

ai(k+1) = αai(k)+(1−α)a∗
i (k) , 0 < α < 1, (9)

which updates the allocations more slowly, often con-
verges to an optimal allocation.1

2.2 A Continuous Update Scheme
We look for an update scheme of the form

ȧi = fi(ai, ci) , i ∈ N (10)

that defines the dynamics ofSi.
If 0 < aij < ri, then a suitable update scheme is

ȧij = cidij , j ∈ Ni (11)

1Although we have not proved the convergence of the modi-
fied iterative scheme, we strongly believe that it does. Because,
the modified scheme is closely related to a discrete version of the
continuous update scheme given in the next sub-section.

whereci > 0, and

dij = −(N − 2)sij +
∑

q 6=i,j

siq

This scheme
• updates the allocationaij of Si againstSj at a

rate that is inversely proportional to its security
againstSj but directly proportional to its securi-
ties against otherSq,

• treats allSq , q 6= j, equally in updatingaij,

• guarantees that
∑

j∈Ni

ȧij = 0

as required by (2).

If aij = 0, then as long asdij ≥ 0 we can use (11)
to updateaij. However, ifaij = 0 anddij < 0, then
(11) can no longer be used as it would forceaij to go
negative. In that case, we forceȧij = 0, and omitsij

from dip in computingȧip for p 6= j. Repeating the
process, we end up with a maximal subsetJi ⊂ Ni

such that with

dij = −(Ji − 1)sij +
∑

q∈Ji
q 6=j

siq

whereJi = |Ji |, we have

aij = 0 , j ∈ Ji ⇒ dij ≥ 0
aij = ri , j ∈ Ji ⇒ dij ≤ 0

We then set

ȧij =

{

cidij , j ∈ Ji

0, j /∈ Ji
(12)

Construction ofJi and (12) guarantees that whenever
a particular allocationaij hits the boundary of the al-
lowable allocation interval (i.e.,0 or ri), then it either
stays at the boundary or it is pushed back into the open
interval (0, ri). (12) defines a piece–wise linear mul-
timodel system (see, e.g., [8]) that has different linear
dynamics in different parts of the state space.

We now state:

Theorem 1 Solution A(t, A0) of the allocation dy-
namics (12) starting from an initial allocationA(0) =
A0 converges to a constant equilibriumA∗(A0),
which is

• a B-equilibrium ifS1 is not a hegemon,

• the unique N-equilibrium (independent ofA0) if
S1 is a hegemon

The rather lengthy proof of Theorem 1 can be
found on the website www.ee.bilkent.edu.tr/∼sezer. It
suffices to point out that the proof is based on con-
struction of a common Liapunov function [9] for all
linear regimes of (12).
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3 Simulation Results

We simulated the discrete and continuous update
mechanisms for the three systems considered in Ex-
ample 1(a-c).

(a) The discrete update scheme (8) for the system in
Example 1(a), starting with

A(0) =







0 0 40
25 0 5
15 5 0







resulted in oscillations ina13(k) anda31(k) and
did not converge. Whereas, the modified up-
date scheme (9) withα = 0.5 starting with the
same initial allocations converged to the unique
B-Equilibrium given in Example 1 as shown in
Fig. 1.
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Figure 1: Discrete Allocation DynamicsSa

The continuous update scheme withc1 = 1, c2 =
2, c3 = 3 also converged to the unique B-
Equilibrium as shown in Fig. 2. Note thata32

was already at the equilibrium value initially.
However, combined dynamics ofS resulted first
in a decrease ina32 until it hit the boundary, and
later in a gradual increase to the final equilibrium
value. The piece-wise linear nature of the alloca-
tion dynamics is apparent from the figure.

(b) The continuous allocation scheme withc1 =
1, c2 = 5, c3 = 3, c4 = 1 for the system in Ex-
ample 1(b) starting from

A(0) =











0 10 20 20
0 0 30 10
5 5 0 20
0 0 10 0
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Figure 2: Continuous Allocation Dynamics forSa

converged to the N-equilibrium

A∗ =











0.00 25.00 16.34 8.66
25.00 0.00 13.66 1.34
16.34 13.66 0.00 0.00
8.66 1.34 0.00 0.00











as shown in Fig. 3.
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Figure 3: Continuous Allocation Dynamics forSb

A different initial allocation

A(0) =











0 20 0 30
10 0 20 10
0 20 0 10
5 5 0 0











resulted in a different N-equilibrium

A∗ =











0 25 15 10
25 0 15 0
15 15 0 0
10 0 0 0
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Figure 4: Continuous Allocation Dynamics forSb

as shown in Fig. 4.

(c) Finally, the continuous update scheme withc1 =
1, c2 = 2, c3 = 1 for the unbalanced system in
Example 1(c) starting from

A(0) =







0 25 25
15 0 15
5 5 0







resulted in the unique N-Equlibrium given in
Example 1(c) as shown in Fig. 5. Other ini-
tial allocations also converged to the same N-
equilibrium.
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Figure 5: Continuous Allocation Dynamics forSc
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