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Abstract: - We discuss a possibility to construct high order methods on uniform or mildly graded grids for the nu-
merical solution of linear Volterra integro-differential equations with weakly singular or other nonsmooth kernels.
Using an integral equation reformulation of the initial value problem, we apply to it a smoothing transformation so
that the exact solution of the resulting equation does not contain any singularities in its derivatives up to a certain
order. After that the regularized equation is solved by a piecewise polynomial collocation method on a mildly
graded or uniform grid. In particular, a numerical method based on the Haar wavelets can be constructed.
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1 Introduction
We consider an initial-value problem of the form

y′(t) = a(t)y(t) + b(t) +

t∫
0

K(t, s)y(s)ds,

t ∈ [0, T ], T > 0,

(1)

y(0) = y0, y0 ∈ R = (−∞,∞). (2)

Such problems arise naturally in many mathematical
models of various physical and biological phenomena,
see, e.g. [2, 3]. In what follows, we assume that

a, b ∈ Cm,ν(0, T ], K ∈ Wm,ν(∆T ),

m ∈ N = {1, 2, . . .}, ν ∈ R, ν < 1.

Here, Cm,ν(0, T ], m ∈ N, −∞ < ν < 1, is
defined as the set of all m times continuously differ-
entiable functions u : (0, T ] → R such that the esti-
mation

|u(k)(t)| ≤ c


1 if k < 1− ν,
1 + | log t| if k = 1− ν,
t1−ν−k if k > 1− ν

(3)

holds with a constant c = c(u) for all t ∈ (0, T ] and
k = 0, 1, . . . ,m.

Note that Cm[0, T ], the set of m times contin-
uously differentiable functions on [0, T ], belongs to
Cm,ν(0, T ] for arbitrary ν < 1. On the other hand, a

function u ∈ Cm,ν(0, T ] (m ∈ N, ν < 1) is uniformly
continuous on (0, T ] and therefore has a continuous
extension to the closed interval [0, T ]; below such an
extension will be denoted again by u.

The set Wm,ν(∆T ), m ∈ N, −∞ < ν < 1, with

∆T = {(t, s) ∈ IR2 : 0 ≤ t ≤ T, 0 ≤ s < t},

consists of all m times continuously differentiable
functions K : ∆T → R satisfying∣∣∣∣( ∂

∂t

)i(
∂
∂t + ∂

∂s

)j

K(t, s)
∣∣∣∣ ≤

c


1 if ν + i < 0,
1 + | log(t− s)| if ν + i = 0,
(t− s)−ν−i if ν + i > 0,

(4)

with a constant c = c(K) for all (t, s) ∈ ∆T and all
non-negative integers i and j such that i + j ≤ m.

It follows from (4) (with i = j = 0, 0 ≤ ν < 1)
that the kernel K(t, s) of equation (1) may possess a
weak singularity as s → t. In the case ν < 0, the
kernel K(t, s) is bounded on ∆T , but its derivatives
may be singular as s → t. Often the kernel K of
equation (1) has the form K(t, s) = Kν(t, s), with

Kν(t, s) = κ(t, s)(t− s)−ν , 0 < ν < 1,

or
K0(t, s) = κ(t, s) log(t− s),

where κ is a m times continuously differentiable func-
tion on ∆T = {(t, s) ∈ IR2 : 0 ≤ s ≤ t ≤ T}.
Clearly, Kν ∈ Wm,ν(∆T ) and K0 ∈ Wm,0(∆T ).
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The regularity of the solution of equation (1) can
be characterized by the following lemma.

Lemma 1 [4] Let a, b ∈ Cm,ν(0, T ], K ∈
Wm,ν(∆T ), m ∈ N, −∞ < ν < 1. Then the
Cauchy problem {(1), (2)} has a unique solution y ∈
Cm+1,ν−1(0, T ].

