
An Objects-First Approach to Teaching Object Orientation based on
objectKarel

Stelios Xinogalos1, Maya Satratzemi1, Vassilios Dagdilelis2

1Department of Applied Informatics, 2Department of Educational and Social Policy
University of Macedonia

156 Egnatia Str., Thessaloniki
GREECE

Abstract: In the last decade the departments of Information Technology have adopted the Object Oriented
Programming (OOP) paradigm for introductory programming courses. In this paper we present the problems
encountered when OOP is taught to novices and how the microworld objectKarel that we developed helps in
dealing with these problems. The main part of the paper has been devoted to providing a description of a
proposal for teaching the fundamental notions of OOP with the help of objectKarel and some preliminary
results from its evaluation.

Key-Words: Object-oriented programming, Microworld, Hands-on activities, Program animation.

1 Introduction
In the last decade the departments of Information
Technology have adopted the Object Oriented
Programming paradigm for introductory
programming courses. Usually in these courses C++
is used and recently Java is being used more and
more. Although the tools for software development,
the teaching support material as well as the
experience of teachers in OOP are not as developed
as those for structured programming, it appears that
in the end, the opinion prevails that the introduction
to programming should be made with the OOP
paradigm – since OOP is being used continuously
more in the work sector.
 The adoption of this approach to the teaching of
programming has resulted in adding a number of
difficulties and misconceptions inherent in OOP to
the already existing difficulties and misconceptions
of novice programmers, which were located during
the teaching of structured programming. One of the
most important instructional problems that are
related to the OOP paradigm is the fact that the
object-oriented technique for the development of
programs is difficult for students [5], since it is more
abstract than the technique for structured
programming and more exacting in the processes of
analysis and design. Furthermore, the existing OOP
languages are not suitable for an introduction to this
paradigm. As a consequence, the introductory
programming courses teach the students merely to
be «consumers» rather than «creators» of software
that can be reused [10].

 These opinions have led researchers to develop
programming languages and environments
specifically designed for education. Bergin et al [1]
proposed the language Karel++, a language closer to
C++, to provide a means to novice programmers to
learn OOP. Kölling et al. [7] devised the
programming environment BlueJ for an introduction
to OOP using Java as a language. Prompted by the
language Karel++ but also by related research on the
difficulties and the misconceptions of beginners we
developed a programming microworld, called
objectKarel ([11], [13]) that is based on the language
Karel++. objectKarel incorporates features not
usually available in the existing programming
environments and solves many problems that have
been recorded in the teaching of programming to
novices. The strengths of objectKarel are built
around three design goals: simplicity, interactivity
and visualization. In this work, we firstly present the
environment objectKarel through the rationale that
guided its development. The main part of the paper
has been devoted to describing a proposal for
teaching the fundamental concepts of OOP (objects,
classes, inheritance, polymorphism, overriding) with
the help of objectKarel. This teaching proposal has
already been applied and evaluated positively by
students, while some results of this evaluation are
presented in the paper.

2 The objectKarel environment
One of the most significant difficulties that novice
programmers must deal with when introduced to

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 93

programming is the extended instruction set of
programming languages. Also, students have great
difficulty in comprehending the general
characteristics of the mental machine, which they
learn to control, and its relation with the natural
machine. Milne and Rowe [8], report that beginners
who are introduced to OOP are unable to
comprehend what is happening to their program in
memory, as they are incapable of creating a clear
mental model of its execution. In order to deal with
these obstacles we chose to use the mini-language of
Karel++ that uses the metaphor of a world of
robots. We believe that the use of a microworld like
this, which is based on a physical metaphor, draws
students’ attention, gives the opportunity to solve
interesting problems even from the first lessons and
contributes greatly to decreasing the “distance”
between the mental models or descriptions of
algorithms in a natural language and their
description in a programming language.
 In order to support, even more, beginners in
comprehending the general characteristics of the
"mental machine", we created an advanced
animation and visualization system. The process of
program execution is not hidden and so students do
not develop an input-output oriented understanding,
as is the case in commercial programming
environments. Program animation helps students
understand the language’s semantics and flow of
control, as well as the way in which the commands
of their program are connected with the actions of
the robots. Besides the ability of tracing and step-by-
step execution we have also used the technology of
explanatory visualization, that is the presentation of
explanatory messages in natural language about the
semantics of the current command.
 The relevant research has also shown that the
syntactic and semantic rules of programming
languages [4] create so many difficulties to
beginners that they focus their attention on these
rules and not in developing programming skills.
These difficulties, in combination with syntactic and
semantic errors that are usually presented in coded
form and are in no way instructive for the students,
often discourage and disappoint them. Therefore,
with the aim of minimizing the number of syntax
errors, we decided to incorporate a structure editor
for developing programs: 1) choosing the
appropriate action (class/method declaration,
construction of object) or choosing a message to
send to an object from a single menu (Fig. 1), which
is automatically updated whenever the user
declares/deletes/edits a class/method; 2) interacting
with the system through dialog boxes. We chose to
incorporate this editor with the express aim of

