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Abstract: - In this paper the normalized form of the generalized integral parabolic spline is described, which 
interpolates the integral averaged values of piecewise-smooth function. The three-dimensional system of 
partial differential equations as model of transport processes for porous layered stratum with semi-permeable 
interlayer is proposed. The generalized integral parabolic spline is used for the approximate transformation of 
the 3-D problem into 2-D system by the original method of conservative averaging. The order of the 2-D 
system is equal to the number of productive layers.  This system of 2-D partial differential equations with 
continuous coefficients fulfills all conservation laws of initial problem in averaged sense. 
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1   Introduction 
Many real processes take place in layered systems, 
consisting of separate layers with different thickness 
and different physical properties [1]-[4]. Very often 
such systems are composed from two types of layers 
which are located alternatively, e.g. aquifers and 
aquitards (aquiludes) [1] in groundwater flows. In 
these cases, in the mathematical model of such 
processes we have jump in coefficients of 
differential equations on the surfaces between two 
layers. Discontinuity of coefficients of PDE (partial 
differential equations) brings out additional 
difficulties by standard use of traditional 
mathematical methods.  
One of the authors has developed the conservative 
averaging method and he introduced a special new 
type of splines for wide class of PDE problems with 
discontinuous coefficients [5]-[9].  
In this paper we give a description of generalized 
integral parabolic spline (GIPS) in so called 
normalized form [10], [11] and employ this spline 
for some groundwater (or other fluids) flows and 
pollution problems in layered stratum, which 
consists of two different types of layers: main 
(productive) and interlayers (semi-permeable 
layers). This type of models automatically reduces 
(if the thickness of interlayers trends to zero) to 
models, which have only productive layers - 
considered in our previous works [10], [11]. 
Proposed method differs from methods traditionally 
used in various transport processes in natural or 
artificial porous media. Our method as outcome 
gives little bit more complicated mathematical 

model, but it allows analyzing broader spectrum of 
physical phenomena and wider variety of 
geometrical and physical parameters. 
 
2 Integral Splines 
In this section we introduce the integral averaged 
values interpolating special splines (parabolic and 
generalized parabolic).  
   
2.1 Interpolation Problem for Piecewise-

Smooth Function 
Let it be given a continuous, piecewise-smooth 
function ( ), [ , ].U x x a b∈  Further, let it be given, 

that in the different inner points , 1,...,ix i N= the 
first derivative ( )U x′  of the function has a finite 
jump:  

1 ( 0) ( 0i i i ik U x k U x− )′ ′− = + .                               (1) 

Here coefficients 0, 0,ik i N> =  are known for 

all 1( , ),i ix x x +∈  0 1, Nx a x b+= = . Since the 
function is continuous on the closed 
interval , we additionally have following 
continuity equalities in these points: 

( )U x
[ , ]a b

( 0) ( 0), 1,...,i iU x U x i N− = + = .                        (2) 
Let additionally be given the integral averaged 
values  of the function over the all sub-

segments
iu ( )U x

1[ , ]i ix x + : 
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+= = − =∫    (3) 

The interpolation problem consists in approximate 
reconstruction of the function , and it is based 
on conditions (1)-(3) and following general 
boundary conditions (BC) on end points 

( )U x

x a= and x b= : 

0 0 0 0( ) ( ) ,k U a U aν λ′− + = Φ

1

                                (4) 

1 1( ) ( ) .Nk U b U bν λ′ + = Φ                                     (5) 
This interpolation problem can be solved by 
polynomial spline IPS 
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( )( ) ( ) ,
12

, 0.
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i i
i i i i

i i

i i i
i i

i

x x GS x u m x x e
k H

x x Hx G
k

+

⎡ ⎤−
= + − + −⎢ ⎥

⎣ ⎦
+

= = >

      (6) 

For the determination of 2(  free coefficients, 
we have exactly the same number of equations 
(1),(2),(4) and (5). In [5], [6], [10] and [11] it was 
proved, that all coefficients can be represented 

through coefficients  in two forms:  

1)N +

im

ie
a) for  0,..., 1i N= −

1 1

1 1

( ) 2(
( / 3 ) 2 / 3 ;

i i i i i i

i i i i i

k m G G u u
e G G e G

+ +

+ +

+ = −
+ − 1

)