Thus, under the conditions of Lemma 1, the solu-
tion y(t) of equation (1) and its first derivative y′(t)
are continuous for t ∈ [0, T ] but y′′(t), . . . , y(m)(t)
may be singular as t → 0. If one wants to construct
for {(1), (2)} a numerical algorithm possessing a high
order convergence on the whole interval [0, T ], one
has take into account, in some way, the possible sin-
gular behaviour of the exact solution. In collocation
methods this behaviour can be taken into account by
using special graded grids

ΠN = {t0, . . . , tN : 0 = t0 < t1 < . . . < tN = T}
(5)

with the nodes

tj = T (j/N)r, j = 0, . . . , N. (6)

Here the real number r ∈ [1,∞) characterizes the
non-uniformity of the grid ΠN . If r = 1 then the grid
points (6) are distributed uniformly; if r > 1, then the
grid points (6) are more densely clustered near the left
endpoint of the interval [0, T ] where the derivatives of
the solution of equation (1) may be singular.

By using a collocation method based on {(5),(6)}
and piecewise polynomials of degree m − 1, one can
reach a convergence of order N−m for sufficiently
large values of r. For instance, in case 0 < ν < 1
the convergence behaviour of order N−m is available
for r ≥ m/(1− ν), see [4, 5]. A problem which may
arise with the use of graded grids for large values of r
is that it can sometimes create significant round-off er-
rors in calculations over a long interval of integration,
since a number of these calculations is performed with
a very small step size in the neighbourhood of the left
endpoint of the interval [0, T ].

The purpose of the present paper is to construct
such high order algorithms for the numerical solu-
tion of problem {(1), (2)} which do not need strongly
graded grids. To this end, we first introduce an equiv-
alent integral equation reformulation of {(1), (2)}.
Then we apply to it a smoothing transformation so
that the singularities of the derivatives of the exact so-
lution of the resulting equation will be milder or dis-
appear. After that we solve the transformed equation
by a piecewise polynomial collocation method on a
mildly graded or uniform grid. In particular, a Haar
wavelet solution can be constructed.

Our approach is based on the ideas of [9, 10, 11,
12] (see also [1, 6, 7, 8]) and the smoothness proper-
ties of the exact solution of problem {(1), (2)} given
by Lemma 1.

2 Piecewise polynomial interpolation
For given integers m ≥ 0 and −1 ≤ n ≤ m − 1,
let S

(n)
m (ΠN ) be the spline space of piecewise poly-

nomial functions on the grid (5):

S
(n)
m (ΠN ) = {u : u|[tj−1,tj ] =: uj ∈ πm,

j = 1, . . . , N ; u
(k)
j (tj) = u

(k)
j+1(tj),

k = 0, . . . , n; j = 1, . . . , N − 1}.
Here πm denotes the set of polynomials of degree not
exceeding m and u|[tj−1,tj ] is the restriction of u to
the subinterval [tj−1, tj ], j = 1, . . . , N . Note that
elements of S

(−1)
m (ΠN ) = {u : u|[tj−1,tj ] ∈ πm,

j = 1, . . . , N} may have jump discontinuities at the
interior grid points t1, . . . , tN−1.

In every subinterval [tj−1, tj ], we introduce m in-
terpolation points tj1, . . . , tjm:

tjk = tj−1 + ηk(tj − tj−1),

k = 1, . . . ,m; j = 1, . . . , N,
(7)

where the parameters η1, . . . , ηm do not depend on j
and N and satisfy

0 ≤ η1 < . . . < ηm ≤ 1. (8)

To a given continuous function z : [0, T ] → R we
assign a piecewise polynomial interpolation function
PNz = P

(m)
N z ∈ S

(−1)
m−1(ΠN ) which interpolates z at

the points (7): (PNz)(tjk) = z(tjk), k = 1, . . . ,m;
j = 1, . . . , N . Thus, (PNz)(t) is independently de-
fined in every subinterval [tj−1, tj ], j = 1, . . . , N , and
may be discontinuous at the interior grid points t = tj ,
j = 1, . . . , N − 1. Note that in the case η1 = 0,
ηm = 1 (see (8)), PNz is a continuous function on
[0, T ].

