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Abstract: The D-transform (©J. Hekrdla, [1]) converts a continuous-time signal into a sequence in such a way that – 
in contrast to the classical sampling – the relations between the derivative of continuous-time signal and the 
difference of discrete-time signal are strictly preserved. This fact enables, among other things, changing the problem 
of numerical solution of differential equations into the simpler problem of solving difference equations. The inverse 
D-transform represents a difficult problem, which has been solved numerically by means of Laguerr’s finite series. 
This paper describes a novel method of D-transform inversion, which is based on mutual correspondence between 
the D-, z-, and Laplace transforms. Numerical accuracy is provided by the algorithm of the inverse Laplace 
transform, which works reliably also in the case of periodical or divergent signals. 
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1   Introduction 
A new integral transformation is published in [1] which 
transfers a function xa(t) of real variable t into a sequence 
x(k) according to the formula 
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where k is a non-negative integer, and T is a real 
constant. Eq. (1) defines the so-called D-transform of 
function xa(t). This transformation can be denoted by 
means of the D-operator: 
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     The constant T plays the role of sampling period. In 
contrast to classical sampling, the discrete-time (DT) 
signal x(k), acquired from continuous-time (CT) signal 
xa(t), preserves a number of its features. Applying the D- 
transform to the impulse response of a CT system, we 
get the impulse response of the equivalent DT system 
and a difference equation, describing its behavior. It is 
proven in [1] that this difference equation can be 
unambiguously determined from the differential 
equation of CT system after replacing derivatives by 
differences. This basic feature of the D- transform can be 
described as follows: 

The D-transform of a derivative is the difference of a D-
transform, 

or 
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     The correspondence between the differential and 
difference equations of CT and DT systems, which is 
provided by the D-transform, is mutually explicit. This 
feature is not true for any correspondence based on the 
well-known s-z transformations, when the derivative-
difference replacement represents only an approximation 
[2, 3, 4]. It really means that the D-transform enables 
precise modeling of CT systems via DT systems that are 
equivalent in terms of the D-transform. However, such 
modeling also requires backward transition from the DT 
signal into the CT signal, i.e. the inverse D-transform. 

     It is shown in [5] that no such transformation kernel 
g(k,t) exists that would enable writing the inverse D-
transform in a common form  
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     That is why the problem of the inversion of the D-
transform is solved indirectly via the well-known 
problem of inverting another transformation. In [5], the 
D-transform is converted into the Laguerre transform 
with subsequent time-domain inversion. 
     Another procedure is described in this paper. This 
method uses the relationships between the D-, z-, and 
Laplace transforms. As a result, the computation is 
faster and more accurate than in the case of the method 
published in [5]. 
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2  Inversion of D-transform by numeri-
cal inversion of Laplace transform 

The following relationships between the D-, z-, and 
Laplace transforms can be derived from Eq. (1), which 
defines the D-transform [1]: 
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     The symbols D, Z, and L denote the operators of the 
D-, z- and Laplace transforms. 

     It is obvious from (4) that the problem of finding the 
signal xa(t) from the sequence x(k) can be solved in the 
following steps: 

1 Finding the z-transform of the sequence x(k). 
2 Transposing the above z-transform to the Laplace 

transform the of the signal xa(t), applying the 
substitution s = (1-z-1)/T  or z -1 = 1-sT according to 
(4). 

3  Computing the signal xa(t) from its Laplace transform 
by means of the algorithm of the numerical Laplace 
inversion (NLI). 

 
Finding z-transform of sequence x(k) 

The implementation of this step depends on the type of 
the problem being solved. Let us omit the trivial case, 
when we know an algorithm of x(k) generation in the 
form of difference equation. If only numerical values of 
this sequence are available, such a rational fraction 
function of the z-operator must be found that forms the 
z-transform pair with this sequence. This classical 
problem of identifying the DT system from its impulse 
or another response is solved, for instance, in [6, 7]. 
 
Transposing z-transform to Laplace transform 

Consider the z-transform of original x(k) in the form of 
rational fraction function: 
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     As evident from (4), applying the substitution 
s=(1-z-1)/T yields the Laplace transform of the resulting 
CT signal. Tedious derivation leads to the closed-form 
solution: 
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     From the point of view of s-z transformations, the 
transposition of transfer function (5) to (6) represents the 
so-called BD (Backward-Difference) transformation [2], 
[3]. Eq. (6) is in agreement with the results from [2], 
relating to the BD transformation. 