+

−

1

1

)−

−

+

−

1

                         (7 )a

b) for  1,...,i N=

1

1 1

( ) 2(
( / 3 ) 2 / 3 .

i i i i i i

i i i i i

k m G G u u
e G G e G

−

− −

+ = −
+ +

                       (7  )b

The Elimination of the coefficients from these 
expressions gives us for following 

system regarding  (see [10] and [11]): 

im
1,..., 1i N=

ie

1

1 1

(1 )

, 1,..., 1.
i i i i i i i

i i i i i i

a e a b e b e

f u f u f u i N
− +

− +
− +

+ + + + =

− + = −
                  (8) 

Here i i if f f−= + +

1

1

+

+

and 

( ) ( )
( ) ( )

1 1 1

1

/ , / ,

3 / , 3 / .
i i i i i i i i

i i i i i i

a G G G b G G G

f G G f G G
− − +

− +
−

= + = +

= + = +
     (9) 

For the transformation of the BC (4), (5) some 
additional notations must be used and two different 
cases are distinguished: 
1) 00 ≠λ  (and 1 0λ ≠ ). Then 

1 0 0 1 1 1

1 0 0 1 1 1

2 / , 2 / ,
/ , / ;

N

N

G G
u u

ν λ ν λ
λ λ

− +

− +

= =
= Φ = Φ

                        0(10 )

2) 00 =λ (and 01 =λ ). Then 

1 0 0 1 1

1 0 0 1 1

2 , 2
, .

N

N N

G G G
u u u u

,NGν ν− +

− +

= − = −
= Φ + = Φ +

                    1(10 )

We have obtained from BC (4), (5) in papers [10], 
[11] following equations for the first and last 
equations: 

0 0 0 0 1 0 1 0 0 0 1

1

1 1

(1 ) ,
(1 )

.
N N N N N

N N N N N N

a b e b e f u f u f u
a e a b e

f u f u f u

− +
−

−

− +
− +

+ + + = − +

+ + + =

− +

    (11) 

In the case 00 =λ ( 01 =λ ) we have special 
formulas for coefficients and  0a :Nb

0 1Na b= = . We proposed in our papers [10], [11] 

the representation for coefficients of IPS through 
all averaged integral values. This representation 
shows in explicit form also the impact of the BC 
type and its right hand side on the spline: 

ie

0 1 1
(0) (1)

0
, 0,N N

N

i i i ij j
j

f u f ue uγ γ β− +
− +

=
= + + =∑ .i N (12) 

The coefficients in the representation (12) are 
determinate from three systems of linear algebraic 
equations. 
a) The system for (0)

iγ (shows the impact of BC (4)): 
(0) (0)

0 0 0 0 1

(0) (0) (0)
1 1

(0) (0)
1

(1 ) 1,

(1 ) 0,
1,..., 1,

(1 ) 0.

i i i i i i i

N N N N N

a b b

a a b b
i N
a a b

γ γ

γ γ γ

γ γ

− +

−

+ + + =

+ + + + =
= −

+ + + =

                0(13 )

b) The system for (1)
iγ (shows the impact of BC (5)): 

(1) (1)
0 0 0 0 1

(1) (1) (1)
1

(1) (1)
1

(1 ) 0,

(1 ) 0,
1,..., 1,

(1 ) 1.

i i i i i i i

N N N N N

a b b

a a b b
i N
a a b

γ γ

γ γ γ

γ γ

−

−

+ + + =

1++ + + + =

= −

+ + + =

                                  1(13 )

c) The 1N +  systems ( ) for0,...,j N= ijβ : 

0 0 0, 0 1,(1 ) 0,j ja b bβ β+ + + =  

1, 1,(1 )i i j i i ij i i ja a b bβ β β− ++ + + + =  

1, , 1,

1, ,

, 1,..., 1,

(1 ) 0.
j i j j i j j i j

N N j N N N j

f f f i N

a a b

δ δ δ

β β

− +
− +

−

− + =

+ + + =

−
         (14) 
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2.2 Model of Heat Conduction in Multi-
layered Bar 
Now, by easiest one-dimensional multi-layer 
temperature conduction model, we will show 
how IPS can be used to simplify the initial 
problem. We consider following heat 
conduction model with piecewise-constant 
coefficients: 