helping the beginner to focus on the solution of the
problem and the acquisition of concepts rather than
on the syntactic details of the programming
language. Furthermore, our programming
environment detects and reports understandable and
highly informative error messages of all types: the
line number reported is the actual line of the error;
messages report not only what is wrong but also
explain why it is wrong; the error messages use
physical language and not codes.
 Finally, objectKarel incorporates e-lessons,
consisting of theory and hands-on activities, which
aim at supporting the teaching of programming. The
beginners familiarize themselves with the taught
concepts rather than writing a program from the
beginning and they are given the opportunity to
experiment via ready examples. Kölling et al. state
in [7] that it is wrong to begin the teaching of OOP
from scratch. Writing a class involves design. One
has to decide what class(es) should exist and what
the methods should be. Instead, a student should
start by making small changes to existing code [7].
In this way, students can go through a sequence of
exercises that they can understand step by step.
Moreover, via the ready examples that were
incorporated in the theory and in the activities
students are given the chance to learn a lot from
studying well written programs and copying style
idioms.

Fig 1. The main window of objectKarel.

 Other known tools based on Karel++ and its
predecessors are JKarelRobot [2] and Jeroo [9]. The
restrictions of these tools, regarding object-
orientation, are that students can create just one
robot in JKarelRobot, while in Jeroo there is only
one class, students can create up to four robots,
inheritance is not supported and the Jeroo class can
be extended with void methods, but not with
predicates. On the other hand, a book and an
accompanying simulator for a Java-based

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 94

descendant of Karel++, called Karel J Robot [12],
have been recently published and use pure Java.

3 Teaching OOP with objectkarel
In this section we present the way the fundamental
concepts of OOP can be taught. However,
objectKarel can be used for teaching control and
repetition structures too. In an introductory
programming course that uses the OOP paradigm,
we consider that one should start directly with the
concept of objects. Of course, teaching objects as
the first basic notion of a programming language is
not always easy with traditional programming
environments. However, this is possible with
objectKarel since the objects are robots.
 The lessons are structured and are carried out at
the laboratory. In each lesson, the students
familiarize themselves with certain notions of OOP
using the relevant theory and especially, the selected
examples that have been incorporated into the
programming environment with the form of hands-
on activities. In these activities, the students as a rule
investigate the proposed code executing it in one go
or step-by-step, or by converting the code in order to
realize the changes that the transformations involve
in the robots’ behaviour. The environment, thanks to
its special editor, the characteristic messages that are
presented in each case, the fact that the robots’
behaviour is visible and generally because of its
special features, facilitates the student in this
investigation. Moreover, the successive activities
proposed, progressively familiarize the student with
the features of the environment. Lastly, in each
lesson, a sequence of exercises is proposed whose
aim is to clarify or to emphasize certain aspects of
each proposed notion. Following, we present some
lessons in order to clearly explain the teaching
methodology for the basic concepts of OOP that we
propose with the help of objectKarel.

3.1 Objects - Classes
This lesson aims at teaching the following concepts:
object, construction & initialization of an object,
messages/methods, attributes & behaviour of an
object, class, program/task. First, the theory of the
unit «Introduction» is used so as present the
microworld of objectKarel and introduce students to
the main principles of OOP. Next, the theory of the
unit “Objects & Messages” is used so as to present
the basic class of robots. With the help of the
corresponding activity (similar to Fig. 3, but without
the “Properties” panel) the 4 messages to which
each robot responds to are explained: move(),

