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Abstract: - Most technical measuring and technological equipment, instruments and systems, such as linear 
and circular scales, measuring transducers, numerical controlled machine tools, etc. have some kind of 
information – measuring systems that give the information about the position of the part of the machine or 
instrument, measuring information, etc. The information – measuring systems are calibrated against the 
reference standards of measure comparing their accuracy at some pitch of calibration, for example, at the 
beginning, middle point and the end of the stroke or at every tenth of the stroke in the range of measurement. 
It depends on the written standards and methodical documentation of these machines or instruments. 
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1   Introduction 
The measurement result is usually presented as an 
evaluation of the systematic (mean) value of the 
measurand within the estimated distribution limits 
that depend on the standard deviation given the 
appropriate level of confidence. This is a commonly 
accepted form of presentation of such a 
measurement result. Uncertainty analysis is based on 
classical statistical principles, and it assigns the 
measurand a standard uncertainty at effective 
degrees of freedom allowing the measurand to be 
estimated inside the confidence region set for a 
chosen probability. The established standards and 
investigations in this field [1, 2] contain the main 
rules for expressing the uncertainty of measurement. 
It is absolutely important approach in determining 
the real value of the measured value, performing the 
instrument accuracy assessment [3] and assuring the 
quality assessment at all levels of industrial 
production. 
The sampling strategy in measurement [4, 5] is 
widely discussed in literature. Wunderli [5] 
discusses a practical approach in the expression of 
the result of a measurement and its uncertainty. It is 
noted that uncertainty expresses a dispersion of the 
values that could be reasonably attributed to the 
measurand. The author agrees that sampling is 
critical for decision-making process, but, in his 
opinion, it is not a part of the measurement 
uncertainty. Nevertheless, the discussion in the 
article shows that further procedures, such as 
verification and traceability need to operate with 
representative sampling. Sladek and Krawczyk [6] 
have highlighted the problem that exists due to the 

great amount of information that is present in the 
calibration of the total volume of a coordinate 
measuring machine (CMM). The authors show that 
it is technically difficult and economically 
demanding to calibrate the enormous number of 
points available, e.g. the 324 000 steps of 
information of the CMM in the measuring volume 
arising from six rotary axes. Suitable sampling of 
measuring points on the surface of industrial parts 
was shown to be a very important task, as was the 
sampling of the points in the CMM volume during 
its calibration. 
An important branch of measurement theory is 
information theory [7, 8] where the information 
entropy of measuring devices and instruments is 
assessed and evaluated. They complement each 
other; nevertheless, no real proposals have been 
made for joining them together in the expression of 
the results of measurement. Many authors discuss 
the task of uncertainty monitoring and sampling; 
nevertheless, there is no general approach given to 
solve this task. 
The task is to add to the measurement result 
expressed by systematic and random errors 
(uncertainty) an assessment that includes the 
information entropy of the measurement, i.e. 
showing the quantity of measurement information 
that was evaluated out of the total available 
information (indeterminacy). An idea to include the 
sampling procedure into the equation for the 
measurand is especially important bearing in mind 
modern information-measuring systems consisting 
of translational transducers that can combine a wide 
range of data or measurement values reaching 
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hundreds of thousands of numerical values including 
some intelligent functions. This is also important in 
view of traceability of measurement as it can clearly 
indicate which part of the information was assessed 
from the total volume of the information. 
 
 
2   Problem Formulation 
The quantity of information can be evaluated by 
joining it with the general expression of the 
measurement result, i.e., expressing the systematic 
part of the result, the uncertainty of the assessment, 
and adding to it the quantity of information entropy 
that shows the indeterminacy of the result. This 
measure can be used to define mutual information, 
i.e., the amount of information one random variable 
contains about another [7]. The expression of the 
measurement result (the measurand) is widely [1,2] 
accepted as ,X x Pε= ± , where X is the result of 
measurement; x  is the systematic part of the 
measurement result, ε is the uncertainty of 
measurement expressed further as tS nε = , 
where t is the Student coefficient, S is the estimate 
of standard deviation, n is number of trials, and P is 
the probability selected according to the chosen 
level of confidence. The systematic part of this 
expression is used to assess or verify the 
preestablished performance of measurement 
procedure and to design corrective actions if 
necessary to improve this procedure [9]. The whole 
measurement procedure further is estimated by 
determining the measurement uncertainty. The full 
information entropy according to [7, 8] is expressed 
as: 
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where pi – probability of the appearance of a 
message; n – probability sample, a – logarithm 
basis. Information conveyed by measurement 
process in case of equal probability would be: 

0I H H= − ; i.e., the difference between the 
information existing before the measurement H0 and 
after performing the measurement (receiving 
information) H1. This evaluation is widely used in 
signal processing, communications, economics and 
financial operations, evaluation of stock exchange 
operations, etc. Mutual entropy shows a measure of 
dependency between two variables. For expression 

of mutual information such mathematical expression 
is used [7, 8]: 
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Fig. 1. An example of the available pitch of 
calibration of linear raster scales 