2

1

0 1

( ) ( , ),

0, , , , (0, ],

i i
i i i i

N

U Uc k F x t x x
t x x

i N x a x b t T

+

+

∂ ∂∂
= + < <

∂ ∂ ∂
= = = ∈

,ix
(15) 

1

1
1

( 0) ( 0),
( 0) ( 0) ,

i i i i

i i i i
i i

U x U x
U x U xk k

x x

−

−
−

− = +

∂ − ∂ +
=

∂ ∂

                (16) 

0
0 0 0 0 0

1

( ) ( ) ( ),

( ) ( ) ( ),N
N N N

U ak U a
x

U bk U b
x

ν λ

1

t

tν λ

∂
− + = Φ

∂
∂

+ = Φ
∂

                  (17) 

0( , 0) ( ).i iU x U x=                                            (18) 
We introduce in conformity with the method of 
conservative averaging (see [8]-[11]) the 
integral averaged values : ( )iu t

1

1
1( ) ( , ) , , 0,..., .

i

i

x

i i i i i
i x

u t U x t dx H x x i N
H

+

+= = −∫ =  

The integration of main equation (15) gives 
exact consequences: 

1

( ), 0, ,
i

i

x x

i i i
i i

i x x

du k Uc f t
dt H x

+=

=

∂
= + =

∂
i N             (19) 

11( ) ( , ) .
i

i

x

i i
i x

f t F x t
H

+

= ∫ dx  

It remains to replace the first term in the right 
hand side of the equation (19) by the first 
derivative difference of IPS (6): 

1 1 2i i

i i

x x x x

i i i

i ix x x x

k U k edS
H x H dx H

+ += =

= =

∂
≈ =

∂
i

i

. 

As the last step, we use the representation (12) 
for the spline coefficient . This finally gives:  ie

0 1 1
(0) (1)

0

2i
i

i
N N

N

ij j i i
j

duc
dt H

f u f uuβ γ γ− +
− +

=

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
+ +∑

( ), 0, , (0, ].if t i N t T+ = ∈                                   (20) 
To this system of ordinary differential equations 
(ODE) averaged over sub-segments 1[ , ]i ix x + , initial 
conditions (18) must be added (the conjugations 
conditions (16) and BC (17) were already used by 
construction of IPS): 

1
0 01(0) : ( )

i

i

x

i i i
i x

u u U x
H

+

= = ∫ dx .                         (21) 

So, we have reduced the one-dimensional 
problem with discontinuous coefficients for 
PDE to the system of ODE with continuous 
coefficients. After solving problem (20), (21), 
we can approximately reconstruct the solution 
of original problem (15)-(18) by IPS (6). 
 
2.3 Generalized Integral Parabolic Spline  
Let it again be given a continuous, piecewise-
smooth function , for which the first 
derivative

( ), [ , ]U x x a b∈
( )U x′  has first kind discontinuities in 

different inner points2N 1/ 2, , 1,...,i ix x i N− = :  

1 1/ 2 1/ 2 1/ 2

1/ 2

( 0) (
( 0) ( 0).

i i i i

i i i i

k U x k U x
k U x k U x

− − − −

−

0),′ ′− = +
′ ′− = +

              (22) 

The continuity property of the function gives 
following equalities: 

( )U x
2N

1/ 2 1/ 2( 0) (
( 0) ( 0).

i i

i i

U x U x
U x U x

− − 0),− = +

− = +
                                  (23) 

Here the function (coefficients) is piecewise-
constant function:  

( )k x

1/ 2 1/ 2

1/ 2

, ( ,
( )

, ( ,
i i

i i i

k if x x x
k x

k if x x x
− −

+

∈⎧
= ⎨ ∈⎩

),
)

i

ik

  

with property . Here must 

be mentioned that the
1/ 2 1,i ik k− − 1/ 2ik −

1/ 2 1N Nx x+ += = b , it means 
the function can neither end nor begin with a 

linear part of the segment[ ] .) 