turnLeft(), putBeeper(), pickBeeper(). This activity
aims at familiarizing students with the most basic
notion of OOP - which is sending messages to
objects – by simply clicking buttons rather than
using from the very beginning the programming
language. When students click a button labeled with
the name of the message, they see: i) the result of
executing the message in the world as well as the
robot-object which executes this message; ii) the
syntax of the command, which was executed by
clicking the button, in the programming language
that they will later use to develop their programs.
 It is also emphasized that each object is self-
sufficient, or in other words it has its own «natural»
existence and identity and that is why we always use
the name of the object we send a message to:
<object-name>.Message().
 Lastly, it is clarified that each robot with the
above capabilities constitutes an instance of the
basic model – a class called Primitive_Robot. In
order to: (i) explain to the students that a class can
supply us with all the objects we want provided that
we give the suitable command for their construction
and initialization; (ii) clarify the concept of
attributes, the values of which are altered with the
execution of methods; and (iii) behaviour, we use
the activity of the unit «Classes». The relevant text
for this activity is as follows: «Press the button
“Construction and Initialization of an Object” in
order to create a robot that is a member of the class
Primitive_Robot. In the dialogue box that appears
give a name to the robot and initialise its properties.
Next, help the robot collect all the beepers in its bag
(without executing an error shutoff) by sending it the
appropriate messages. Watch how the execution of
the messages changes the values of the robot's
properties, as well as the syntax of the messages in
the programming language.»
 When students click the button «Construction
and Initialization of an object» the dialogue frame
«Construct an object (robot)» is presented (Fig. 2).
This dialogue box also appears during the programs’
development for constructing objects. At the top of
this frame there is a template of the command for
creating and initializing an object and at the bottom
there is a short explanation of its meaning. Students
select the class of the object from the popup list, (in
this particular case it is predetermined), give a name
to the object and initialize its attributes.
 If the user’s commands are correct, the frame
closes and the card of the activity (Fig. 3) is
informed with: the name of the new robot; the initial
values of its attributes; the messages which the robot
can respond to, and the form of students’ actions in
the programming language (code pane).

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 95

 Yet again using the available messages (buttons on
the card) the student can solve the problem without
having to write a program. The program is
developed in stages: each time the student chooses
to send a message to the robot - by clicking the
buttons - the corresponding command is appended to
the text area. In this activity, the student is also
given the form of the main task block.

Fig. 3. The activity of the unit Classes.

 Next, the structure of a program and the features
of the programming environment are presented
through an example. Students open an existing
program, compile it, create a situation in the robots’
world, execute the program in all possible ways, and
use the structure editor for making changes that
cause syntax, logical and execution errors. Finally,
students carry out various assignments.

3.2 Inheritance
The objective of this lesson is: (1) for the students to
comprehend the notion of inheritance, the
advantages of creating new classes and re-
using/modifying existing classes; (2) to familiarize
students with the declaration of new classes and the
definition of methods; and (3) present a simplified
form of UML class diagrams. The basic notions,
which this particular lesson refers to, are: base class,
parent class/superclass, subclass, multilevel

inheritance, inheritance hierarchy, declaration, scope
resolution operator, dictionary, a simplified form of
UML class diagrams. The notion of inheritance is
presented with the use of an example. Specifically,
the problem of the robot-traveller included in the
unit «Inheritance» is used: «A robot should be
programmed so that when it travels, it covers large
distances. We assume that the robot begins at the
intersection of the 1st avenue and the 2nd street and
it must move in the direction of east along the 2nd
street for 10 kilometers (1 km = 8 blocks), pick up a
beeper and then move 5 km north. Since the robots
of the Primitive_Robot class can only move one
block and do not understand the concept of km we
need to translate our solution into commands that
move the robot one block at a time. This means that
our program will consist of 120 move() commands:

Fig. 2. Constructing & Initializing an object.

task
{
 Primitive_Robot Karel (1, 2, East, 0);
 Karel.move(); … //79 times Karel.move();
 Karel.pickBeeper();
 Karel.turnLeft():
 Karel.move(); … //39 times Karel.move();
}