 
Only a small part of the information (about its 
accuracy) contained in information - measuring 
systems can be determined during calibration 
process. For example, in Fig. 1 the raster scales are 
shown, where Δ - a pitch of the raster scale, kΔ - a 
pitch of the accuracy calibration, mΔ - the total 
number of strokes in the scale. For the circular scale, 
the calibration by using the polygon can be 
performed for only 8 of the strokes of the scale. 
Conventional measurement formulas show the 
measurand after the calibration without indication, 
which part of the scale is measured. This 
disadvantage can be lessened using the information 
entropy expressions. 
It is evident that most information would be 
received if all possible points could be calibrated. 
However, that is impossible from a technical point 
of view. For presenting data, it is very useful to give 
the real situation of the measurement result as the 
outcome of the measuring process. 
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Fig. 2. Examples of discrete (A) and analogue (B,C) 
functions having different bias features for entropy 
evaluation 
 
Fig. 2 shows a different type of error distribution in 
linear measurements. The graph indicated by A 
shows sharp changes in accuracy in contrary to the 
graphs B and C. So, it would be of great importance 
to indicate, which number of points are measured 
during the calibration process. The part of the 
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analogue graph C in the interval (4-13) mm shows a 
minimal changes, and this part of the scale or the 
transducer could be used for more precise 
measurements. 
 
 
3   Problem Solution 
The digital output of photoelectric rotary and 
translational transducers have the last digit equal to 
the value of 0.1 µm or 0.1” (of arc). The measuring 
range is equal to 10 … 30 m, and a full or several 
rotations of the shaft in the circular case. The value 
in arc seconds of one revolution is 1,296,000”, i.e. 
the same number of discrete values in the display 
unit. It will increase to ten times this number if the 
indication is at every 0.1 of the value. The 
measurement results indicated in the display unit can 
be proved by metrological means (calibrated) only at 
every increment of 1/100, 1/1000 or even a smaller 
portion of total information. A suitable theoretical 
approach to provide more information in this area 
would be information entropy. 
The information received after the calibration, i.e. 
the determination of the accuracy of part of the scale 
(Fig. 1) will be 1 logaH b= , where b m k=  is the 
number of calibrated strokes in the scale. These 
strokes were measured c times each for the 
statistical evaluation. Then the reduction in the 
information uncertainty (indeterminacy) due to the 
information received (1, 2) will be: 

0 1 log loga aI H H m b= − = −  (3) 
then ; and log loga ab m= I− (log )a m I Ib a m a− −= = ×  
Since the total number of measurements is n = bc 
(each calibration measurement is performed c 
times), the expression for the measurement result at 
a given probability and the reduction in information 
indeterminacy becomes: 
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Using Formula (3) we can consider two limiting 
cases: when all available strokes are calibrated and 
no strokes are calibrated. In the first case as b 
becomes equal to m, I becomes zero, and the 
formula above (4) is transformed into 

0
, ,0t S t SX X X

mca mc
⋅ ⋅

= ± = ± P . (5) 

In the second case, if no strokes are calibrated, the 
result is undefined, since no additional information 
is present. It means that the information–measuring 
system remains absolutely undefined.  
 

 
 
Fig. 3. The relationship between the total and assessed 
number of strokes with the information quantity of the 
scale, where m is the number of strokes on the scale, b is 
the number of the assessed strokes on the scale and I is 
the quantity of information 
 
In Fig 3 the relationship between the total number of 
strokes on the scale m, its information I and the 
number of the strokes position already assessed on 
the scale b is displayed. It is assumed that the base 
of logarithm is 2, and this base is used in Formula 
(3). It can be seen that the reduction in uncertainty is 
the greatest when additional assessed information is 
added to a relatively small number of already 
determined information (for example, the strokes of 
calibrated accuracy). The slow change in I on the 
right edge of the graph suggests that after a certain 
point little is gained by determining yet more 
information. From the graphs it is evident that the 
information quantity of the data from the scale 
increases as the proportion of calibrated strokes to 
the total number of strokes decreases and vice versa. 
Hence, Formula (3) confirms a logical proposition 
that the information quantity of the scale is inversely 
proportional to the number of calibrated strokes. 
Sensibly again, it can be seen that the information 
entropy approaches zero as the number of calibrated 
strokes approaches the number of total strokes in the 
scale. As the uncertainty of the scale becomes less 
and less so does its information differential. 
It means that the measurement result is determined 
with the uncertainty assessed by probability level P 
and with the indeterminacy of the result assessed by 
the entropy I(H1 ,H0) of evaluation of that part of all 
the data in question. The measured part of the scale 
or transducer can be used [10] in such a way as not 
to contribute the extremes of the systematic error. 
A technical implementation of this approach can be 
photoelectric, optical and electromechanical 
transducers are used for control and measurement of 
the strokes of machines and instruments [9]. 
However, they experience significant systematic 
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errors when being applied in these machine systems 
with long displacement strokes. A technical solution 
incorporating the aforementioned advantage of 
lessening the indeterminacy of the measurement is 
through the use of multiple indicator heads with a 
short part of the scale which can be calibrated at 
very small steps with high accuracy. The indicator 
heads of a measurement system must be placed in 
the path of a moving machine part in such a way that 
the measurement be limited only to the most precise 
part of the measuring system (scale), and the reading 
of the information be performed serially by using 
the heads placed along this path. 
 
 
4   Conclusion 
This new approach to the evaluation of measurement 
data gives full information on the measurement 
process performed and the quantity of data assessed 
during this process. 
The systematic error, uncertainty and entropy 
evaluation during the measurement process permit 
to evaluate the accuracy of information-measuring 
systems more exactly and to improve accuracy of 
those systems by technical means. 
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