( )U x

,a b

The 1N + integral averaged values of the 
function  are given additionally over sub-

segments  

iu
( )U x

[ ]1/ 2, :i ix x +  
1/ 2

1/ 2
1 ( ) , , 0, .

i

i

x

i i i
i x

u U x dx H x x i
H

+

+= = −∫ i N=  (24) 
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Further, it is known, that on the sub-segments 
[ ]1/ 2 1, , 0,i ix x i N+ + = −1 the function can be 

approximated by linear function.  
Finally, the BC (4), (5) must be fulfilled. 
In our paper [7] it was shown that there exists 
exactly one spline fulfilling all mentioned 
conditions. We will seek this spline in the form: 

( )

2

1/ 2
1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2
1/ 2

( )( ) ,
12

[ , ], , 0, ;( ) 2
( ), [ ,

, 1, . 25
2

i i
i i i i

i i

i i
i i i

i i i i

i i
i

x x Gu m x x e
k H

x x

],i

x x x x i NS x
u m x x x x x

x xx i N

+
+

− − − −

−
−

⎧ ⎡ ⎤−
+ − + −⎪ ⎢ ⎥

⎣ ⎦⎪
⎪ +⎪ ∈ = == ⎨
⎪ + − ∈⎪
⎪ +

= =⎪⎩

 

Here  are lengths parameters reduced 
by conductions coefficient, which can be called as 
“characteristic conduction lengths”. Similarly we 
introduce  additional lengths parameters for 

second type of layers  

/i iG H k= i

N

1/ 2 1/ 2 1/ 2/ ,i i iG H k− − −=

1,i N= , which will be used immediately.  
The continuity (23) of generalized IPS (GIPS) at 
discontinuity points 1/ 2 , 0,ix i N+ = −1 gives 
following equalities: 

1/ 2
1/ 2 1/ 2 1/ 2

2 6

.
2

i i
i i i i

i
i i i

G Gu k m e

Gu k m +
+ + +

+ + =

−
              (26) 

The same property at points , 0, 1ix i N= − gives 
similar equalities: 

1 1
1 1 1 1

1/ 2
1/ 2 1/ 2 1/ 2

2 6

.
2

i i
i i i i

i
i i i

G Gu k m e

Gu k m

+ +
+ + + +

+
+ + +

− +

+

=
                          (27) 

The conjugation conditions (22) lead to the 
equalities for 0, 1i N= − : 

1/ 2 1/ 2 1 1 1.i i i i i i i ik m e k m k m e+ + + + ++ = = −               (28) 

Equalities (28) allow us to exclude  and 

 from (26), (27). Instead of   we obtain 
following generalized chain of equalities 
for

1/ 2 1/ 2i ik m+ +

1i ik m+ +

1/ 2 1 1/ 2

1 1 1 1

3 ( 2 ) ( 6

3 ) 2 6( ).
i i i i i i i i

i i i i i

k m G G G e G G

G e G u u
+ + +

+ + + +

+ + + +

+ + = −
    0(29 )

In its turn, from we obtain for(7 )b 1,i N= : 

1/ 2 1 1/ 2

1 1 1 1

3 ( 2 ) ( 6

3 ) 2 6( ).
i i i i i i i i

i i i i i

k m G G G e G G

G e G u u
− − −

− − − −

+ + + +

+ − = −
    1(29 )

The last step consists of excluding the term  
from last two equalities. We obtain finally: 

i ik m

1 1

1 1

(1 )

, 1,..., 1,
i i i i i i i

i i i i i i

a e a b e b e

f u f u f u i N
− +

− +
− +

+ + + + =

− + = −
 

0 0 0 0 1

0 1 0 0 0 1

(1 )

,

a b e b e

f u f u f u−
−

+

+ + +

− +

=
                                       (30) 

1

1 1

(1 )

.
N N N N N

N N N N N N

a e a b e

f u f u f u
−

− +
− +

+ + +

− +

=
 

Here the coefficients of linear algebraic system have 
following expressions: 

( )
( )

1 1/ 2

1 1/ 2

/ ,

/ ,

i i i i i

i i i i i

a G G G G

b G G G G

− −

+ +

= + +

= + +

1

1

−

+

 

( )1/ 2 13 / ,i i i if G G G−
− −= + +                               (31) 