We introduce also an interpolation operator PN =
P

(m)
N which assigns to every continuous function z :

[0, T ] → R its piecewise polynomial interpolation
function PNz.

Lemma 2 [4, 13] Let z ∈ Cm,ν(0, T ], m ∈ N,
−∞ < ν < 1, and let the interpolation nodes (7)
with grid points (6) and parameters (8) be used. Then

max
x∈[tj−1,tj ]

∣∣z(x)− (PNz)(x)
∣∣

≤ c(tj − tj−1)m


1 if m < 1− ν,
1 + | log tj | if m = 1− ν,

t1−ν−m
j if m > 1− ν,
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where j = 1, . . . , N . Moreover, we have

sup
x∈[0,T ]

∣∣z(x)− (PNz)(x)
∣∣ ≤ cε

(m,ν,r)
N . (9)

Here c is a positive constant which do not depend on
N and

ε
(m,ν,r)
N =



N−m, m < 1− ν, r ≥ 1 ,
N−m(1 + log N), m = 1− ν, r = 1 ,
N−m, m = 1− ν, r > 1 ,

N−r(1−ν), m > 1− ν,
1 ≤ r < m/(1− ν) ,

N−m, m > 1− ν,
r ≥ m/(1− ν).

(10)

In what follows, for given Banach spaces E and
F we denote by L(E,F ) the Banach space of linear
bounded operators A : E → F with the norm ||A|| =
sup{||Az|| : z ∈ E, ||z|| ≤ 1}. By C(Ω) we denote
the set of continuous functions on Ω. In particular,
by C[0, T ] we denote the Banach space of continuous
functions z : [0, T ] → R with the norm ‖z‖C[0,T ] =
max{|z(x)| : 0 ≤ x ≤ T}. By c, c1, c2, . . . we will
denote positive constants which may be different in
different occurrences.

Lemma 3 [4] Let S : L∞(0, T ) → C[0, T ] be a lin-
ear compact operator. Then

||S − PNS||L(L∞(0,T ),L∞(0,T )) → 0 as N →∞.

3 Smoothing transformation
Following [10], [12], for given m ∈ N and 1 ≤ d ∈ R,
we denote by Φm,d the set of all transformations of the
form ϕ : [0, T ] → [0, T ] that map [0, T ] onto [0, T ]
and satisfy the following conditions:

ϕ ∈ Cm[0, T ] , (11)

c1x
d−1 ≤ ϕ′(x) ≤ c2x

d−1, 0 ≤ x ≤ T, (12)∣∣ϕ(j)(x)
∣∣ ≤ cxd−j , 0 ≤ x ≤ T, 0 ≤ j ≤ min{d, m},

(13)
where c2 ≥ c1 > 0 and c > 0 are some constants.

It follows from (11) and (12) that a transformation
ϕ ∈ Φm,d has a continuous inverse ϕ−1 : [0, T ] →
[0, T ], ϕ−1(0) = 0. Moreover, we have (see [10])∣∣ϕ(x1)− ϕ(x2)

∣∣ ≥ c0|x1 − x2|
(
xd−1

1 + xd−1
2

)
,

x1, x2 ∈ [0, T ],

with a constant c0 > 0 which is independent of
x1, x2 ∈ [0, T ].

A simplest example of a transformation ϕ ∈ Φm,d

is given by

ϕ(x) = T 1−dxd, 0 ≤ x ≤ T, d ∈ N. (14)

We are interested in transformations ϕ ∈ Φm,d with
d > 1 since they possess a smoothing property for
z(ϕ(x)) with singularities of z(t) at t = 0, see
Lemma 4 below.

Lemma 4 [10] Assume that:
1) z ∈ Cm,ν(0, T ], m ∈ N, ν ∈ R, ν < 1;
2) ϕ ∈ Φm,d, where d ∈ N in case d ≤ m and

d ∈ R in case d > m;
3) u(x) = z(ϕ(x)), x ∈ [0, T ].

Then u ∈ Cm,νd(0, T ] with νd = 1− d(1− ν).