Computing xa(t) by NLI algorithm 

An algorithm of a precise inversion of the Laplace 
transform is described in [8-10]. The Laplace transform 
is regarded as the rational fraction function of the s-
operator. Consider the Laplace transform K(s) according 
to Eq. (6) in order to find its time-domain representation 
xa(t). K(s) can be considered the transfer function of an 
n-th order linear system with an input w(t) and an output 
y(t). Then the signal xa(t) can be found as the impulse 
response of this system, i.e. its forced response to the 
Dirac impulse w(t) = δ(t). Then K(s) is the ratio of the 
Laplace transforms of output and input signals: 
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     On the assumption of normalized polynomial in the 
denominator, i.e. dn = 1, the following state equations 
can be assigned to transfer function (7) [10, 12] 
 ( ) ( ) ( ) ( ),0xBXAI +=− sWss  (8) 

where X(s) and W(s) are the Laplace transforms of state 
vector x(t) (nx1) and input signal w(t); x(0) is the state 
vector of initial conditions at t=0, and I is an (nxn) unity 
matrix. The state matrix A and vector B have the 
following structures: 
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     The time-domain output equation, corresponding to 
transfer function (6), is as follows: 
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where xi , i=1,2,..,n are elements of the state vector. 

     The time-domain representation of transfer function 
(6) is found in two steps: 

1  The numerical Laplace inversion (NLI) of matrix 
equation (8),  

2  Computing the final response from output Eq. (9). 

     As demonstrated in [9], this procedure results in a 
very precise inversion of the Laplace transform, even if 
the time-domain signal has an oscillating or unstable 
behavior. 

     The transformation of Eq. (8) into the time domain 
utilizes the so-called "resetting principle" [9-11]. The 
time axis is divided into consecutive intervals. The NLI 
algorithm, described in [9], is applied to Eq. (8) over the 
first interval on the assumption of zero initial state x(0) = 
0 and the Dirac impulse as input signal with the Laplace 
transform W(s) = 1. The computational step must be 
sufficiently small to avoid error in the NLI algorithm, 
which grows with longer simulation times. After 
finishing the NLI, the state vector is saved in the 
memory, and it is used in the next step as a vector of 
initial conditions. Starting from the second step, the 
natural response to these initial conditions is solved. The 
algorithm is repeated over all the intervals of the time 
axis. Every time the state vector is computed, the output 
signal is also determined by evaluating Eq. (9). 
 
4   Algorithm testing 
Consider the DT signal in Fig. 1, which represents the 
input signal x(k) before the inverse D-transform. The 
sampling period is T = 0.1ms. The signal is described 
by the equation 
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Fig. 1: DT signal for inverse D-transformation. 
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where 

Xmax = 8.347e-005,  
a = 8.347e-001,  
ωd = 5.521e-001 rads. 

 
     Note that in the time domain this signal represents a 
harmonic signal with a frequency of 878.7Hz, a phase 
shift of 31.6°, and a damping time constant of 533.6µs. 
     The proposed algorithm for the inversion of the D-
transform has been programmed in MATLAB. The 
resulting CT signal is in Fig. 2. It has been identified as 
CT harmonic signal with the following parameters: 

0 0.005 0.01 0.015 0.02 0.025 0.03
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time [s]

xa

 
Fig. 2: CT signal after inverse D-transform. 
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where 

Xamax=0.99994, 
τ = 5.003ms, 
ϕ = -0.0034°, 
ωa = 6.2832e+003 rads/s. 

 
     Note that the D-transform preserves the character of 
the signal, which is in an exponentially damped 
harmonic form in both cases. However, the parameters 
of signals are totally different.  
     To verify this result, setting (11) into definition 
equation (1) of the D-transform is not a preferred 
method, because it leads to a brain-teaser integral. That 
is why we utilize Eq. (4): we compute the z-transform 
of DT signal (10), and perform the substitution z-1=1-
sT. In this way we obtain the Laplace transform of the 
signal xa(t). After the Laplace inversion we would get 
Eq. (11). 
     The z-transform of (10) leads to the following 
result: 
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     Applying the above substitution and arrangement 
yields the Laplace transform of CT signal: 
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     After the inverse Laplace transform we obtain xa(t) 
exactly in the form of (11), where 
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     These results are in good agreement with data from 
our numerical algorithm. 
 
5   Conclusions 
An effective method of numerical inversion of the D-
transform into continuous-time signal is described in 
the paper. The problem of the inverse D-transform is 
translated into a formerly resolved problem of 
numerical inversion of the Laplace transform. The 
algorithm is relatively simple and its practical testing 
has confirmed a high precision of the resulting CT 
signal. 
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