( )1/ 2 1

1/ 2 1/ 2

3 / ,

, 0

i i i i

i i i N

f G G G

f f f G G

+
+ +

− +
− +

= + +

.= + = =

1N

 

The expressions for 1 1 1, , ,NG G u u− + − +  are identical 

with the expressions (1 . 0 ), 0,1k k =
We would like to underline an interesting moment 
regarding GIPS: the system of linear algebraic 
equations for the calculations of spline’s coefficients 
contains only the “parabolic part“ coefficients. 
Linear part characteristics are represented trough 
coefficients (31). Second important aspect: GIPS 
naturally transforms to IPS when all 1/ 2i ix x− = . The 
same property holds for the explicit representation 
for coefficients of GIPS: ie

0 1 1
(0) (1)

0
.N N

N

i i i ij
j

f u f ue uγ γ− +
− +

=
= + +∑ jβ       (32) 

As it was mentioned in our papers [10], [11] we 
would like to draw one’s attention to some important 
aspects of this new type of (integral) splines. As one 
can see, the components of the vector 

and of the matrix ( ) ( )
0( ) , {0,1}k k N

i i kγ γ == =

1 (7 )a

0, 1i N= − : 
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, 0( )N
ij i jβ β ==  depend on the location of grid 

points ix , coefficients  and type of BC (4), (5), 
but they are independent from averaged integral 
values and right hand sides’ values of 
BC. This property implies that for fixed grid points 
and coefficients (and ) we need to calculate 

the components of the two vectors 

ik

iu 0 1,Φ Φ

ik 1/ 2ik −

( )kγ (or ( )kγ ) and 

the matrix β  (or β ) only once. After this 
calculation, for the construction of the integral 
parabolic spline we need only to compute the finite 
sum (12) (or (32) in case of GIPS).  
 
 
3 Transforming the 3-D Formulation 

to 2-D System 
 
3.1 3-D Transport Process in Orthotropic 

Layered Media with Interlayers  
Let it be given the domain , where the 
domain is multilayered cylinder with base 

and with the height

3G R⊂
G

2D R∈ H b a= − : 

{ }0 1[ , NG D z a x b x += ⊗ ∈ = = ] .  
The equation for medium characteristic 

(concentration, temperature etc.) in 
the productive (type aquifer) layer (for 

( , , , )iU x y z t
i th−

( , )x y D∈  and 1/ 2 , 0,i iz z z i N+< < = ) we assume 
in following form: 

1 11 22

33 ( , , , ).

i i ii i

i i
i

U Uc k k
t x x y y

Uk F x y z t
z z

⎛ ⎞ ⎛∂ ∂∂ ∂
= +⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝

⎛ ⎞∂∂
+ +⎜ ⎟∂ ∂⎝ ⎠

iU ⎞∂
⎟
⎠             (33) 

We assume that the source term consists of the 
advection and of the internal source ( , , , )i x y z tΦ :   

1 ,1 1 ,2

( , , , ) ( , , , )

( ) ( )

i i

i i
i i i i

F x y z t x y z t

c v U c v U
x y

= Φ −

∂ ∂
−

∂ ∂
.

 

We have excluded the possible motion in the 
 direction: orthogonal to the layer plane and 

we allow the dependence only on the velocity 
components and coefficients 

z th−

,1 ,2,i iv v ,i i
jj jk κ

The BC in the z − direction for the first and the last 
layer we assume in general form including all three 
classical types of BC: 

0

0 0
0 33 0 0 0 ( , , ),

z z

Uk U
z

ν λ
=

∂
− + = Φ

∂
x y t  

1 33 1 1( , , ).
N

N N
N

z z

Uk U
z

x y tν λ
=

∂
+ = Φ

∂
 

The equation for interlayer (aquitard type) we write 
out in substantially simpler form:  

1/ 2 1/ 2
1/ 2 1/ 2

1/ 2

,

, 1, .

i i
i i

i i

U Uc k
t z z

z z z i N

− −
− −

−

∂ ∂∂ ⎛ ⎞= ⎜ ⎟∂ ∂ ∂⎝

< < =

⎠                    (34)  

The initial conditions are in the traditional form: 
0 0

1/ 2 1/ 200
( , , ), ( , , )i i i itt

U U x y z U U x y− −==
= = z . (35) 

We assume fulfilling one of all traditional BC on the 
lateral boundary { }0 1[ , ND z a x b x +∂ ⊗ ∈ = = ] of 
the cylinder. Specific its properties don’t play 
important role for proposed method of conservative 
averaging. 
 