4 Numerical method
First we consider a reformulation of problem
{(1), (2)}. It is based on introducing a new unknown
function

z = y′.

Using y′ = z, {(1), (2)} may be rewritten as a lin-
ear Volterra integral equation of the second kind with
respect to z:

z(t) = f(t) + a(t)
t∫
0

z(s)ds

+
t∫
0

K(t, s)
(s∫
0

z(τ)dτ
)

ds, t ∈ [0, T ],
(15)

where

f(t) = b(t) + y0a(t) + y0

t∫
0

K(t, s)ds, t ∈ [0, T ].

(16)
Next we introduce in (15) a change of variables.

The aim of the change of variables is to obtain a new
integral equation whose solution does not involve any
more singularities in its derivatives up to a certain or-
der.

Let ϕ ∈ Φm,d, m ∈ N, d ≥ 1. Introducing in (15)
the change of variables

t = ϕ(x), s = ϕ(µ), τ = ϕ(σ), x, µ, σ ∈ [0, T ],

we obtain an integral equation of the form

zϕ(x) = fϕ(x) + aϕ(x)
x∫
0

zϕ(µ)ϕ′(µ)dµ

+
x∫
0

Kϕ(x, µ)
( µ∫

0

zϕ(σ)ϕ′(σ)dσ
)
dµ, 0 ≤ x ≤ T,

(17)
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where

fϕ(x) = f(ϕ(x)), 0 ≤ x ≤ T,

aϕ(x) = a(ϕ(x)), 0 ≤ x ≤ T,

Kϕ(x, µ) = K(ϕ(x), ϕ(µ))ϕ′(µ), 0 ≤ µ < x ≤ T,

and
zϕ(x) = z(ϕ(x)) (0 ≤ x ≤ T ) (18)

is a function which we have to find. Changing the
order of integration in the double integral of (17), we
present (17) in the form

zϕ = fϕ + Tϕzϕ, (19)

where

(Tϕzϕ)(x) =

x∫
0

Lϕ(x, µ)zϕ(µ)dµ, x ∈ [0, T ],

(20)
with

Lϕ(x, µ) = aϕ(x)ϕ′(µ)

+ϕ′(µ)
x∫
µ

Kϕ(x, σ)dσ, 0 ≤ µ ≤ x ≤ T.
(21)

Since a, b ∈ Cm,ν(0, T ], K ∈ Wm,ν(∆T ), m ∈ N,
ν <1, ϕ ∈ Φm,d, we obtain that Kϕ ∈ C(∆T ) and

|Kϕ(x, µ)| = |K(ϕ(x), ϕ(µ))|ϕ′(µ)

≤ c


1 if ν < 0,
1 + | log(x− µ)| if ν = 0,
(x− µ)−ν if ν > 0,

where 0 ≤ µ < x ≤ T . Now it follows from (21) and
(20) that Lϕ ∈ C(∆T ), Tϕ ∈ L(L∞(0, T ), C[0, T ])
and

Tϕ : L∞(0, T ) → C[0, T ] is compact. (22)

This together with fϕ ∈ C[0, T ] yields that equa-
tion (19) (equation (17)) has a unique solution zϕ ∈
C[0, T ].

We look for an approximation v = vN,m,r,ϕ to the
solution zϕ of equation (17) in S

(−1)
m−1(ΠN ), m,N∈N.

We determine

v ∈ S
(−1)
m−1(ΠN ) (m ≥ 1) (23)

by the collocation method from the following condi-
tions:

vj(tjk) = fϕ(tjk) + aϕ(tjk)
tjk∫
0

v(µ)ϕ′(µ)dµ

+
tjk∫
0

Kϕ(tjk, µ)
( µ∫

0

v(σ)ϕ′(σ)dσ
)
dµ,

k = 1, . . . ,m; j = 1, . . . , N,
(24)

where vj = v|[tj−1,tj ] is the restriction of v to the inter-
val [tj−1, tj ], j = 1, . . . , N , and the set of collocation
points {tjk} is given by (7).