 In the context of this example students
comprehend that often, even for simple problems,
very large programs can develop which are difficult
to understand, to debug or to modify in order to
solve similar problems. This gives us the chance to
explain that in order to solve this problem, the
programming language of robots gives us the
possibility to create new classes of robots, which
contain new methods. In other words we can define
classes that provide us with robots that have
increased capabilities. For example, in the robot-
traveller problem we can define a subclass with a
method, such as moveKlm(), which will call the
method move() eight times. Then we can use an
object/robot of this class and call the moveKlm()
method. In this case, our program will consist of just
23 commands!
 Following, the activity of the unit «Inheritance»
is proposed, where the problem of «sweeping a 4
one-block steps stair» is presented and a discussion
with the students on its solution takes place. The
students study and execute two programs for the
above problem – in the 1st a robot of the
Primitive_Robot class is used, while in the 2nd a
robot of a new class is used. In order for the
students to better comprehend the notion of
inheritance, the advantages of creating new classes,
and re-using existing ones, they are asked to select
one of the two programs stated above and to

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 96

determine the changes that must be made when the
stair has 10 steps. Whatever the answer is, the
students are required to justify it. The relevant
discussion that follows makes it obvious that new
classes offer advantages.
 The 2nd lesson is completed with assignments,
specially designed to detect whether students have
comprehended the taught concepts or not, as well as
their difficulties and misconceptions. For example,
in the context of the 1st assignment students are
given a problem specification and a textual
description of the methods of the four classes (3-
level inheritance) required for solving it and are
asked to design a UML class diagram, implement
the classes and write the main task block. The 2nd
assignment requires the use of 4 objects of a single
class defined by students, and its goal is to ascertain
whether Holland’s et al. [6] conclusion that some
students tend to become confused between classes
and their instances (objects) or whether Carter’s and
Fowler’s [3] conclusion that the distinction between
objects and classes does not cause problems for the
students is verified.

3.3 Polymorphism
The objective of this lesson is for the students to
comprehend the concepts of polymorphism, good
class design and refactoring, which is explained
indirectly through the activity of the corresponding
unit (Fig. 4): «In the robots’ world there are two
stairs. The steps of
one stair are a
different distance
apart to those of
the other stair.
The two robots
must climb the stairs sweeping the beepers that lie
on each step. Click the button “Program Execution”
to study and execute the program. Observe that both
robots are sent the same message (climbStair()),
however, the robots, depending on their class,
respond to it differently.»
The program contains the superclass
AugmentedRobot that implements a “turnRight”
method and the subclasses SmallStair_Sweeper and
BigStair_Sweeper, which both implement a method
with the common name climbStair() that instructs
the robot how it can go up to the next step, gathering
the beepers as it goes along. For novices, this
solution seems to be fine. However, it is obvious
that this solution is an example of “bad” class
design. This “bad” class design is discussed with
students and a better solution is suggested: a
Stair_Sweeper class should be defined, while the
classes SmallStair_Sweeper and BigStair_Sweeper

should derive from it. This is when students are
presented the concept of refactoring, which is
applied in the context of the assignments carried out
by students.

4 Evaluation
The lessons described briefly in the previous section
have already been applied to students of a
department of Applied Informatics. Specifically,
five two-hour lessons were carried out: (1) Objects-
Classes; (2) Inheritance; (3) Selection & Repetition
Structures; (4) Polymorphism; (5) Overriding. The
lessons were followed by an evaluation of students’
knowledge as well as an evaluation of the
environment and the lessons by the 24 students that
participated. All the students had attended
compulsory programming courses and faced
difficulties in applying the principles of
programming (either imperative or OOP). Due to
space limitations, we briefly present students’
answers in some questions of the final questionnaire
related to the evaluation of the proposed teaching
approach. Before that we would like to stress out
that: (i) the described lessons are a result of
application and evaluation of a prior series of
lessons based on objectKarel [11]; (ii) the 3rd lesson
can be omitted or divided in 2 lessons based on
students’ prior knowledge.
Question 1: Evaluate in the range of 1 to 5
(excellent) the structure and quality of the
educational material.

Table 1. Replies in Question 1.
Educational material Score (1-5)

Lessons 4,8
Text 4,2
Activities 4,5
Assignments 4,5

Fig. 4

Question 2: Did the series of lessons help you in
comprehending programming concepts?
Question 3.1: If you had been introduced to
programming with the specific programming
language and environment do you believe that you
would have faced fewer difficulties?