3.2 Transformation to 2-D Problem  
We will use our original method of conservative 
averaging and for this goal we introduce averaged 
integral values:  

1/ 2
1( , , ) ( , , , ) .

i

i

z

i i i
z

u x y t H U x y z t dz
+

−= ∫                 (36)          

Now we integrate the differential equation (33) in 
the z −  direction: 

1/ 2

1 11 22

1
33 ( , , ),

i

i

i i ii i

z z
i i

i i
z z

u uc k k
t x x y y

UH k f x y t
z

+=

−

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
iu∂ ∂ ∂∂ ∂= +

∂ ∂ ∂ ∂ ∂

∂+ +
∂

             

(37) 

1 1,1 ,2( , , ) ( , , ) ( ) ( ),i i
i i ii ic c if x y t x y t v u v u

x y
ϕ ∂ ∂= − −

∂ ∂
  

1
1( , , ) ( , , , ) .

i

i

z

i i i
z

x y t H x y z t dzϕ
+

−= Φ∫  

Next step of our conservative averaging method is 
the approximation of the function by 
the spline (25) in the  direction. As it was 
shown in the section 2.3 the construction of spline 
reduces to the calculation of its 

( , , , )iU x y z t
z −

j  of the 
arguments , ,x y t . 
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coefficients , 0,ie i N= . The following important 
step is the approximation of the fluxes difference by 
spline’s derivative in the differential equation (37): 

1/ 2

33 2 .
i

i

z z
i i

i
z z

U dSk
z dz

+=

=

∂
≈ =

∂
e                                   (38) 

It again must be underlined that this is exclusive step 
in which the approximate substitution in the 
conservative averaging method is made.  
The next and in the same time the last step of the 
conservative averaging method is to use the 
representation (32) in (38) and to substitute this 
approximate equality in the integrated differential 
equation (37). We obtain: 

1 11 22

(0) (1)
0 1 1

0

( , , )

2 . (39)

i i ii i i
i

ij
i

N

j i i N N
j

u u uc k k f x
t x x y y

H
u f u f uβ γ γ− +

− +
=

⎛ ⎞∂ ∂ ∂∂ ∂⎛ ⎞= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎡

+ +⎢ ⎥
⎣

+∑

y t

⎤

⎦

   

The initial conditions transform in following form: 
0 0

1/ 2 1/ 20 0
( , ), ( , )i i i it t

u u x y u u x y− −= =
= = .            (40) 

Here the right hands sides of both equations are got 
by averaging procedure (36), respectively by 
formula 

1/ 2

1
1/ 2 1/ 2 1/ 2( , , ) ( , , , ) .

i

i

z

i i i
z

u x y t H U x y z t dz
−

−
− − −= ∫  

The same procedure must be done for the BC on the 
lateral surface the finite cylinder.   
After solving the problem for system of PDE (39) 
(together with initial and boundary conditions) we 
can reconstruct the approximate solution 

for all productive layers. Then, it is 
the right time to find the solution for interlayers. 
Here we have two possible ways to write out it. The 
assumed linearity in direction allows us to give 
following simple explicit formula immediately:                              

( , , , )iU x y z t

z −
                                                                   

(1)
1/ 2 1 1/ 2( , , ) 0.5[ ( , , , ) ( , , , )].i i i iu x y t U x y z t U x y z t− − −= + i

The second way consists of solving the integrate 
PDE (34): 

(2)
1/ 2

1/ 2 1 1/ 2
1 [ ( , , , ) ( , , , )
2

i
i i i i

uc U x y z t U x y
t
−

− − −

∂
= +

∂
].iz t

The difference in both approaches gives a posteriori 
evaluation of errors in the proposed method. 
 
4 Conclusion 
The generalized integral parabolic spline allows 
transforming 3-D problem for layered stratum with 
interlayers (for partial differential equations with 
discontinuous coefficients) to 2-D system of PDE 

with continuous coefficients with number of 
equations equal to the number of productive layers.  
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