Having determined the approximation v for zϕ,
we can determine an approximation u = uN,m,r,ϕ for
y, the solution of the Cauchy problem {(1),(2)}, set-
ting

u(t) = y0 +

t∫
0

v(ϕ−1(s))ds, 0 ≤ t ≤ T. (25)

Remark 5 The choice of parameters (8) with η1 =
0, ηm = 1 in {(23),(24)} actually implies that the
resulting collocation approximation v belongs to the
smoother polynomial spline space S

(0)
m−1(ΠN ).

Remark 6 Conditions (23) and (24) determine a sys-
tem of linear equations whose exact form is specified
by the choice of a basis in the space S

(−1)
m−1(ΠN ) (or

in S
(0)
m−1(ΠN ) if η1 = 0, ηm = 1). For example,

one can use on each subinterval [tj−1, tj ] ⊂ [0, T ]
(j = 1, . . . , N ) a representation of the form

v(x) =
m∑

l=1

cjl

m∏
k=1
k 6=l

( x− tjk
tjl − tjk

)
, tj−1 ≤ x ≤ tj ,

where {tjk} are the points (7) and {cjl} are unknown
coefficients. Now the above-mentioned conditions ac-
quire the form of linear equations for the coefficients
{cjl}.

Theorem 7 Let a, b ∈ Cm,ν(0, T ], K ∈ Wm,ν(∆T ),
m ∈ N, −∞ < ν < 1. Let ϕ ∈ Φm,d, with d ∈ N
in case d ≤ m and d ∈ R in case d > m. Finally,
assume that the collocation points (7), with grid points
(6) and parameters (8), are used.

Then, for all sufficiently large N ∈ N, say N ≥
N0, and every choice of parameters (8) with η1 > 0
or ηm < 1, the settings (25) and {(23),(24)} de-
termine unique approximations u ∈ S

(0)
m (ΠN ) and

v ∈ S
(−1)
m−1(ΠN ) to the solution y of the Cauchy prob-

lem {(1), (2)} and its derivative y′, respectively. If
in (8) η1 = 0, ηm = 1, then u ∈ S

(1)
m (ΠN ) and

v ∈ S
(0)
m−1(ΠN ). Moreover, for N ≥ N0 the following

error estimates hold:

max
0≤t≤T

|u(t)− y(t)| ≤ cε
(m,νd,r)
N , (26)

sup
0≤t≤T

|v(ϕ−1(t))− y′(t)| ≤ cε
(m,νd,r)
N . (27)

Here νd = 1 − d(1 − ν), ε
(m,νd,r)
N is defined by (10)

and c is a positive constant not depending on N .
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Proof: We already know that equation (19) (equation
(17)) has a unique solution zϕ = (I − Tϕ)−1fϕ ∈
C[0, T ]. Here I is the identity mapping and (I −
Tϕ)−1 ∈ L(C[0, T ], C[0, T ]). It follows from [4] that
equation (15) has a unique solution z ∈ Cm,ν(0, T ].
This together with (18) and Lemma 4 yields that zϕ ∈
Cm,νd(0, T ], with νd = 1− d(1− ν).

Further, the conditions (23) and (24) have the op-
erator equation representation

v − PNTϕv = PNfϕ, (28)

with Tϕ, given by (20), and PN , defined in Section
2. From (22), Lemma 3 and from the boundedness
of (I − Tϕ)−1 in L∞(0, T ) we obtain that I − PNTϕ

is invertible in L∞(0, T ) for all sufficiently large N ,
say N ≥ N0, and the norms of (I − PNTϕ)−1 are
uniformly bounded in N ,

‖(I − PNTϕ)−1‖L(L∞(0,T ),L∞(0,T )) ≤ c, N ≥ N0,
(29)

with a constant c which is independent of N . Thus,
equation (28) has a unique solution v ∈ S

(−1)
m−1(ΠN )

for N ≥ N0. We have for it and zϕ, the solution of
equation (19) that

v − zϕ = (I − PNTϕ)−1(PNzϕ − zϕ). (30)