Table 2. Replies in Questions 2 and 3.1
Reply Question 2 Question 3.1

Yes 87,5 % 87,5 %
No 4,2 %
Don’t know 12,5 % 8,3 %

Question 3.2: If yes, which problems do you believe
that you would not face? (open-type question)

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 97

Table 3. Replies in Question 3.2.
Problem %

Comprehending OOP concepts/principles 61,9
Focusing on learning the language’s syntax 23,8
“Being afraid of programming” 14,3
Comprehending selection/repetition
structures

4,7

Question 4: For which circumstances would you
suggest the use of objectKarel for teaching
programming?

Table 4. Replies in Question 4.
Problem %

Introducing university students to OOP 42,9
Teaching programming in Secondary
Education

28,6

Introduction to programming in
Universities

14,3

As an aid to teaching a conventional
language

14,3

Teaching programming in small ages and
aged ones

9,5

Question 5: Did the lessons help you comprehend
and/or clarify any OOP concepts that you faced
difficulties with?
Question 6: Do you believe that after attending the
specific series of lessons you would face difficulties
with the corresponding concepts in a conventional
programming language, such as C++ or Java?

Table 5. Replies in Questions 5 and 6.
Reply Question 5 (%) Question 6 (%)

Yes 95 5
No 5 95

5 Conclusions
Programming microworlds are usually used for
introducing novices to programming. In our case,
objectKarel was used for helping students tackle
their difficulties after an unsuccessful introduction
to programming. The analysis of the questionnaire
shows that objectKarel and the proposed series of
lessons helped them overcome various
difficulties/misconceptions. We believe that the
results would be even better if students had been
introduced to OOP with objectKarel from the start.
We further believe that such an approach does not
exclude then the use of a professional programming
language, or even better the metaphor of “Karel J.
Robot” that uses Java. On the contrary, it will help
beginners to grasp the importance of fundamental

notions of OOP and thus be able to deal with more
complex problems based on the OOP paradigm.

Acknowledgements
This research is being funded by the Greek Ministry
of Education and the European Union as part of the
project "Pythagoras ΙΙ- Funding of research groups
in the University of Macedonia".

References:
[1] Bergin, J., Stehlik, M., Roberts, J. and Pattis, R.,

Karel++ - A Gentle Introduction to the Art of
Object-Oriented Programming. 2nd edn.,
Wiley, New York, 1997.

[2] Buck, D. & Stucki, D.J., JKarelRobot: A Case
Study in Supporting Levels of Cognitive
Development in the Computer Science
Curriculum, ACM SIGCSE Bulletin, 33(1),
2000, 16-20.

[3] Carter, J. & Fowler A., "Object Oriented
Students?", Proc. of the 3rd ITiCSE, 1998, 271.

[4] Du Boulay, "Some Difficulties Of Learning To
Program". In Studying The Novice Programmer,
Soloway, E., Sprohrer, J. (Eds.) Lawrence
Erlbaum Ass., 283-300, 1989.

[5] Hadjerrouit, S., “A constructivist approach to
object-oriented design and programming”, Proc.
of the 4th ITiCSE Conference, 1999, 171-174.

[6] Holland, S. Griffiths, R. & Woodman, M.,
"Avoiding object misconceptions", Proceedings
of the 28th SIGCSE, 131-134, 1997.

[7] Kölling M., Rosemberg J., “Guidelines for
Teaching Object Orientation with Java”, ACM
SIGCSE Bulletin, 33, 3, 2001.

[8] Milne, I. & Rowe, G., "Difficulties in Learning
and Teaching Programming - Views of Students
and Tutors", Education and Information
Technologies, 7:1, 55-66, 2002.

[9] Sanders, D. & Dorn, D., Jeroo: A Tool for
Introducing Object-Oriented Programming,
ACM SIGCSE Bulletin, 35(1), 2003, 201-204.

[10] Wick, M., “On Using C++ and Object-
Orientation in CS1: the Message is Further more
important than the Medium”, ACM SIGCSE
Bulletin, Vol. 27, Issue 1, 322-326, 1995.

[11] Xinogalos, S., Satratzemi, M. & Dagdilelis, V.
An Introduction to object-oriented programming
with a didactic microworld: objectKarel,
Computers & Education, Vol. 47, Issue 2,
September 2006, 148-171.

[12] Karel J Robot: http://www.cafepress.com/
kareljrobot

[13] objectKarel is available at: http://www.csis.pace
.edu/~bergin/temp/findkarel.html

Proceedings of the 5th WSEAS International Conference on Education and Educational Technology, Tenerife, Canary Islands, Spain, December 16-18, 2006 98