Therefore, by (29),

‖v − zϕ‖L∞(0,T ) ≤ c‖PNzϕ − zϕ‖L∞(0,T ), (31)

where N ≥ N0 and c is a positive constant not de-
pending on N . Further, we have

‖v − zϕ‖L∞(0,T ) = sup
x∈[0,T ]

|v(x)− zϕ(x)|

= sup
t∈[0,T ]

|v(ϕ−1(t))− y′(t)|.
(32)

Taking into account that zϕ ∈ Cm,νd(0, T ], νd = 1−
d(1−ν), and applying Lemma 2, we obtain from (31)
and (32) the estimate (27). Since

|u(t)− y(t)|

≤
t∫
0

|v(ϕ−1(s))− y′(s)|ds, 0 ≤ t ≤ T,
(33)

the estimate (26) is a consequence of (27). ut

Remark 8 According to (26), in the case m > d(1−
ν), the estimate

max
0≤t≤T

|u(t)− y(t)| ≤ cN−m (34)

is guaranteed for r ≥ m/d(1 − ν). For ν close to
1 (ν < 1), this condition to r may be too restrictive.
Actually, to obtain the estimate (34), the condition on
r can be considerable relaxed, as shown in the follow-
ing theorem.

Theorem 9 Let the conditions of Theorem 7 be ful-
filled. Then, with the notation of Theorem 7, we have
the following estimates for N ≥ N0:

1) if m ≤ 2− νd = 1 + d(1− ν), then

max
0≤t≤T

|u(t)− y(t)| ≤ cε
(m,νd−1,r)
N ;

2) if m > 2− νd, then

max
0≤t≤T

|u(t)− y(t)|

≤ c


N−r(2−νd) for 1 ≤ r < m/(2− νd),
N−m(1 + log N) for r = m/(2− νd),
N−m for r > m/(2− νd).

(35)

Proof: We consider only the case m > 2 − νd. For
m ≤ 2−νd the argument is similar. Using the equality

(I−PNTϕ)−1 = I +(I−PNTϕ)−1PNTϕ, N ≥ N0,

we rewrite the error (30) in the form

v − zϕ = PNzϕ − zϕ

+(I − PNTϕ)−1PNTϕ(PNzϕ − zϕ).
(36)

Due to continuity of Lϕ(x, µ) on ∆T , the operator Tϕ

is bounded as an operator from L1(0, T ) into C[0, T ].
An observation shows that

‖PN‖L(C[0,T ],L∞(0,T )) ≤ c, N ∈ N. (37)

This together with y′ = z, ϕ ∈ Φm,d, (25) and (36)
yields

|u(ϕ(x))− y(ϕ(x))| = |
x∫
0

[v(µ)− zϕ(µ)]ϕ′(µ)dµ|

≤
x∫
0

|v(µ)− zϕ(µ)|ϕ′(µ)dµ

≤ c
T∫
0

|(PNzϕ)(s)− zϕ(s)|ds,

where 0 ≤ x ≤ T and c is a constant not depending
on N . Then, by Lemma 2,

|u(ϕ(x))− y(ϕ(x))|

≤ c
N∑

l=1

tl∫
tl−1

|(PNzϕ)(s)− zϕ(s)|ds

≤ c1

N∑
l=1

(tl − tl−1)m+1t1−νd−m
l ,
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where 0 ≤ x ≤ T and the constant c1 in independent
of N . It follows from (6) that

(tl − tl−1)m+1t1−νd−m
l

≤ T 2−νdrm+1N−r(2−νd)lr(2−νd)−m−1,

where l = 1, . . . , N . Therefore

max
t∈[0,T ]

|u(t)− y(t)| = max
x∈[a,b]

|u(ϕ(x))− y(ϕ(x))|

≤ cN−r(2−νd)
N∑

l=1

lr(2−νd)−m−1,

(38)
with a constant c not depending on N . Furthermore,
for a fixed α ∈ R we have

N∑
l=1

lα ≤ c


Nα+1 if α > −1,
1 + log N if α = −1,
1 if α < −1,

(39)

with a constant c which is independent of N . Apply-
ing (39) with α = r(2− νd)−m− 1 to (38) it is easy
to see that the estimate (35) holds. ut

5 Concluding remarks
This paper has been concerned with the numerical
solution of linear weakly singular Volterra integro-
differential equations. The solutions of such equa-
tions are typically nonsmooth at the left endpoint of
the interval of integration [0, T ], where their higher
order derivatives become unbounded. If one wants
to construct a high order numerical method for such
equations one has take into account, in some way, the
singular behaviour of the exact solution. It can be
done using polynomial splines on special non-uniform
grids. A problem which may arise with the use of
strongly non-uniform grids is that it can sometimes
create significant round-off errors in calculations. The
approach discussed in this paper allows us to construct
such high order algorithms for solving weakly singu-
lar integro-differential equations which do not need
strongly non-uniform grids. In particular, numerical
schemes of arbitrary high order on the uniform grid
can be constructed.

Acknowledgements: This work was supported by
Estonian Science Foundation, Grant 5859.

References:

[1] P. Baratella, A. P. Orsi, A new approach to the
numerical solution of weakly singular Volterra
integral equations, J. Comput. Appl. Math. 163,
2004, pp. 401–418.

[2] H. Brunner, Collocation Methods for Volterra
Integral and Related Functional Equations,
Cambridge Monographs on Applied and Com-
putational Mathematics, 15, Cambridge Univer-
sity Press, 2004.

[3] H. Brunner, P. J. van der Houwen, The Nu-
merical Solution of Volterra Equations, North-
Holland, Amsterdam, 1986.

[4] H. Brunner, A. Pedas, G. Vainikko, Piece-
wise polynomial collocation methods for lin-
ear Volterra integro-differential equations with
weakly singular kernels, SIAM J. Numer.
Anal. 39, 2001, pp. 957–982.

[5] H. Brunner, A. Pedas, G. Vainikko, A spline
collocation method for linear Volterra integro-
differential equations with weakly singular ker-
nels, BIT 41, 2001, pp. 891–900.

[6] T. Diogo, S. McKee, T. Tang, Collocation meth-
ods for second-kind Volterra integral equations
with weakly singular kernels, Proc. Roy. Soc.
Edinburgh 124A, 1994, pp. 199–210.

[7] E. A. Galperin, E. J. Kansa, A. Makroglou,
S. A. Nelson, Variable transformations in the nu-
merical solution of second kind Volterra integral
equations with continuous and weakly singular
kernels; extensions to Fredholm integral equa-
tions. J. Comput. Appl. Math. 115, 2000, pp. 93–
211.

[8] G. Monegato, L. Scuderi, High order meth-
ods for weakly singular integral equations with
nonsmooth input functions, Math. Comput. 67,
1998, pp. 1493–1515.

[9] A. Pedas, On the approximate solution of
weakly singular integro-differential equations
of Volterra type, Differential Equations 40,
2004, pp. 1345–1353. Translated from Differ-
entsial’nye Uravneniya 40, 2004, pp. 1271–
1279.

[10] A. Pedas, G. Vainikko, Smoothing transfor-
mation and piecewise polynomial collocation
for weakly singular Volterra integral equations,
Computing 73, 2004, pp. 271–293.

[11] A. Pedas, G. Vainikko, Numerical solution of
weakly singular Volterra integral equations with
change of variables, Proc. Estonian Acad. Sci.
Phys. Math. 53, 2004, pp. 99–106.

[12] A. Pedas, G. Vainikko, Smoothing transforma-
tion and piecewise polynomial projection meth-
ods for weakly singular Fredholm integral equa-
tions, Communications on Pure and Applied
Mathematics 5, 2006, pp. 395–413.

[13] G. Vainikko, Multidimensional Weakly Singular
Integral Equations, Lecture Notes Math., 1549,
Springer, Berlin-Heidelberg-New York, 1993.

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006       470


